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In reinforcement learning theories of the basal ganglia, there is a need for the expected
rewards corresponding to relevant environmental states to be maintained and modified
during the learning process. However, the representation of these states that allows
them to be associated with reward expectations remains unclear. Previous studies have
tended to rely on pre-defined partitioning of states encoded by disjunct neuronal groups
or sparse topological drives. A more likely scenario is that striatal neurons are involved
in the encoding of multiple different states through their spike patterns, and that an
appropriate partitioning of an environment is learned on the basis of task constraints,
thus minimizing the number of states involved in solving a particular task. Here we show
that striatal activity is sufficient to implement a liquid state, an important prerequisite
for such a computation, whereby transient patterns of striatal activity are mapped onto
the relevant states. We develop a simple small scale model of the striatum which can
reproduce key features of the experimentally observed activity of the major cell types of
the striatum. We then use the activity of this network as input for the supervised training
of four simple linear readouts to learn three different functions on a plane, where the
network is stimulated with the spike coded position of the agent. We discover that the
network configuration that best reproduces striatal activity statistics lies on the edge of
chaos and has good performance on all three tasks, but that in general, the edge of chaos
is a poor predictor of network performance.
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1. INTRODUCTION
The striatum is the major input module of the basal ganglia; it is
found in all vertebrate animals (Ericsson et al., 2011) and receives
excitatory projections from the whole cerebral cortex (McGeorge
and Faull, 1989; Zheng and Wilson, 2002). It is involved in mul-
tiple cognitive processes including not only motor control and
planning, but also reward-modulated decision making (Kimura,
1990; Jaeger et al., 1995; Aldridge and Berridge, 1998; Hikosaka
et al., 2000; Deffains et al., 2010). The circuitry underlying the
latter function involves dopaminergic inervation from the sub-
stantia nigra pars compacta, with striatal cells differentially car-
rying information about actions to perform (Go) or not (NoGo)
depending on their dopamine receptor types and projections to
different parts of the globus pallidus (Balleine et al., 2007; Hori
et al., 2009). This anatomical and neuromodulatory differentia-
tion has led to attempts to model the action selection function
within the conceptual framework of reinforcement learning (RL)
theory (Sutton and Barto, 1998; Joel et al., 2002; Schönberg et al.,
2007).

Previously it has been shown that a realistic dopaminergic
error signal can drive the variant of RL known as

temporal-difference (TD) learning (Potjans et al., 2011),
however this modeling study relied on an artificially pre-defined
partitioning of the environment into discrete RL states that were
encoded as the firing rate of disjunct sets of cortical neurons.
More recently, extending previous work of Doya (2000) on
continuous time TD learning, Frémaux et al. (2013) successfully
implemented a TD error signal over continuous time spiking rep-
resentations of RL states, actions and value functions, relying on
a sparse topographic (i.e., place cell like) encoding of states with
narrow tuning curves and rate encoded value functions to solve
navigation, acrobot and cartpole problems. However, although in
some modalities the brain can rapidly develop a strong localized
response to particular stimuli (Moser et al., 2008), this is unlikely
to be a universal feature of sensory representation and it does not
suggest an efficient way of integrating stimuli across modalities.

A more reasonable alternative for state representation is that
the brain partitions the environment into states according to task
features, such as landmarks or locations where a decision must
be made, and in so doing reduces the representation to relevant
states. This reduction is likely to yield a more efficient and realis-
tic partitioning of the environment, compared to the traditional
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naïve approaches. We hypothesize that flexible environmental
partitioning results from multimodal, distributed representations
of environmental stimuli, impinging onto the striatum simulta-
neously from different cortical sources and requiring the striatal
responses to develop their own internal states, which ought to
reflect relevant features of the environment and be sufficiently
discriminative to be used in RL. In other words: we deem it
likely that an important computational role of striatal neurons
in RL-based decision making, besides the relay of action related
information, is the efficient processing and representation of
the relevant learning states, a role that is compatible to that
of the extension system in the arbitration-extension hypothesis
proposed by Sarvestani et al. (2011).

How could such processing be compatible with the charac-
teristic activity displayed by striatal neurons? Analysis of in vivo
and in vitro experiments, as well as simulations of striatal activ-
ity, reveal the existence of cell assemblies which can be verified by
means of clustering the medium spiny neurons according to their
spike trains’ correlations (Carrillo-Reid et al., 2008; Humphries
et al., 2009; Ponzi and Wickens, 2010; Adler et al., 2012). However,
it is not clear how such assemblies could be used to encode
RL-states or indeed any RL-related variable. More generally, the
computational role of this sequential episodic firing activity is not
completely understood; it is present not only during the encoding
and execution of motor sequences and programs, but persistent
also under random or even fixed cortical excitation, i.e., does
not reach a stable state. This transient dynamics led Ponzi and
Wickens (2010) to claim it could be considered as an instance
of metastable state switching in inhibitory networks (Rabinovich
et al., 2001), known as winner-less competition (WLC).

We explore a complementary interpretation of striatal activity
within the framework of another important theoretical spike-
based model of real-time computation without stable states: the
liquid state machine (LSM) introduced by Maass et al. (2002). An
LSM relies on the capacity of the perturbed state of an excitable
medium to store information of previous perturbations, analo-
gous to the ripples generated on the surface of a pool of water
when pebbles are thrown into it. Maass et al. (2002) proved that
an LSM has universal computing power, in that it is possible
to train linear readouts to learn a function representing a real-
time analysis of the continuous input sequence of disturbances,
as long as two key properties are met. The first, known as the
separation property, refers to the ability to map different inputs
to clearly discernible trajectories of liquid states, i.e., the dis-
tance between different network states ought to be caused by and
reflect the distance between the different inputs that drove it, even
when dealing with infinitesimally small differences in input pat-
terns. The second, known as the approximation property, refers
to the ability of a memoryless readout mechanism to produce a
desired output based only on the network’s internal states, i.e.,
the readouts must be capable of distinguishing the liquid states
and transforming them into target outputs.

It is still poorly understood how the characteristics of a neu-
ronal network implementation of an LSM correlate with its learn-
ing performance (Lukosevicius and Jaeger, 2009). The first neural
microcircuit implementations of an LSM exhibited a connectiv-
ity structure and synaptic weight distributions based on a single

cortical microcolumn (Maass et al., 2004). A model of cerebellar
circuitry with LSM properties has also been proposed (Yamazaki
and Tanaka, 2007). However, these findings cannot be assumed
to generalize to the striatum, which is a purely inhibitory network
with weak recurrent connections and low firing rates (Miller et al.,
2008). These characteristics do not make a striatal microcircuit an
obvious choice for the implementation of an LSM. With an aver-
age firing rate for the medium spiny neurons (MSNs) of around
5 spikes/s, it is a challenge to understand how they could support
a measurable separation in activity for different inputs that can
be maintained during quiescent periods where the neuron hardly
fires. The challenge is enhanced in the case of a purely inhibitory
network, as each additional spike can only reduce the activity in
the network. So far, there has been neither formal nor practi-
cal demonstration of LSM properties for a model of the striatal
microcircuit.

However, evidence exists that provides some hope to counter
this somewhat unpromising outlook. Ponzi and Wickens (2012)
demonstrated that under certain connectivity conditions a net-
work of MSN neurons was able to generate different responses to
different stimuli. This suggests that the network potentially pos-
sesses the separation property necessary to implement an LSM.
Indeed, the authors of that study later speculated that the tran-
sient dynamics of the network could be a substrate for reservoir
computing (Ponzi and Wickens, 2013). Moreover, the weak recur-
rence in the network facilitates dynamics that spreads on the
timescale of seconds (Carrillo-Reid et al., 2008), which could
enable the fading memory of previous inputs necessary for liquid
computing, but it is not clear if this mechanism can compensate
for the sparse and inhibitory activity.

In order to address the question of the suitability of striatal
activity for liquid computing, we develop and investigate a small
scale model of the striatal microcircuit consisting of both medium
spiny neurons and fast spiking interneurons (FSIs) (Section 2.1).
We first demonstrate that our model can reproduce key statistical
features that have been experimentally observed for each neuron
type, to ensure that our examination of the properties of the net-
work activity takes place in a biologically relevant regime. We then
show that these activity statistics are compatible with fulfilling the
separation property (Section 2.3), whereby an infinitesimal dif-
ference in inputs results in separable network states. We assess the
approximation property in terms of the ability of linear read-out
neurons to extract information from the network state. To do so,
and simultaneously provide a concrete demonstration of liquid
computing, we train four linear read-out neurons on the low-pass
filtered activity of the proposed striatal microcircuit to learn three
different target functions, formalized as the motion of an agent on
a flat, 2D surface (Section 2.4). Our results show that the transient
dynamics of a purely inhibitory neuronal network at low rates can
indeed perform liquid computing.

Previously, the connectivity of MSN networks was found to be
a crucial factor in establishing rich transient dynamics and sen-
sitivity to varying stimuli (Ponzi and Wickens, 2012, 2013). We
therefore systematically investigate how the performance, the sen-
sitivity to perturbations, and the activity statistics of the neuronal
network depend on the strength of the connection from the cor-
tical input to the striatal microcircuit and on the strength of the

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 130 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Toledo-Suárez et al. Liquid computing with a striatal microcircuit

recurrent connections within the microcircuit. Our main finding
is that the network configuration that most accurately repro-
duces striatal activity statistics is well suited to solving the tasks.
Whereas alternative configurations can be identified that perform
better on individual tasks, no network configuration achieved
consistently higher performance across all the tasks. Finally, in
Section 3 we examine the limits of our approach and the impli-
cations of an LSM interpretation of striatal activity for future
experimental and modeling studies.

2. RESULTS
2.1. STRIATAL MICROCIRCUIT
Throughout this study, we investigate the properties of a simple
striatal microcircuit (illustrated in Figure 1A) and its suitability
to act as a substrate for a liquid state machine. In many fea-
tures of the model we aimed for biological realism and based
our choices on various sources of experimental data, namely in
the proportional representation of both major striatal cell types,
their connection probability and the numbers and strengths of
connections between populations of cell types (Kawaguchi et al.,
1995; Oorschot, 1996; Koos et al., 2004; Planert et al., 2010). Some
other aspects of the model, however, require simplifications to
reduce the overall complexity of the model and the number of
free parameters to be tuned. This is the case with the morpho-
logical and biophysical properties of the different cell types, i.e.,
we use point neurons and do not discriminate between strio-
some/matrisome cells. Nevertheless, taking all these extra details
into account wouldn’t provide much additional insight into the
computational features investigated here.

Medium spiny neurons (MSNs), which form sparse recurrent
inhibitory synapses (Tunstall et al., 2002; Planert et al., 2010),
account for at least 90% of the striatal neurons (Oorschot,
1996). This suggests that they should be seen as an indispensable
component of any function ascribed to this subcortical structure.

The majority of the remaining neurons found in the striatum,
which provide a strong feed-forward inhibition to a considerable
fraction of those MSNs throughout the range of their axonal
arborization, are GABAergic fast spiking interneurons (FSIs).
Thus, despite being largely outnumbered, FSIs exert a non-
negligible influence on MSNs (Kawaguchi et al., 1995; Koos et al.,
2004).

Our microcircuit comprises 500 medium spiny neurons
(MSNs) and 50 fast spiking interneurons (FSIs) with locations
drawn from a two dimensional uniform distribution on a 1mm ×
1mm plane with periodic boundaries, resulting in a network
approximately a factor of 10 less dense than biological striatal net-
works. However, anatomical findings suggest that striatal neurons
in close proximity share few cortical inputs (Zheng and Wilson,
2002). This allows us to abstract the influence of the remain-
ing neurons, without loss of biological plausibility, as stochastic
input to the modeled neurons, given that those remaining neu-
rons would probably not be functionally involved with the same
task. The ratio of 10 MSNs to every FSI corresponds to the exper-
imentally observed proportion (Kawaguchi et al., 1995). The two
neuron types are implemented using the multi-timescale adaptive
threshold neuron model (Kobayashi et al., 2009) tuned for intrin-
sic bursting for MSNs (Aldridge and Gilman, 1991) and fast spik-
ing for FSIs, with parameters taken from the literature (Tunstall
et al., 2002; Koos et al., 2004; Gertler et al., 2008). The differ-
ent characteristic activity patterns are illustrated in Figure 1B,
which shows representative examples of membrane potential and
firing activity for both neuron types, each receiving a direct
current whose value is 1 pA less than their respective rheobase
currents and an identical excitatory Poissonian train at a rate of
150 spikes/s. The activity statistics of the two neuron types in the
microcircuit model are examined in greater detail in Section 2.2.

The connectivity structure we implement in this model is
based on and consistent with striatal slice experiments that

A B

FIGURE 1 | (A) Example of distribution of striatal neurons used as the
substrate for a liquid state machine on a 1mm × 1mm plane with
periodic boundaries. Each FSI is connected to neighboring MSNs on a
fixed radius with a fixed probability of 74% and each MSN is connected
to neighboring MSNs with a Gaussian distribution, such that the

probability of making a synapse a standard deviation away is fixed to
20%. The MSN and FSI units enclosed by stars are example neurons
whose synaptic targets are indicated by MSNs filled with white and light
blue respectively. (B) Example membrane potential trajectories for the
two kinds of striatal neurons implemented.

Frontiers in Computational Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 130 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Toledo-Suárez et al. Liquid computing with a striatal microcircuit

(similarly to our case) did not discriminate between strio-
some/matrisome cells. These studies revealed that the inhibitory
projections of the MSNs are sparser and spread over a larger area
than those of the FSIs (Koos et al., 2004; Planert et al., 2010).
We incorporate these findings (particularly those of Planert et al.,
2010) in the specification of the connectivity structure of the stri-
atal microcircuit: each FSI is connected to neighboring MSNs
within a fixed radius of 100 μm with a fixed probability of 74%,
whereas each MSN is connected to neighboring MSNs according
to a Gaussian distribution, such that the probability of making a
synapse to a neuron one standard deviation away is fixed to 20%.
The strengths of each type of synaptic connection are selected
from a uniform distribution within realistic ranges (Koos et al.,
2004). The FSIs receive no recurrent input from MSNs (Bennett
and Bolam, 1994), and gap junctions between FSIs have not been
incorporated since there is no strong evidence for them to syn-
chronize FSIs’ firing (Berke, 2008). Each MSN and FSI receive
input from a fixed 25% of randomly selected cortical neurons. For
a description of the input encoding features of these cortical neu-
rons, see Section 4.1; a complete listing of our model dynamics,
connectivity and parameters can be found in the Supplementary
Materials.

2.2. ACTIVITY STATISTICS OF STRIATAL MICROCIRCUIT MODEL
In all experiments carried out in this study, the synaptic weights
are multiplied by scale factors, determined by the type of connec-
tion: the factor ws scales all intra-striatal synapses, and the factor
wc scales all synapses between the cortical input neurons and the
striatal neurons. Synaptic weights between cortical neurons and
FSIs are subject to an additional constant scale factor, to account
for the observed higher sensitivity of these neurons to cortical
input compared to MSNs (Parthasarathy and Graybiel, 1997).

The most relevant statistical descriptors of population activ-
ity (mean firing rates and coefficient of variation of the inter-
spike intervals) are displayed in Figure 2 as a function of the
synaptic scaling factors, measured according to the description
in Section 4.2.2 while following random trajectories on the flat
surface. The overlayed gray curve indicates the edge of chaos tran-
sition region, calculated as described in Section 4.2.3. The chaotic
region in this case is located above the curve. These results reveal
that a large portion of the configurations explored have a mean
firing rate below 10 spikes/s, a mean CV above 2, and that the
edge of chaos is a reliable predictor of the area with 1.6 < CV ≤ 2.
Based on these results, we determined three interesting network
configurations that we subsequently investigate in greater detail.

Figure 3 shows the distributions of four key activity statistics
for the MSN population in our proposed model of the striatal
microcircuit: firing rate, interspike interval (ISI), coefficient of
variation (CV) and local coefficient of variation (CV2). Whereas
the coefficient of variation is a measure of regularity in a neu-
ron’s spike train, calculated as the standard deviation of the ISIs
divided by the mean, the local coefficient of variation is a measure
of episodic firing. For a neuron with N spikes in the recording
period, a series of length N − 1 of values for the local coefficient
of variation can be calculated from subsequent ISIs, where the
nth value is calculated as CVn

2 = |ISIn+1 − ISIn| /(ISIn+1 + ISIn).
The distribution of these values over all the recorded neurons is
shown in Figure 3D.

The data series in Figure 3 correspond to the three differ-
ent {ws, wc} pairs identified with the corresponding markers in
Figures 2, 7–9, as samples of the full parameter space, where
the combination of measured variables and connectivity is more
informative, to be compared among the different problems exam-
ined in Section 2.4. The condition indicated by black stars,
corresponding to {ws = 18, wc = 113} accurately reproduces key
statistical features of MSN activity that have been experimentally
observed in vivo (Wilson, 1993; Miller et al., 2008). The mod-
eled MSN population displays a broad distribution of firing rates,
with a low mean of around 4 spikes/s. Additionally, the individual
spike trains are highly irregular, presenting a broad and unimodal
distribution of the coefficient of variation with a peak at around
2. Finally, the spike trains exhibit episodic firing patterns, which is
illustrated by the distribution of the local coefficient of variation,
showing a bimodal pattern with peaks near zero and one, despite
the unimodality observed in the ISI distribution. In the remaining
of this section, we examine other activity features of the stria-
tial microcircuit focusing on this configuration of weight scaling
factors, as it provides the best fit to the four statistics shown in
Figure 3.

The other two configurations, indicated by diamonds and
circles, show qualitatively similar statistics, with the important
difference being that they display mean firing rates of ∼ 14 and ∼
8 spikes/s respectively, which are too high to be considered as
realistic MSN behavior. In both cases, firing rates below 1 spikes/s
are under-represented and firing rates above 20 spikes/s are over-
represented.

During awake behavioral states, FSIs tend to display firing rates
in the gamma frequency band, i.e., above 30 spikes/s, but show
little or no coordinated population response to task related events
such as instruction cues (Berke, 2008). This result is captured by
our model FSIs, as depicted in Figure 4, which exemplifies the
spike trains and activity histogram for the five FSIs that display
the highest firing rates in the striatal microcircuit configured with
{ws = 18, wc = 113} (black star markers in Figure 3). These FSIs
fire consistently in the gamma band and lack coordinated behav-
ior during task performance, in agreement with the supra-cited
experimental findings.

As an additional assessment of the firing rate behavior for
the striatal microcircuit with the {ws = 18, wc = 113} configura-
tion, we examine the percentages of inter-spike intervals for both
the MSN and FSI populations that fall into each of the classical
ECoG frequency bands. Table 1 shows that the ISI percentages
generated by our model are a good fit to the relative contribu-
tions of frequency bands to the firing rate distributions observed
experimentally by Schulz et al. (2011).

In summary, the results described in this section demonstrate
that despite being a small network of point neuron models, our
proposed model of the striatal microcircuit can account for and
accurately reproduce many experimentally observed statistical
features of MSN and FSI spiking behavior, both on the level of
the individual spike trains and on the level of population activ-
ity. We can thus safely assume that the dynamics displayed by
this model are sufficiently representative of striatal activity to
allow us to use this model circuit to investigate tentative com-
putational properties which may be realized by striatal firing
patterns.
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FIGURE 2 | Mean and standard deviation of the mode of the coefficient of

variation and the mean firing rate as functions of the scale factors for the

intra-striatal synapses ws and the corticostriatal synapses wc. Statistics
are calculated from 10 realizations of each network configuration whilst

following random trajectories on the flat surface. The region of chaotic behavior
is located above and to the right of the gray overlayed curve. Markers indicate
configurations of the network identified for further analysis: black star:
{ws = 18, wc = 113}, dark gray diamond: {18, 165}, light gray circle: {0, 113}.

2.3. SEPARATION PROPERTY
To be a substrate for a liquid state machine, a network must
satisfy the separation property, as demonstrated by Maass et al.
(2002). In other words, trajectories of internal states evoked
by two different input streams must be sufficiently discernible
to maintain or amplify their separation. It has been previously
shown that different input stimuli to a spiking neuronal net-
work model of MSNs can evoke firing in different cell popula-
tions (Ponzi and Wickens, 2012). However, in order to demon-
strate the separation property, we must show that stimuli that
are infinitesimally different in input space (for example, with
one single spike shifted) generate discernibly different network
responses.

To this end, we stimulate the cortical input layer to the striatal
microcircuit according to a randomly chosen agent position x̄
(see Section 4.1 for details), and then repeat the experiment from
the same initial conditions with the agent positioned at x̄ + ε̄,
i.e., a small distance ε̄ away from the originally chosen position.
The Euclidean distance between the low-pass filtered activity
of the cortical neurons representing the first and the second
position serves as a measurement of the input separation (see
Section 4.2.1).

The traces displayed in the upper panel of Figure 5 refer to
the average Euclidean distance between the input trajectories for
five different initial conditions and circuit instantiations and five
different pairs of positions with fixed ε̄. The configuration of
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A

C

B

D

FIGURE 3 | Discrete probability density functions for activity

statistics of the MSN population. (A) Rate (bin size = 0.1 in
logarithmic space), (B) Interspike intervals (bin size = 1.2 s), (C)

Coefficient of variation (bin size = 0.5), (D) Local coefficient of
variation (bin size = 0.05). Markers indicate different configurations of

the scaling factors for the strengths of the recurrent connections
within the striatal microcircuit ws and for the connections from the
cortical input to the striatum wc. Markers as in Figure 2: black star:
{ws = 18, wc = 113}, dark gray diamond: {18, 165}, light gray circle:
{0, 113}.

FIGURE 4 | Raster plot and activity histogram (bin= 50 ms) for the five

FSIs with highest firing rates in the network with weights

configuration {ws = 18, wc = 113}, indicated by the black star markers

in Figure 2.

weight scaling factors to and within the striatal microcircuit are
set to {ws = 18, wc = 113}, i.e., providing the most faithful fit
to experimentally observed activity statistics as described in the
previous section. The lower panel of Figure 5 shows the average

Euclidean distance of the low-pass filtered striatal microcircuit
output activity evoked by the corresponding input activities
described above, calculated according to Equations 1 and 2, as
explained in Section 4.2.1. Although the curves are noisier, the
activity of the striatal microcircuit clearly maintains the separa-
tion of its inputs, even when the separation in the input activity is
driven by a difference in agent position of one hundredth of the
environment width. We conclude that despite the low firing rates
and the purely inhibitory character, the activity of the striatum is
indeed sufficiently rich to support adequate state separation, even
in response to infinitesimally small differences at the input level.

2.4. COMPUTATIONAL PROPERTIES OF THE STRIATAL MICROCIRCUIT
MODEL

To assess the computational capabilities of the proposed striatal
microcircuit as a liquid state machine, we chose three target func-
tions represented as trajectories on a 2D plane. Note that the
functions chosen are not intended to explicitly model navigation;
the interpretation of the functions to be learned as trajectories
on a plane is simply to ease visualization. To evaluate the per-
formance, the striatal microcircuit is connected to four linear
read-out neurons that encode the four cardinal directions on the
plane. During the training phase, the strengths of the synapses
between the striatal neurons and the read-out units are learned
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Table 1 | Percentage of ISIs according to classical ECoG frequency bands for neurons in the striatal microcircuit configured with

{wc = 18, ws = 113} (black star markers in Figures 2 and 3).

Frequency band Slow and delta, <4 Hz Theta-alpha, 4-12.5 Hz Beta, 12.5-33 Hz Gamma, >33 Hz

ISIs > 250 ms 250–80 ms 80–30 ms <30 ms

MSN (n = 500) 76.8 ± 12.4% 14.6 ± 6.8% 6.5 ± 4.6% 2.1 ± 2.2%

[n = 68] [53.3 ± 28.2%] [16.2 ± 14.2%] [19.3 ± 16.4%] [11.1 ± 15.0%]
FSI (n = 5) 34.5 ± 3.6% 15.1 ± 4.9% 16.1 ± 2.2% 34.2 ± 9.2%

[n = 9] [29.9 ± 30.0%] [4.9 ± 3.4%] [21.6 ± 12.6%] [43.6 ± 32.8%]

Values in brackets taken from Schulz et al. (2011) for comparison.

A

B

FIGURE 5 | (A) Euclidean separation of the low-pass filtered cortical input
activity. (B) Output activity of the striatal microcircuit with weight scaling
factors configured as {ws = 18, wc = 113} (black star markers in Figure 2).
Curves are averaged over 25 samples consisting of 5 different initial
conditions and circuit instantiations, where each network configuration
receives 5 different pairs of sets of input trains corresponding to the
encoding of 5 randomly chosen pairs of positions. The distance between
the pairs of positions is set to a hundredth (gray), a tenth (blue) and a fifth
(black) of the environment’s width.

according to a supervised learning algorithm; see Section 4.3 for
a detailed description of the learning process and interpretation
of the activity of the read-out neurons. The use of a supervised
learning algorithm in this context is not intended to reflect our
assumptions about the downstream processing of striatal activity
in the rest of the basal ganglia and does not influence the dynam-
ics of the striatal network. It simply serves to demonstrate that
network states can be separated and to determine to what extent
the transient responses of the striatal microcircuit are sufficiently
informative to be used as the basis for learning.

In this framework, we investigate the second feature necessary
for a system to implement a liquid state machine, the approxi-
mation property. We start by determining the ability of a set of
linear readout units to use the network responses to produce a

desired target output, i.e., to associate them with a target action
(exemplified by the motion of an agent along a surface, following
a specific path). The approximation property is thus assessed as
the performance of these readout units (see Section 4.4.1).

Another property that is important for the hypothesized role
of the striatum in providing a partitioning of the environment
into relevant states, is that similar input stimuli can be be mapped
to the same action. To evaluate this, we introduce a measure of
generalization (see Section 4.4.2). Having been trained on a vari-
ety of points in input space, we assess how well the system can
map nearby points onto the corresponding actions.

Figure 6 shows the three target functions we used to illustrate
these principles: straight trajectories toward a goal at the center
of the surface (left), and discretized versions of the Mackey-Glass
differential equation (Farmer, 1982):

�yi = αxi
(
1 + (xi/η)γ

)−1 − βyi

�xi = yi−τ − xi

with α = 0.2, β = 0.1, γ = 10 and η = 15 and τ can assume two
different values, setting a different task complexity: τ = 5 (center)
and τ = 23 (right).

The function of approaching a goal in straight trajectories was
chosen as a simple way of implementing and exploring the prob-
lem of stabilizing an input to a desired state regardless of the
initial conditions. The Mackey-Glass equation, on the other hand,
allows us to create tasks of increasing complexity by varying the
delay τ that determines the dependence of future increments on
previous function values. Larger values of τ force the microcircuit
to exploit its fading memory of previous inputs and constitute a
more complex task.

It’s important to highlight another important difference
between these studied instances. Whereas for the first case we
randomly reset the position from which the agent begins after a
predefined number of training/testing steps, for the Mackey-Glass
functions the starting position is fixed and the subsequent trajec-
tory is generated according to the Mackey-Glass equations, for the
entirety of the training and testing steps.

In the following, we investigate how the performance and gen-
eralization capacity of the linear read-out neurons of the striatal
network depends on the strength of connections between the cor-
tical and the striatal neurons, and the strength of the recurrent
connections within the striatum. As individual synaptic weights
are drawn from specific distributions (see Sections 2.1, 4.4.2),
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FIGURE 6 | Functions to learn: straight trajectories toward a goal at the center of the surface (left), and following a discretized version of the delay

Mackey-Glass differential equation with delays of τ = 5 (center) and τ = 15 (right).

the strengths of the connections are expressed as scaling factors
that multiply the entire distributions (wc and ws, respectively). In
Legenstein and Maass (2007), a similar analysis of the impact of
connectivity parameters on performance and generalization was
carried out for a 3D cortical microcircuit model with recurrent
excitation and inhibition.

For each function, we measure the performance as the aver-
age difference between the direction indicated by the read-out
neurons and the true direction according to the function to be
learned. Analogously, we measure generalization capacity as the
average difference between the directions indicated by the read-
out neurons for positions learned during the training and the
directions indicated for near-by positions. The calculation is given
in greater detail in Section 4.2.2.

2.4.1. Straight trajectories toward a goal
The results depicted in Figure 7 show the performance and
generalization capacities achieved by using four linear readouts
connected to the microcircuit for the simplest task, learning
straight trajectories toward a goal. Lighter colors denote better
performance and generalization capacity, and the overlayed gray
curve indicates the edge of chaos transition region, calculated
as described in Section 4.2.2. The chaotic region in this case is
located above the curve.

The best performance on this task is achieved by networks with
weak or even absent intra-striatal synaptic connections (ws ∈
[0, 30]) and moderate corticostriatal synaptic strengths. Networks
with stronger corticostriatal connections have a greater capacity
to generalize from learned positions to near-by positions; to a
lesser extent networks with very weak intra-striatal connections
display a better generalization capacity in the present task than
those with stronger intra-striatal connections.

These results raise the question of whether the existence of
the inhibitory intra-striatal connections is at all beneficial for
solving this task. For over half of the investigated values for
the corticostriatal weight scaling factor wc, the best performing
circuit is found for ws > 0. However, for the best performing
networks overall, including the configuration with the most real-
istic MSN and FSI firing statistics (black star marker), there
is no improvement in performance for a recurrently connected
network with respect to an unconnected one (with ws = 0,
corresponding to the results depicted in the first column of
each figure).

A small portion of the area where generalization is highest
coincides with the area of highest performance, but overall good
generalization is not a good indicator of high performance, and
vice versa. Similarly, while the best performing networks lie on or
near the edge of chaos, it is not a consistently good predictor of
either performance or generalization.

2.4.2. Mackey-Glass functions
As previously mentioned, using the Mackey-Glass function to
generate the target trajectories allows us to control the task com-
plexity. Particularly, by manipulating the delay parameter τ , we
can control the amount of memory necessary to solve the task,
which amounts to the fading memory property of liquid state
machines.

The simplest scenario, with τ = 5 is depicted in Figure 8,
which shows the performance and generalization capabilities of
the four linear readouts connected to the microcircuit as a func-
tion of the connection scale parameters. Unlike the previous
task, the best performing circuits are found in the absence of
recurrent striatal connections (ws = 0). In the presence of recur-
rent inhibition (ws > 0), the circuits perform, at best, as well as
unconnected networks. Additionally, the highest generalization
capacity coincides with the highest performance for low values
of ws. In contrast with the previous task, the great majority of the
network configurations with the highest performance are to be
found in the chaotic regime, with a smaller area on or below the
edge of chaos.

Figure 9 corresponds to the results obtained for the same
parameter space using the more complex task where the trajec-
tories are generated by the Mackey-Glass equation with τ = 15.
These results show that for more than two thirds of the investi-
gated values for the corticostriatal weight scaling factor wc, there
are recurrently connected circuits that have higher performance
than unconnected ones. However, the network configuration that
produces the most realistic MSN and FSI firing statistics per-
forms no better than network with the same corticostriatal weight
scaling factor wc but no recurrent connections. Unlike the pre-
vious tasks, there is no overlap between the area with highest
performance (low wc and low ws) and the area with the best gen-
eralization (high wc). Additionally, the region corresponding to
the edge of chaos, does not correlate with either performance
or generalization, as there are approximately as many network
configurations giving the highest performance above the edge of
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FIGURE 7 | Mean and standard deviation of the performance and

generalization capabilities achieved by the linear readouts for learning

straight trajectories toward a goal. The region of chaotic behavior is

located above and to the right of the gray overlayed curve. Statistics are
calculated from 10 realizations of each network configuration. Markers
correspond to those used in Figure 2.

chaos as below it, leading to the conclusion that the edge of chaos
itself is a poor predictor of performance.

2.4.3. Comparison of performance on different tasks
Comparing the performance of the network in Figures 7–9 indi-
cates that the easiest function for our model is the Mackey-Glass
with τ = 5 (MG5), followed by the one of approaching in straight
trajectories toward a goal (GOAL), and the most difficult is the
Mackey-Glass function with τ = 15 (MG15). This can be seen
also in Figure 10, which shows examples of the normalized incre-
ments, indicated by black arrows, advocated by our microcircuit
after training for the three functions, using the best combina-
tion of connectivity parameters that most accurately replicates

striatal activity statistics, as indicated by the black star marker
in Figure 2 and discussed in Section 2.2. The incremental per-
formance achieved in the different tasks is easily verified by
the alignment of the advocated actions in Figure 10 with the
corresponding target trajectories. Arrows are more aligned with
the function for problem MG5, followed by GOAL, and less
aligned for MG15, particularly in regions where the trajectory
crosses itself. In these areas, the correct action can only be dis-
criminated using the information from previous values, forcing
the microcircuit to exploit its fading memory of previous inputs.

For the easiest task explored, there seems to be no benefit of
having intrastriatal recurrent connectivity to the network’s rep-
resentational capacity; networks with ws = 0 perform as well
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FIGURE 8 | Mean and standard deviation of the performance and generalization capabilities achieved by the linear readouts for learning the discretized

Mackey-Glass function with τ = 5. Statistics are calculated from 10 realizations of each network configuration. Markers and overlayed gray curve as in Figure 2.

as or better than networks with ws > 0 for any given choice
of wc. However, as the tasks become more complicated, the
area of best performance shifts to network configurations with
ws > 0, as can be seen in Figures 7, 9. It is also worth not-
ing that higher performances are not linked to high firing rates
(by comparing with Figure 2). Neither of the two other network
congurations (Dark gray diamond {ws = 18, wc = 165} and light
gray circle {0, 113}) do a consistently better job than the net-
work configuration indicated by the black star marker {18, 113}
although they have similar activity dynamics at higher rates
(∼ 14 and ∼ 8 spikes/s respectively, compared to ∼ 4 spikes/s).
In general, accurate representations and the consequent best read-
out performance is found only over a small proportion of the
explored parameter space, marked by low intra-striatal synap-
tic weight scales. Furthermore, it becomes impossible to find

non-chaotic dynamics as the synaptic weights between cortical
and striatal neurons increase, and generalization becomes less
predictive of performance as the problem difficulty increases.

3. DISCUSSION
This study provides the first demonstration that a purely
inhibitory network with weak recurrence and low firing rates nev-
ertheless generates activity patterns of sufficient richness to fulfil
the separation and approximation properties that are the neces-
sary and sufficient conditions for liquid computing. Throughout
this study we have also practically demonstrated that the transient
activity patterns of a simple striatal microcircuit can adequately
represent the motion of an agent along specific paths in a
2D plane. These representations were shown to be informative
enough to train a set of linear readouts to adequately realize a
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FIGURE 9 | Mean and standard deviation of the performance and generalization capabilities achieved by the linear readouts for learning the discretized

Mackey-Glass function with τ = 15. Statistics are calculated from 10 realizations of each network configuration. Markers and overlayed gray curve as in Figure 2.

FIGURE 10 | Normalized increments, indicated by black arrows, advocated by the microcircuit after training for the three functions, using the

network configuration {ws = 18, wc = 113} (black star markers in Figure 2).
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variety of generic target functions, advocating the correct actions
in order to reproduce the desired trajectories.

The proposed microcircuit is shown to capture key properties
of real striatal networks by using different configurations of the
same neuron model to represent the MSN and FSI populations
and biologically motivated connection probabilities between the
populations. The model, while remaining simple, is thereby capa-
ble of reproducing several experimentally observed statistical
features of MSN activity (distributions of rates, ISIs, coefficients
of variation and local coefficients of variation) and FSI activ-
ity (firing rates and low synchrony), to a degree comparable to
a previous study (Ponzi and Wickens, 2010) with the impor-
tant addition that in our case these can be directly linked to the
performance on a set of concrete learning tasks based on striatal
activity.

Our results also demonstrated somewhat surprising and
counter-intuitive relations between the measured properties. The
capacity to generalize beyond the training data seems to be
negatively correlated with the mean firing rate and the region
of transition from ordered to chaotic activity: as the driv-
ing input becomes stronger and the firing rate increases, small
perturbations acquire more influence and generalizing becomes
more difficult. It remains unclear whether generalization could
be used as a predictor of performance in general, which is espe-
cially unclear for regions of the explored parameter space that
displayed higher performances. What appears to be a consistent
result in our study is that generalization capacity is negatively
correlated with low performance for large values of intrastriatal
synaptic strengths.

Additionally, although the best network configuration with
respect to activity statistics (the one that most accurately repro-
duces the biological system) is found on the edge of chaos,
proximity to this transition regime is not a reliable predictor for
high performance or generalization. The only metric that seems
to significantly correlate with it is the behavior of the coefficients
of variation of the interspike intervals.

These observations show a clear difference in the expected
relationship between performance, generalization and the edge
of chaos for a liquid state approach to striatal functioning, with
respect to a similar one applied to generic cortical microcircuits
(Legenstein and Maass, 2007). In the latter case it is possible
to identify at first sight a clear coincidence between the edge of
chaos and the zones of highest performance throughout the whole
parameter space explored, and generalization could be linked to
performance by subtracting a network measure from it, i.e., the
kernel-quality. In our case, the transitions are more variable and
it is not clear how the subtraction of a single network measure
could explain the changes in performance observed when learn-
ing different functions, strongly suggesting that the capacity to
generalize beyond the training data is highly dependent on the
characteristics of the problem being solved.

The last observation also applies to the relationship between
the edge of chaos and performance. To date there is no gen-
eral proof of the significance of the edge of chaos regime for
computational performance on any problem, except for the case
of a generic computational task involving the discrimination
of precisely timed spike patterns, assumed by the authors to

be representative of the general computational capabilities of a
cortical microcircuit (Legenstein and Maass, 2007; Schrauwen
et al., 2009). Our results, on the other hand, may favor an alter-
native interpretation, such as that defended by Mitchell et al.
(1994), who pointed out the importance of not claiming a generic
relationship between performance of computational systems on
specific problems and measures of chaotic behavior.

Our results also support the hypothesis that basal ganglia activ-
ity does not differ depending on the generalization requirements
of the learning task at hand (Seger, 2008), as there is neither
a consistent nor positive correlation between generalization and
performance on most of the circuit configurations explored for
the learning problems used. This tendency is confirmed exper-
imentally by studies that compare tasks differing only in their
generalization requirements.

A central assumption of our study was that the striatum is
involved in processing cortical input in a manner that allows the
relevant states to be represented within striatal microcircuits as
transient, spatiotemporal activity patterns, and associated with
corresponding actions. If this assumption is true, a similar degree
of discrimination between different states should be achieved in
the real system as it was in our reduced, simplified model of
the striatum. This would allow, for example, the use of simple
supervised learning algorithms to be applied to in vivo striatal
multi-unit recordings to predict the action taken by an organism
in a forced choice task (Mehring et al., 2003), which reduces to a
classification of state representations developed within the striatal
microcircuit.

By demonstrating the suitability of striatal microcircuits to
function as a liquid state machine, particularly their ability to
transform cortical input into discernible striatal activity states,
we are providing the first steps toward a more realistic and com-
prehensive understanding of the role of basal ganglia in RL. It
is reasonable to hypothesize that the manner in which these
states are used by the downstream circuitry relies on dopamine-
mediated learning (Potjans et al., 2011), however, we do not
inquire here about the neural correlates or system level func-
tional role of such tentative mechanisms within the basal ganglia
(Sarvestani et al., 2011). Even though the scope of this study is
narrow and limited to the nature of useful state representations
within striatal microcircuits, it is important to realize that the
ability to partition the environment into useful RL states, without
resorting to artificial means and relying solely on known bio-
physical properties of the striatum is necessary to develop more
accurate and plausible models of the nature of RL in the basal
ganglia.

Computation on chaotic regimes is compatible with the pre-
sumed involvement of the striatum in the generation of random
exploratory switching between motor sequences, regardless of the
actual cortical input (Barnes et al., 2005). Ponzi and Wickens
(2010) claimed that the cell assembly behavior found in their
MSNs network simulations is an instance of chaotic switching
between metastable states. In the future we intend to analyse the
relationship between transient dynamics as instantiated by our
liquid state approach with such behavior, and to investigate how
the supervised learning used here could be replaced by a learn-
ing framework that can be linked to experimentally observed
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FIGURE 11 | Encoding of input to striatal microcircuit. (A) Depiction of
agent moving along a trajectory on a plane. (B) Raster plot of the cortical
neurons’ activity encoding position on the (arbitrary) X axis (neurons 1 to 25)

and Y axis (neurons 26 to 50) of the plane. Gaussian current profiles indicate
the relative magnitude of input current to cortical neurons. (C) Firing rate
distribution for the spike trains shown in (B).

processes taking place in the basal ganglia, such as those based
on error signals that reflect the role of dopamine in the striatum.

4. MATERIALS AND METHODS
This section presents a description of the peripheral constituents
of the striatal liquid state machine model, the learning algo-
rithm used to train the linear read-out neurons, and the analysis
methods used to investigate network performance and dynamics.

4.1. INPUT ENCODING
In this article we investigate the ability of an inhibitory network
with sparse firing to learn functions on a plane (see Figure 11A).
As we are concerned with the performance of the striatal micro-
circuit to learn generic tasks rather than explicitly spatial tasks,
the option of using a model based on grid or place cells (Moser
et al., 2008) was discarded in favor of a simple way to represent
two-dimensional input.

Figure 11B shows a raster plot that demonstrates the input
encoding chosen: the position on each of the two axes is coded
by the activity of a group of leaky integrate-and-fire neurons
with exponential post-synaptic currents distributed along each
axis. Each neuron receives an independent excitatory Poissonian
background input at the same rate and a weak direct current
with Gaussian magnitude having its maximum on the posi-
tion. A complete listing of parameters used can be found in the
Supplementary Materials. Figure 11C shows the firing rate dis-
tribution for the spike trains shown in Figure 11B. A large range
of firing rates has been found in lateral intraparietal area (LIP)
of cortex (O’Leary and Lisberger, 2012). LIP is an input area to
striatum (Saint-Cyr et al., 1990) which has been hypothesized to
act as an input saliency map with strength of salience represented

by activity level (Bisley and Goldberg, 2010). The range of firing
rates observed in our model is somewhat higher, but the number
of input neurons used is small. An equivalent effect of the input
on the network could be achieved by increasing the number of
input neurons while decreasing the strength of the direct current,
thus decreasing the maximum rate of the input neurons; for the
sake of simplicity we opt for the smaller system.

4.2. ACTIVITY ANALYSIS METHODS
In this section, we describe the methods used to analyse the
circuit’s spiking activity.

4.2.1. Low pass filtering and euclidean separation
The low pass filtering of spike trains used for the training of linear
readouts is calculated as the following sum of exponentials:

dsj

dt
= − sj

τ0
+ 1

τ0
	

t
f
j
δ
(

t − t
f
j

)
(1)

where j is an index running over the striatal neurons, t
f
j are the fir-

ing times of neuron j and τ0 the exponential decay. The Euclidean
distance or separation between the network states evoked by
inputs u and v at time t is calculated as:

ςu,v (t) =
√∑

j

(su
j (t) − sv

j (t))2 (2)

To determine the separation at the input level, the calculation
proceeds analogously, replacing striatal spike trains by cortical
ones.
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4.2.2. Activity statistics
In order to quantify the characteristics of network activity
observed in the striatal microcircuit in a manner that allows a
proper comparison with the relevant experimental data, we resort
to the following metrics:

Mean firing rate. We obtain the firing rate of each MSN by divid-
ing its total number of spikes by the simulation time, and then
calculate the mean and standard deviation over all such cells.
These values are then averaged over 10 network realizations per
condition.

Coefficient of variation. We obtain the CV for the spiking activity
of each MSN by dividing the standard deviation of its interspike
intervals by its mean. The distribution is obtained by binning the
values with a bin size of 0.5, as depicted in Figure 3. We then cal-
culate the mode of the distribution on each circuit realization and
the mean and standard deviation of the mode over 10 network
realizations.

4.2.3. Edge of chaos
To determine the region of transition from stable to unstable
circuit dynamics, i.e., the “edge of chaos,” we perform a simple
perturbation analysis, measuring the sensitivity of the network
dynamics to a small perturbation. To do so, we calculate the
Euclidean distance between the low-pass filtered activity of the
striatal microcircuit when the agent remains in one position and
that obtained at the same position and initial conditions but
with one additional input spike. After smoothing this measure
by applying a moving average, we define the edge of chaos as
the frontier in parameter space where its natural logarithm is
greater than zero after 200 ms and stays so for the remainder of
the simulation.

4.3. LINEAR READOUTS
We implement readouts of the low-pass filtered output of the stri-
atal microcircuit using four perceptrons (Rosenblatt, 1958), each
encoding movement in one of the four cardinal directions on the
2D environment. The learning procedure is as follows. The agent
moves at ts to a new position in the input space,

(
xs, ys

)
. After

50 ms at that position, the advocated action for that position,
expressed as a 4-element column vector, is calculated as the prod-
uct a

(
xs, ys

) = Ws (ts + 50)T where W is the matrix of weights
between striatal neurons and perceptrons, s (t) the row vector of
low-pass filtered activity of striatal neurons at time t and T is
the transpose operator. During the training phase, the trajectory
functions are learned by adapting the weights between the striatal
neurons and the perceptrons using a variant of the perceptron
learning rule. This is calculated over the next 50 simulation steps
(5 ms) according to the matrix equation:

�W =
50∑

k = 1

α
(
r
(
xs, ys

)
/
∣∣r (

xs, ys
)∣∣

−a
(
xs, ys

)
/
∣∣a (

xs, ys
)∣∣) s (ts + 50 + 0.1k)

where α is the learning rate and r
(
xs, ys

)
the 4-element column

vector indicating the correct movement according to the trajec-
tory function. After a further 245 ms in that position (300 ms in
total), the agent moves to a new position in space

(
xs+1, ys+1

)
according to the advocated action a

(
xs, ys

)
. The procedure is

repeated every 300 ms for a total of 3000 training steps.

4.4. COMPUTATIONAL PROPERTIES
4.4.1. Performance
In order to assess the capability of the linear readouts to advo-
cate the desired movements based only on the internal states
of the striatal network (i.e., to assess the approximation prop-
erty), we calculate the average difference over all testing steps, ti,
between the normalized correct movement vector and the nor-
malized movement vector advocated by the linear readouts (see
Section 4.3):

avg (r(ti)/ |r(ti)| − a(ti)/ |a(ti)|) , ti > ttraining (3)

The smaller the difference the higher the performance achieved
by the linear readouts, which signifies a better piece-wise linear
approximation and thus a better liquid state.

4.4.2. Generalization
The ability to generalize a learned computational function to a
new set of inputs, unseen throughout training is a very important
feature of neural microcircuits.

In order to quantify the generalization capacity of our striatal
microcircuit, we calculate the average difference over every testing
position (P → (xs, ys)) between the normalized movement vector
advocated by the linear readouts (see Section 4.3) and the normal-
ized movement vector advocated from a slightly shifted position
(P∗ → (x∗

s , y∗
s )):

avg
(
a(ti)/ |a(ti)| − a(ti)

∗/
∣∣a(ti)

∗∣∣) , ti > ttraining (4)

where the position P∗ in the flat 2D surface, corresponding to
a(ti)∗, is chosen to lie at a randomly chosen angle (obtained from
a uniform probability distribution in [0, 2π ]), and at a randomly
chosen distance (drawn from a Gaussian distribution centered
4 μm away, with a standard deviation of 4/3 μm) from the testing
position.

The lower this difference, the higher the ability of the circuit to
generalize beyond the training data, and thus use the same states
to advocate distinct actions.
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