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Abstract 

Background:  Whole-genome sequence (WGS) data are increasingly available on large numbers of individuals in 
animal and plant breeding and in human genetics through second-generation resequencing technologies, 1000 
genomes projects, and large-scale genotype imputation from lower marker densities. Here, we present a compu-
tationally fast implementation of a variable selection genomic prediction method, that could handle WGS data on 
more than 35,000 individuals, test its accuracy for across-breed predictions and assess its quantitative trait locus (QTL) 
mapping precision.

Methods:  The Monte Carlo Markov chain (MCMC) variable selection model (Bayes GC) fits simultaneously a genomic 
best linear unbiased prediction (GBLUP) term, i.e. a polygenic effect whose correlations are described by a genomic 
relationship matrix (G), and a Bayes C term, i.e. a set of single nucleotide polymorphisms (SNPs) with large effects 
selected by the model. Computational speed is improved by a Metropolis–Hastings sampling that directs computa-
tions to the SNPs, which are, a priori, most likely to be included into the model. Speed is also improved by running 
many relatively short MCMC chains. Memory requirements are reduced by storing the genotype matrix in binary 
form. The model was tested on a WGS dataset containing Holstein, Jersey and Australian Red cattle. The data con-
tained 4,809,520 genotypes on 35,549 individuals together with their milk, fat and protein yields, and fat and protein 
percentage traits.

Results:  The prediction accuracies of the Jersey individuals improved by 1.5% when using across-breed GBLUP 
compared to within-breed predictions. Using WGS instead of 600 k SNP-chip data yielded on average a 3% accuracy 
improvement for Australian Red cows. QTL were fine-mapped by locating the SNP with the highest posterior prob-
ability of being included in the model. Various QTL known from the literature were rediscovered, and a new SNP 
affecting milk production was discovered on chromosome 20 at 34.501126 Mb. Due to the high mapping precision, it 
was clear that many of the discovered QTL were the same across the five dairy traits.

Conclusions:  Across-breed Bayes GC genomic prediction improved prediction accuracies compared to GBLUP. The 
combination of across-breed WGS data and Bayesian genomic prediction proved remarkably effective for the fine-
mapping of QTL.
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Background
In animals, plants and humans, data on phenotypes and 
genome-wide genotypes are used for both genomic pre-
diction and for mapping and identification of the causal 
variants that affect the phenotype. Whole-genome 
sequence (WGS) data are increasingly available on large 
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numbers of individuals in animal and plant breeding, 
and in humans. This is due to cost-effective second-gen-
eration resequencing technologies, in combination with 
1000 genomes projects (e.g. for humans [1]; plants [2]; 
and livestock [3]). The 1000 genomes projects in combi-
nation with modern genotype imputation software (e.g. 
[4, 5]) mean that single nucleotide polymorphism (SNP) 
chip data can be imputed to full sequence genotypes for 
large numbers of individuals.

In genomic prediction, genotypes and phenotypes on 
individuals in a training population are used to predict 
the breeding value of individuals in the target population 
that have genotypes but may not have phenotypes. The 
accuracy of prediction depends on the size of the train-
ing population and the extent of linkage disequilibrium 
(LD). Populations with extensive LD (e.g. many livestock 
breeds) require a smaller training population than popu-
lations with less LD (e.g. humans; [6]). To maximize the 
size of the training population, one might consider com-
bining data across breeds of livestock or across human 
populations. Across-population predictions are espe-
cially valuable for small populations, and also when the 
number of phenotypes per population is small due to 
recording difficulties. However, accuracy of prediction 
declines if the target population is not closely related to 
the training population because the LD between mark-
ers (e.g. single nucleotide polymorphisms or SNPs) and 
causal variants differs between populations. Therefore, 
a method of genomic prediction that maintains higher 
accuracy when the training and target populations are 
not closely related is desirable. Part of such a method 
would exploit high-density marker or whole-genome 
sequence (WGS) data because then markers that are 
close to the causal variants, or the causal variants them-
selves, are included in the data [7]. However, to make 
effective use of such high-density markers, a method of 
variable selection is needed so that the causal variants or 
markers in high LD with them dominate the prediction.

Genome-wide association data is also used to map and 
identify these causal variants. While mapping causal vari-
ants for complex traits to a chromosomal region is com-
mon, identification of the causal variants is less common 
because the causal variant is likely to be in high LD with 
many other variants. Thus, to identify them, first, the 
causal variants must be included in the data and sec-
ond, statistical methods to identify them are required. 
Fine-scale mapping often considers genome sequence 
data within a small chromosomal region, but it would 
be advantageous to do this across the whole genome. 
Within a population, long-range LD causes SNPs that are 
located far from a causal variant to be associated with it, 
which implies the identification of a broad quantitative 
trait locus (QTL) region. Genomic selection models with 

variable selection fit all SNPs simultaneously and thus, 
they position more precisely and possibly identify the 
causal variants, especially when data from several popu-
lations are combined.

A problem with the use of Bayesian variable selection 
methods is that they are computationally very inten-
sive because they typically involve Monte Carlo Markov 
chain (MCMC) sampling. Fast iterative methods for 
Bayesian genomic prediction have been developed, but 
they are generally not quite as accurate as their MCMC 
counterparts [8]. Since the improvements from using 
WGS data may be small, we cannot afford to lose any 
accuracy. However, to estimate the effects of millions 
of SNPs, we need very large numbers of individuals and 
thus very large datasets, which makes the computational 
costs of MCMC sampling excessively high. Several meth-
ods for improving computational speed of MCMC sam-
pling have been published in the past (e.g. [9, 10]). Here, 
we present a relatively fast MCMC implementation of a 
Bayesian variable selection method that can handle WGS 
data on large numbers of animals. We incorporate several 
methods to make the MCMC analysis of WGS data com-
putationally more efficient, including Metropolis–Hast-
ings (MH) sampling to direct computational efforts to the 
most important SNPs, bitwise storage of genotypes in the 
main memory of the computer, and simultaneous evalu-
ations of several (relatively short) MCMC chains using 
multiple threads.

In this paper, we present a method for fine-scale map-
ping and genomic prediction across breeds of cattle 
using Bayesian variable selection and WGS data on large 
numbers of individuals. The developed method is called 
Bayes GC and the model was applied to the three dairy 
breeds: Holstein (H), Jersey (J), and Australian Red (AR). 
We will use Bayes GC to map some of the causal variants, 
to demonstrate a new method for calculating confidence 
intervals for causal variants, and to compare the accuracy 
of WGS-based genomic predictions to those obtained 
using dense 600 k SNP chip data and using the genomic 
best linear unbiased prediction (GBLUP) method.

Methods
Data
The dataset used for this analysis is a subset of the data 
that are described in detail by van den Berg et  al. [11], 
since we excluded the crossbred cows from the original 
data. The dataset consisted of WGS and high-density 
(HD) genotype data and daughter yield deviations (DYD; 
in the case of bulls) or yield deviations (YD; in the case of 
cows) for 35,549 bulls and cows. The DYD and YD were 
available for five traits: kg of milk, kg of fat, kg of pro-
tein, fat percentage, and protein percentage. The dataset 
was divided into a training or reference and a validation 
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population as shown in Table 1. Animals in the reference 
population that had sons in the validation population 
and daughters of validation bulls were removed from the 
dataset, in order to reduce the links between the refer-
ence and validation sets. The validation population con-
sisted of all AR cows, and H bulls and J bulls born after 
2005. The reference population contained H bulls born 
before 2005, all H cows, J bulls born before 2005 and all 
J cows. The reference population contained no AR ani-
mals, i.e. predicted AR phenotypes were entirely based 
on across-breed genomic prediction. Animals were either 
directly genotyped with the Illumina 800  K BovineHD 
bead chip (HD), or first genotyped with the Illumina 
BovineSNP50K chip [12] or a lower density SNP chip, 
and subsequently imputed to HD. All individuals were 
imputed to WGS using a reference population of H, J and 
AR bulls and cows from Run 5 of the 1000 bulls genome 
project and the UMD3.1 reference sequence [3]. FIm-
pute [5] was used for genotype imputation. After filtering 
out variants with a minor allele frequency (MAF) lower 
than 0.002 and LD pruning (r2 > 0.9) using PLINK [13], 
4,809,520 variants were retained for the analysis. Geno-
types were phased using Eagle2 [14].

Statistical model of Bayes GC
The phenotypes (YD and DYD) are modelled as the sum 
of fixed breed*sex effects, a polygenic genetic value fit-
ted by a GBLUP term, and the effects of SNPs fitted by a 
Bayes C term [15], resulting in the model:

where F denotes the design matrix of the fixed breed*sex 
effect ( b ), u is a N × 1 vector of polygenic effects with 
Var(u) = Gσ2u , where G is the genomic relationship 
matrix, σ2u is the polygenic variance; Ii = 1 if the SNP 

(1)y = Fb+ u +

4,809,520
∑

i=1

Iixisi + e,

is included in the model and Ii = 0 otherwise; xi is a 
(35,688 × 1) vector of genotypes for SNP i ; si is the effect 
of SNP i with prior distribution si ∼ N (0, σ2s ), and σ2s is 
the variance of the SNP effects. Setting up a WGS-based 
genomic relationship matrix is computationally costly, 
thus here, we used the genotypes from the HD SNP chip 
to set up G using VanRaden’s Method 2 [16] that was 
applied across breeds using a single reference allele fre-
quency for each SNP; and e denotes a vector of residu-
als with Var(e) = Rσ2e , where σ2e is the residual variance 
and R−1 is a diagonal matrix with weights of the records. 
Missing records are accommodated by sampling them 
within the MCMC scheme.

Model (1) is prone to over-parametrization since both 
the GBLUP and the Bayes C term alone can explain all 
the genetic variance. In addition to fitting all SNPs by 
the GBLUP term, we want the Bayes C term to fit the 
top π*100% SNPs with the largest effect individually and 
thereby improve prediction accuracy, where π is the prior 
probability that a SNP has a large effect ( Ii = 1 ), i.e. a pri-
ori Prob(Ii = 1) = π . To reduce over-parameterization, we 
choose to fit ~ 2500 SNPs with large effects, and estimate 
the average variance explained by these top SNPs, σ2s . Our 
choice of ~ 2500 large effect SNPs agrees with Wood et al. 
[17], who found that 2000 to 3700 SNPs explained 21 to 
24% of the variance in human height, i.e. by fitting ~ 2500 
SNPs, our aim was to explain ~ 20% of the genetic vari-
ance. Hence, a fixed π value of ~ 0.0005 was used.

Fitting the models by MCMC
The fixed effects are sampled by Gibbs sampling. The 
effect of (breed*sex)i is sampled within each MCMC 
cycle from its conditional posterior distribution [18]:

where y∗ denotes the vector of data corrected for all 
other (genetic) effects in the model, and Fi denotes the i
-th column of the design matrix F.

Polygenic term
The polygenic effects were updated in one block by a 
Gibbs sampling step from its conditional posterior distri-
bution [18]:

where y∗ denotes the vector of data corrected for all 
other effects in the model, and κ = σ

2
e/σ

2
u . This block 

sampling requires the inverse of the coefficient matrix 
(

R−1 + κG−1
)

 , which is number of animals by number of 
animals, and κ = σ

2
e/σ

2
u may vary from one cycle to the 

bi ∼ N (
Fi

′R−1y∗

Fi′R−1Fi
;

σ
2
e

Fi′R−1Fi
),

u ∼ N[

(

R−1 + κG−1
)−1

R−1y∗;
(

R−1 + κG−1
)−1

σ
2
e],

Table 1  Numbers of  reference and  validation animals 
per breed and sex

DYD: daughter yield deviation; YD: yield deviation
a  Born before 2005 and bborn after 2005

Data Number 
of reference 
animals

Number 
of validation 
animals

Holstein bulls DYD 3124a 826b

Holstein cows YD 22,868 0

Jersey bulls DYD 787a 221b

Jersey cows YD 6144 0

Australian Red cows YD 0 1579

Total 32,923 2626
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next, since σ2u is re-sampled every cycle. To reduce the 
amount of computations per MCMC cycle, we diagonal-
ize the coefficient matrix following the approach of de los 
Campos et al. [19]:

where R−1/2 is a diagonal matrix containing the square-
root of the elements of R−1 . Next, the eigen-decomposi-
tion of R1/2G

−1
R1/2 is obtained, i.e.:

where E is a matrix of orthonormal eigenvectors and D is 
a diagonal matrix of eigenvalues. Since E′E = I , it follows 
that:

and its inverse is:

where the inverse of (I+ κD) is easily obtained since it is 
a diagonal matrix (even when κ varies). Thus, the calcula-
tion of 

(

R−1 + κG−1
)−1

R−1y∗ (as shown above), 
requires the calculation of R1/2E′(I+ κD)−1ER1/2(R−1y∗), 
where R−1y∗ is a vector of right-hand-sides (RHS). These 
calculations are performed by multiplying this RHS vec-
tor with each of the required matrices starting with the 
right-most ( R1/2 ), followed by multiplying the resulting 
vector with E , and working our way towards the left-most 
matrix. In this way, only matrix times vector multiplica-
tions are required which are of the order of N2 operations 
(or N operations if the matrix is diagonal). For compari-
son, matrix inversion requires of the order of N3 opera-
tions. Although, the calculation of the 
eigen-decomposition of R1/2G

−1
R1/2 is computer inten-

sive when the number of animals is large, it is performed 
only once before starting the MCMC sampling.

Sampling of SNP effects
Within any cycle c of the MCMC algorithm, millions of 
SNPs are not in the model and almost all do not remain in 
the model when moving to the next cycle c + 1, i.e. their 
evaluation does not result in a move of the MCMC chain. 
Of course, some of these evaluations of SNPs do result in 
a SNP move, i.e. a change of the effect of a SNP. In order 
to direct computer efforts towards SNPs for which the 
estimates of their effects are expected to change, we will 
update in cycle c the SNPs that currently have an effect of 
zero (i.e. are not in the model) with a reduced probability 

(

R−1 + κG−1
)

= R−1/2
(

I+ κR1/2G
−1

R1/2
)

R−1/2,

R1/2G
−1

R1/2 = E′DE,

(

R
−1 + κG

−1
)

= R
−1/2

(

E
′
E+ κE

′
DE

)

R
−1/2

= R
−1/2

E
′(I+ κD)ER−1/2

,

(

R−1 + κG−1
)−1

= R1/2E′(I+ κD)−1ER1/2,

of vi implemented by a Metropolis–Hastings (MH) step. 
The updating probabilities of the SNPs ( vi ) followed a 
geometric distribution:

where ri is the ranking (from high to low) of SNP i based 
on its log-posterior probability of being fitted ( θi ; from 
(3) below); and ρ was chosen such that the SNP with the 
lowest θi would be expected to be evaluated 100 times 
(i.e. (1− ρ)4,809,520 ∗ C = 100 , where C is the total num-
ber of MCMC cycles).

The θi-values (from (3); see below), that were used for 
the ranking of the SNPs to calculate vi , were calculated 
during the first cycle of the MCMC chain, and none of 
the SNPs was fitted during this first cycle in order to 
evaluate θi of SNP i when no other SNP was fitted (simi-
lar to a genome-wide association study (GWAS) where 
P-values are calculated for each SNP in turn). However, 
the records had been corrected for fixed effects and the 
GBLUP term u . Hence, SNPs with  high θi-values have 
an increased probability of being evaluated. This updat-
ing probability was constant from the first MCMC cycle 
till the last one, and the updating probability vi decreases 
with the ranking of the SNPs following a geometric dis-
tribution. A comparable prioritization of SNPs is imple-
mented in BLSMM [9], but BLSMM samples the SNP to 
be evaluated using a mixture of a uniform and a geomet-
ric distribution, whereas here the probability of skipping 
a non-fitted SNP follows a geometric distribution.

If SNP i is updated, we need the log posterior probabil-
ity of not fitting SNP i in the model [20]:

where n is the number of records; and L0 is the log-likeli-
hood of no SNP in the model. The log posterior probabil-
ity of fitting SNP i in the model is [20]:

where L0 is from (2), and � = σ
2
e/σ

2
s , and σ2s is the variance 

of the SNP effect which is assumed normally distributed 
if there is an effect (as in Bayes C [15]).

If SNP i is currently not in the model ( Ii = 0 ), we pro-
pose that it enters the model with probability vi , and with 
probability (1-vi ) the SNP remains with ( Ii = 0 ), i.e. the 
evaluation of the SNP is skipped. The updating of SNP i 

vi = (1− ρ)ri ,

(2)

θ0 = −
1

2σ2e
y∗′R−1y∗ −

1

2
nlog

(

σ
2
e

)

−
1

2
log(|R|)

+ log(1− π) = L0 + log(1− π),

(3)

θi =L0 +
1

2σ2e

(xi
′R−1y∗)

2

xi′R−1xi + �
+

1

2
log(�)

−
1

2
log(xi

′R−1xi + �)+ log(π),
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involves a MH-step: we accept the proposal of the SNP 
entering the model with a MH-acceptance-probability of:

Alternatively, if SNP i is currently in the model, we 
propose with a probability of 1 that it moves out of the 
model, and accept this proposal with an MH-acceptance-
probability of:

In these acceptance probabilities, the term vi corrects 
for the fact that the evaluation of SNPs that are not in the 
model is skipped with a probability of 1-vi.

If SNP i remains/enters in the model ( Ii = 1 ), we con-
tinue updating its effect by sampling an effect for SNP i 
from its conditional posterior distribution [18]:

Finally, we correct the data y∗ for the new SNP effect, 
and continue with the next SNP i+1. If SNP i is not in 
the model ( Ii = 0 ), correction of the data corrected for all 
other effects in the model ( y∗ ) is not needed, which saves 
computer time.

Sampling of σ2s and σ2u
The variance of the SNPs with large effects and that of 
the polygenic effects are sampled in the same manner, in 
order to unbiasedly balance these two variances against 
each other. Assuming a flat prior distribution, σ2s is sam-
pled from its conditional posterior distribution [18]:

where χ2
(
∑

Ii−2) denotes a sample from the chi-squared 
distribution with the number of fitted SNPs minus 2 
degrees of freedom; s is a ( 

∑

Ii × 1 ) vector of current 
estimates of SNP effects.

Similarly, the polygenic variance σ2u is sampled from its 
conditional posterior distribution [18]:

where u is a N × 1 vector containing the current esti-
mate of the polygenic effects. The error variance σ2e was 
not updated and thus assumed known, e.g. from a larger 
dataset containing also ungenotyped individuals. The 
number of hyper-parameters, such as σ2e , that needed to 
be estimated, was kept as small as possible in order to 

αIi=0→1 = min(1,
exp(θi)

exp(θ0)vi
).

αIi=1→0 = min(1,
exp(θ0)vi

exp(θi)
).

si ∼ N (
xi

′R−1y∗

xi′R−1xi + �
;

σ 2
e

xi′R−1xi + �
).

σ
2
s ∼ s

′

s/χ2
(
∑

Ii−2),

σ
2
u ∼ u

′

G−1u/χ2
(N−2),

keep the number of required MCMC cycles as small as 
possible.

Computational efficiency
Storing of 4,809,520 SNP genotypes on 35,688 indi-
viduals in single precision, which would allow stor-
ing centered/scaled genotypes (4 bytes per genotype) 
would require 687 Gbytes, which exceeds the RAM of 
most computers. In PLINK [13], genotypes are stored 
bitwise in binary files (.bed files). Binary storage uses 2 
bits per genotype, i.e. 4 genotypes per byte. We used a 
similar approach and used 2 bits to store the genotypes 
codes 0 (homozygote reference allele), 1 (heterozy-
gote), or 2 (homozygote alternative allele), i.e. bitwise 
‘00’, ‘01’, and ‘10’, respectively. The 2 bits were read from 
a regular integer number by the intrinsic Fortran90 
function ibits. This reduced the storage requirements 
of the genotypes by 16-fold at the computational cost 
of calling the ibits-function whenever genotypes were 
needed. In this way, all ( 4, 809, 520 ∗ 35, 688 ) genotypes 
could be stored within 43 Gbytes, i.e. within the RAM 
of a large laptop.

A drawback of the binary storage of genotypes is that 
the stored genotypes are not centralized, whereas in 
genomic prediction random regression is typically on 
centralized genotypes (e.g. [16]). Otherwise the estimates 
of the SNP effects also affect the mean breeding value 
of the population, which is commonly assumed to be 0 
(e.g. [21]). Changes in the population mean may also slow 
down the convergence rate of the MCMC chain. Obvi-
ously, we could centralize the genotypes after obtaining 
them from binary storage, but this is computationally 
costly since it needs to be repeated for every MCMC 
cycle.

The centralized genotypes are used to calculate right-
hand-side xi′R−1y

∗ and the SNP’s contribution to the 
diagonal of the mixed model equations: xi′R−1xi . Let 
∼
xi denote a vector of uncentralised genotypes for SNP 
i containing the codes 0, 1, or 2 with a weighted mean 
value of 

−
xi = 1′R

−1
xi/1

′R
−1

1 , where weighing is by the 
weights of the records. The weighted mean of the geno-
types needs to be calculated only once. Then, the central-
ized genotypes are xi =

∼
xi − 1

−
xi , and the right-hand-side 

is:

where 1′R−1y
∗ is the weighted sum of the corrected 

records, y∗ . The contribution of SNP i to the diagonal of 
the mixed model equations can be rewritten as:

xi
′R−1y

∗
=

∼
xi

′R−1y
∗
−

−
xi1

′R−1y
∗
,

(
∼
xi − 1

−
xi)

′R−1(
∼
xi − 1

−
xi)



Page 6 of 15Meuwissen et al. Genet Sel Evol           (2021) 53:19 

Thus, the right-hand-side and the contribution to the 
diagonal of the mixed model equations for the central-
ized genotypes could be calculated from their uncen-
tralised counterparts within every MCMC cycle, by 
calculating the weighted mean of the genotypes, 

−
xi , and 

the sum of the weights 1′R−11 before starting the MCMC 
calculations.

Modern computers can run many processes simulta-
neously. In case of MCMC sampling, this suggests run-
ning many short MCMC chains simultaneously instead 
of a single long one. The latter also benefits convergence 
diagnostics: the variability of the MCMC outcomes 
across the chains are indicative of the standard errors 
due to MCMC sampling [22]. Running multiple MCMC 
chains simultaneously could be achieved by running 
multiple instances of a single threaded MCMC program 
where each program runs one of the chains. However, 
in this setting, every chain will require a lot of computer 
memory since all genotypes need to be stored for each of 
the chains. Memory limitations will limit the number of 
chains that can be run simultaneously.

To make more efficient use of computational resources, 
we developed a parallel Fortran90 computer program 
that simultaneously ran multiple MCMC chains but 
kept only a single genotype matrix in RAM storage. The 
latter was achieved by setting up a parallel loop that 
runs the MCMC cycling loop multiple times using the 
OpenMP directive. Moreover, we assumed that some 
hyper-parameters such as the error variance ( σ2e ) and 
prior probabilities of SNP effects ( π ) are known, which 
reduced the required length of the MCMC chain.

In all MCMC chains, 10,000 MCMC cycles were per-
formed, of which the first 2000 were discarded as burn-
in. Bayes GC genomic breeding value estimates (GEBV) 
were obtained from.

where averaging is across 8000 non-burn-in cycles and 
across 10 parallel chains. GEBV using GBLUP were 
obtained by using the Bayes GC software but setting 
the prior probability of including SNPs in the model 
to π = 0 , which implies that also all Ii = 0 , and only 
the polygenic component u remained. Convergence 
was checked by comparing the GEBV of 10 replicated 
MCMC chains, and the correlation between the GEBV 
from different chains was always higher than 0.999. For 

=
∼
xi

′R−1∼xi − 2
∼
xi

′R−11
−
xi + 1′R−11

−
x
2

i

=
∼
xi

′R−1∼xi − (1′R
−1

1)
−
xi.

GEBV = average[u +

4,809,520
∑

i=1

Iixisi],

estimates of individual SNP effects, this figure was on 
average 0.895, suggesting that more cycles are needed to 
obtain converged estimates for individual SNP effects as 
for GEBV. The Bayes GC software is available from the 
authors upon request.

Detecting QTL using Bayes GC
Bayes GC can be used to map causal variants to regions 
(we used 250-kb regions) and to individual sequence 
variants. First, the importance of a region for harboring 
genetic effects was quantified by the variance of the local 
GEBV for this region as calculated based on the Bayes C 
term in model (1), i.e. excluding the GBLUP term which 
is considered to explain an equal amount of variance for 
all positions. Second, the mapping precision was further 
increased by examining the posterior probabilities of the 
SNPs in the 250-kb region, which are the proportion of 
MCMC cycles past burn-in where the SNP was included 
in the model ( Ii = 1).

Results
QTL mapping
Figure  1 shows the Manhattan plot of the variances 
of local GEBV for fat percentage calculated in 250-kb 
regions across the genome, as an indicator for the genetic 
variance contained in the regions [23], which indicates 
whether the region contains important QTL. We com-
pare our results on fat percentage to a recent meta-analy-
sis of eight cattle breeds by van den Berg et al. [24], which 
included the data from the Holstein and Jersey individu-
als used here. As expected, QTL signals are dominated by 
the DGAT1 gene, which is located at the beginning of Bos 

Fig. 1  Manhattan plots of the variance of the local GEBV within 
250-kb regions for fat percentage
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taurus chromosome (BTA)14 [25]. This is also the case 
for the other traits, and their Manhattan plots are shown 
in see Additional file 1: Figures S1 to S4. Many less strong 
signals occur mainly on BTA2, 5, 6, 11, 16 and 20 on 
which QTL were reported by several GWAS studies (e.g. 
[26–29]).

The meta-analysis of van den Berg et al. [24] detected 
80 significant COJO-SNPs (conditional and joint analy-
sis as implemented in GCTA [30]) for fat percentage. 
Many of these SNPs are not present in our current data 
due to differences in variant selection criteria and quality 
control, when processing the sequence data. The top 10 
250-kb-regions with the largest variance of local GEBV 
for fat percentage contained six of these COJO-SNPs: 
two at the beginning of BTA14, and one region on each 
of BTA2, 5, 11, and 20. In addition, the top 10 250-kb 
regions contained four more regions that were near the 
aforementioned regions with COJO-SNPs on BTA14. 
As an example, Fig. 2 shows the variance of local GEBV 
for fat percentage at BTA20. BTA20 seems to harbor 
two fat percentage QTL close to each other between 30 
and 35 Mb. The second peak is not in the top 10 250-kb-
regions but is sufficiently high to be within the top 20 
regions. Detailed maps of the variance of local GEBV for 
the other QTL in the top 10 250-kb regions are shown in 
see Additional file 2: Figures S5 to S8 for BTA2, 5, 11, and 
14, respectively.

To further fine-map the QTL on BTA20, Fig. 3 shows 
the posterior probability of the SNPs in the region 
between 30 and 35  Mb. The highest posterior prob-
abilities of the SNPs within each of the two 250-kb 

regions that are in the top 20 were at 30.112083 Mb and 
31.786449 Mb for the first and second peak, respectively. 
The corresponding positions of the COJO-SNPs detected 
by [24] were at 30.106314 and 31.909478  Mb, respec-
tively, where the latter variant corresponds to the F279Y 
mutation in the GHR gene, which has major effects on 
milk yield and composition [31].

For each of the top-SNPs, a 95% posterior credibility 
interval was constructed by: (1) identifying within each 
MCMC cycle (excluding burn-in cycles) which SNP cur-
rently fitted in the model was nearest to the top-SNP in 
the 250-kb region (i.e. nearest to positions 30.112083 
and 31.786449, respectively) under the restriction that 
the nearest SNP was less than 500 SNPs away (i.e. a 
SNP fitted more than 500 positions away is assumed to 
point to a different QTL, and is thus ignored); and (2) 
trimming-off the 2.5% SNPs that are the furthest away 
from either side of the region. The 95% credibility inter-
val was between 30.046906 and 30.177482  Mb for the 
first top-SNP, and between 31.394136 and 32.121047 for 
the second top-SNP. Both 95%-credibility intervals con-
tained the corresponding COJO SNPs detected by [24]. 
Posterior probabilities together with their 95% credibility 
intervals are shown for the QTL at BTA2, 5, 11, and 14 
in see Additional file  3: Figures  S9 to S12, respectively. 
All these 95% credibility intervals included their corre-
sponding COJO SNPs. At the beginning of BTA14, there 
are several causal variants that explain the QTL signals 
[24], and this hampers the positioning of the QTL due 

Fig. 2  Manhattan plot of the variance of the local GEBV within 
250-kb regions for fat percentage on BTA20

Fig. 3  Fine-scale map of the posterior probabilities of the SNPs for 
affecting fat percentage in the region between 30 and 35 Mb on 
BTA20. The blue bar denotes the 95% credibility interval for the QTL, 
and the red dot the position of the COJO SNP detected by [23]
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to carry-over effects of other QTL. The K232A mutation 
in the DGAT1 gene [25] seems to have been captured 
by two high peaks at the beginning of BTA14. There are 
several causal variants at the beginning of BTA14, which 
explain the QTL signals [24], and hamper the accurate 
positioning of the QTL. We set up the 95% credibility 
interval surrounding the second peak, since this peak 
was within the 250-kb region with the highest variance 
of local GEBV. This 95% credibility interval included both 
the COJO SNP detected by [24] and the K232A mutation 
in DGAT1. There were two more COJO SNPs within the 
first four Mb of BTA14, but their positions were not clear 
from the posterior probabilities provided in Additional 
file 3 due to interferences of QTL signals.

When extending the top 10 to the top 20 250-kb 
regions with largest variance of local GEBV, three more 
COJO SNPs [24] were detected. One QTL on BTA20 as 
shown in Fig. 3, and one more at the beginning of BTA14. 
A QTL at the beginning of BTA16 was detected at 
1.566222 Mb. Beyond the top 20, relatively few additional 
COJO SNPs were detected. E.g. the top 50 250-kb regions 
with largest variances of local GEBV contained only one 
additional COJO SNP compared to the top 20.

The QTL signals within the region between 30 and 
35  Mb on BTA20 are more clearly depicted by consid-
ering milk production instead of fat percentage (Fig. 4). 
The posterior probabilities of SNPs for milk production 
indicate three QTL within the 30–35  Mb region. The 
250-kb regions to which these QTL belong are all within 
the top 20 for the variances of local GEBV for milk pro-
duction. Hence, the previously identified QTL for fat per-
centage seemed also to affect milk production, and were 
positioned at 30.145126 and 31.909478  Mb. The former 
SNP is within 39 kb from the COJO-SNP detected by van 
den Berg et al. [24], and the latter is exactly at the F279Y 
mutation in GHR [31]. Furthermore, a new, additional 
QTL was found to affect milk production (see Fig. 4) at 
position 34.501126  Mb. To the best of our knowledge, 
this QTL has not been reported before.

The QTL detected in the top 10 250-kb regions for fat 
and protein yield are provided together with their 95% 
credibility intervals in see Additional file  4: Tables S1 
and S2, respectively. For fat yield, QTL were detected on 
BTA5, 14, 19, 23, 24, 26 and 27. For protein yield, QTL 
were detected on BTA4, 5, 6, 9, 11, 14. The 95% credibil-
ity intervals for the QTL on BTA5 and 14 overlap. Only 
nine QTL positions are provided for protein yield since 
the 10th top-SNP had a posterior probability lower than 
0.01, which hardly exceeds the prior probability. Some 
of the SNPs with the highest posterior probability were 
in more than 95% of the MCMC cycles included in the 
model, which implies that their 95% credibility interval 
contains only one SNP. If the credibility interval had been 

based on the cumulative posterior probabilities of the 
SNPs in the interval, then also only one SNP would pass 
the posterior probability threshold of 95% and the inter-
val would be the same as shown in see Additional file 4: 
Tables S1 and S2, respectively. If the causative mutation 
is not included the genotype data, this single SNP inter-
val merely points to the SNP which is most strongly asso-
ciated with the causative mutation. The latter would thus 
not reside in the interval, which contains only one (most 
associated) SNP.

Genomic predictions
Table  2 shows the accuracies of prediction measured 
by the correlation between GEBV and DYD/YD in the 
validation sets. For AR cows these correlations are sub-
stantially lower since their YD have lower accuracy 
(correlation between YD and true breeding value) than 
the DYD of H and J bulls, and because their GEBV are 
entirely based on across-breed predictions. AR cows had 
no within-breed prediction, since there were no AR ref-
erence animals. Prediction accuracies of J bulls were rela-
tively high when compared to H bulls, which is probably 
due to their smaller effective population size whereas 
Australian Holsteins include Holstein genes from all over 
the world. The G matrices were built using HD SNP-chip 
data, and thus the GBLUP methods used only HD SNP-
chip data. When moving from within-breed to between-
breed GBLUP, the prediction accuracies of the H bulls 
and J bulls improved by less than 0.04. When progress-
ing from GBLUP to Bayes GC across-breed predictions, 

Fig. 4  Fine-scale map of the posterior probabilities of the SNPs for 
affecting milk production in the region between 30 and 35 Mb on 
BTA20. The blue bar denotes the 95% credibility interval for the QTL
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prediction accuracies of H bulls further improved by up 
0.02. For J bulls, these improvements were somewhat 
larger, i.e. by up to a factor of 0.05. The AR cows obtained 
an across-breed based genomic prediction accuracy of 
0.17 to 0.25 using GBLUP. When moving to Bayes GC, 
the prediction accuracies of AR cows increased by a fac-
tor of 0.09 to 0.29 for kg milk, kg fat, kg protein and fat 
percentage. The prediction accuracy of AR cows for pro-
tein percentage almost doubled, but this seemed to be 
due to a remarkably low accuracy of the across-breed 
GBLUP prediction (especially in view of the high herit-
ability of protein percentage).

Table  3 shows the correlations between GEBV and 
yield-deviations when only HD 600 k SNP chip data were 
used in the analysis. In this case, it was possible to ana-
lyze the data by the hybrid variant of Bayes R [8], and 
results are shown for comparison (for reasons of com-
puter time this analysis was performed only for milk 
yield). For the Bayes GC analysis, our aim was to detect 
the ~ 2000 SNPs with the largest effects (i.e. somewhat 
fewer than in the WGS data analyses), which implied that 
a π value of 0.003 was used (i.e. approx. 2000/600,000). 
Generally, the Bayesian analyses yielded higher accu-
racies than the across-breed GBLUP predictions. The 

latter is probably because the Bayesian variable selection 
attempts to allocate QTL effects to SNPs that are close to 
the QTL, which implies that the LD between the SNPs 
and the QTL is more likely to persist across breeds. The 
latter effect is most pronounced for AR cows where all 
the accuracy is based on across-breed predictions, and 
Bayes GC and Bayes R yield 14 and 18% higher accuracy 
than GBLUP, respectively. For the H and J bulls, Bayes GC 
yielded marginally higher accuracy than the other meth-
ods, whereas for the AR cows Bayes R yielded marginally 
higher accuracy. Using WGS instead of HD data hardly 
affected prediction accuracies, although predictions for 
AR cows were somewhat less accurate when using HD 
data for four of the five traits (comparing Tables 2 and 3).

Table 4 compares the usage of computer resources by 
the Bayesian methods. For the HD data, Bayes GC is 
about four times faster than BayesR and uses eight times 
less memory. This difference is expected to be larger 
for the WGS data since Bayes GC spends less time on 
non-fitted SNPs, which are relatively more numerous 
in WGS data. In addition, the memory requirements of 
Bayes R would increase by a factor of ~ 8 to 9 when mov-
ing to WGS data, which is too large for current com-
puters. When analyzing HD data, most of the memory 

Table 2  Correlation between  GEBV and  (D)YDa for  kg milk, kg fat, kg protein, fat percentage and  protein percentage 
using within-breed (WB) and across-breed (AB) GBLUP, and across-breed Bayes GC predictions

a  DYD: daughter yield deviation for Holstein and Jersey bulls; YD: yield deviation for Australian Red Cows
b  Number of validation animals
c  The fraction of the genetic variance explained by SNPs is indicated together with the average fraction of the SNPs fitted to explain this variance (posterior prob), and 
the accuracy of the (D)YD used for validation

Nb GBLUP(WB) GBLUP(AB) BayesGC Accuracy (D)YD

kg milk (variance due to SNPs 15%; posterior probability = 0.00048) c

 Holstein bulls 826 0.713 0.714 0.729 0.970

 Jersey bulls 221 0.617 0.643 0.674 0.964

 Australian Red cows 1579 – 0.23 0.263 0.469

kg fat (variance due to SNPs 25%; posterior probability = 0.00049) c

 Holstein bulls 826 0.655 0.658 0.669 0.954

 Jersey bulls 221 0.699 0.683 0.688 0.949

 Australian Red cows 1579 – 0.229 0.281 0.389

kg protein (variance due to SNPs 24%; posterior probability = 0.00050) c

 Holstein bulls 826 0.672 0.67 0.677 0.954

 Jersey bulls 221 0.716 0.711 0.724 0.949

 Australian Red cows 1579 – 0.168 0.201 0.383

Fat % (variance due to SNPs 13%; posterior probability = 0.00047) c

 Holstein bulls 826 0.818 0.794 0.797 0.975

 Jersey bulls 221 0.631 0.649 0.681 0.973

 Australian Red cows 1579 – 0.245 0.267 0.522

Protein % (variance due to SNPs 8%; posterior probability = 0.00047) c

 Holstein bulls 826 0.87 0.87 0.875 0.982

 Jersey bulls 221 0.793 0.819 0.835 0.979

 Australian Red cows 1579 – 0.179 0.343 0.574
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requirements of Bayes GC are due to storing of the G−1 
matrix and the matrix of eigenvectors ( E ). The storing 
of the HD genotypes on 35,688 animals takes only about 
5 GB of the total memory usage of 26 GB.

Discussion
Bayes GC model and computational efficiency
Genomic prediction can be described in two equivalent 
ways: as using SNPs to estimate the genomic relationship 
between the animals or as estimating the effect of SNPs 
that are in LD with the causal variants. If the causal vari-
ants are numerous and some have very small effects, the 

data may not have the power or the resolution to iden-
tify them individually. In this case, the best we can do is 
to estimate the effect of chromosomal segments that are 
present in multiple animals. In Bayes GC, this is done 
by the polygenic component, u ∼ N (0,Gσ2u) , which fits 
genomic relationships. Then, a smaller number of causal 
variants with larger effects are accounted for by the Bayes 
C component, which fits individual SNPs in high LD to 
important QTL. Hence, by fitting a polygenic compo-
nent, fewer SNPs need to be fitted explicitly. Fitting few 
SNPs saves computer time since, for the vast majority of 
the SNPs, the solution is 0 and remains 0, i.e. updating of 
neither residuals nor right-hand-sides is needed.

Models that simultaneously fit a GBLUP and a BayesC 
term have been used before in the literature, e.g. [9, 32, 
33], and have been shown to yield high prediction accu-
racy. Our current implementation of this model is specif-
ically directed at the use of sequence data. To this end the 
algorithm for the implementation of the BayesGC model 
has been adjusted in several ways: (1) binary storage of 
the data resulted in the storing of four genotypes per byte 
(as in the PLINK binary format); (2) fast access to the 
binary genotype data stored in RAM using intrinsic For-
tran90 routines and avoiding repeated centralizations of 

Table 3  Correlations between  GEBV and  (D)YDa for  milk, fat and  protein yield, and  fat and  protein percentage using 
across-breed GBLUP, Bayes GC, and Bayes R predictions, when only 600 k SNP-chip data was used

a  DYD: daughter yield deviation for Holstein and Jersey bulls; YD: yield deviation for Australian Red Cows
b  Number of validation animals
c  Because of the high computational costs Bayes R was only performed for milk yield

Nb GBLUP(AB) Bayes GC BayesRc

kg milk

 Holstein bulls 826 0.714 0.73 0.712

 Jersey bulls 221 0.643 0.678 0.651

 Australian Red cows 1579 0.23 0.26 0.272

kg fat

 Holstein bulls 826 0.658 0.671

 Jersey bulls 221 0.683 0.687

 Australian Red cows 1579 0.229 0.269

kg protein

 Holstein bulls 826 0.67 0.678

 Jersey bulls 221 0.711 0.727

 Australian Red cows 1579 0.168 0.189

Fat %

 Holstein bulls 826 0.794 0.803

 Jersey bulls 221 0.649 0.681

 Australian Red cows 1579 0.245 0.274

Protein %

 Holstein bulls 826 0.87 0.876

 Jersey bulls 221 0.819 0.832

 Australian Red cows 1579 0.179 0.325

Table 4  Wall-time and  random access memory (RAM) 
usage of the Bayesian methods when analyzing 600 k SNP-
chip and WGS data

a  It was not possible to perform the WGS analysis

HD SNP-chip WGS data

Wall-time (h) RAM (GB) Wall-time 
(hours)

RAM (GB)

Bayes GC 36 26 133 67

Bayes R 153 201 a a
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the raw genotypes; (3) using the multi-threading capaci-
ties of modern computers, several MCMC chains are run 
using virtually no additional computer resources, which 
saves computer wall-time by running many short chains 
in parallel instead of one long chain; and (4) using a fixed 
prior probability of SNPs entering the model, π , which 
speeds up the convergence of the chain, and thereby 
reduces the required length of the MCMC chain.

The following arguments justify the use of a fixed π 
value: (1) a relatively small range of π values are relevant 
for the Bayes GC model. If more than 5000 SNPs are 
needed to explain a key part of the genetic variance, the 
trait is so complex that a pure GBLUP model would be as 
accurate as Bayes GC; alternatively, if less than 1000 SNPs 
explain a key fraction of the variance, these could be 
mapped by GWAS and the mapped QTL could be explic-
itly accounted for in genomic predictions; (2) within this 
range of eligible π values, it was expected that the actual 
choice of a π value was not critical for prediction accu-
racies, i.e. whether one a priori expects that 2000 or 
3000 out of 5 million SNPs explain an important frac-
tion of the genetic variance will hardly affect prediction 
accuracies; and (3) even with a fixed π value, the Bayes 
GC model can fit any distribution of SNP effects up to 
its fourth moment by varying the variances of the poly-
genic term and the fitted SNPs, assuming the distribution 
of SNP effects is symmetric. Zhou et al. [9] recommend 
BLSMM, which estimates π , σ2s , and σ2u from the data, 
for its flexibility of modelling genetic effects. However, 
it may be questioned whether the data contain sufficient 
information to estimate the moments of the distribution 
of SNP effects beyond the fourth moment, which is also 
confirmed by our finding that our posterior probabilities 
of including a SNP into the model hardly deviated from 
our prior probabilities ( π ; see Table  2). The latter is to 
some degree also seen when comparing Tables 2 and 3, 
where the fitting of the 2500, or 2000 SNPs with the larg-
est effect resulted in marginal differences in accuracy. If 
the model for the genetic effects is over-parametrized, 
prediction accuracies and convergence of the MCMC 
chain may be reduced. Bayes GC is thus very similar to 
BLSMM but has some features that make it especially 
suited for the analysis of large-scale WGS data, without 
sacrificing prediction accuracy. The latter makes it also 
suitable for the analysis of lower density genotypes.

It may seem that skipping the evaluation of the SNPs 
that are not in the model with probability vi slows down 
the movement of the MCMC chain, and thus that we 
need more cycles to obtain convergence. However, this 
is not the case for a judicious choice of vi . Ideally, MH 
acceptance probabilities should be close to 1, which 
implies a move in the chain, when evaluating a SNP. 
Assuming that, for the less important SNPs, the posterior 

probability of inclusion in the model ( PPi ) is small rela-
tive to 1, the MH acceptance probability of moving a SNP 
into the model is:

which is ~ 1 if vi = PPi . If the latter is the case, the MH-
acceptance probability of moving an included SNP out 
of the model, αIi=1→0 , is also ~ 1. Thus, a SNP with low 
PPi , is usually not in the model, but when it gets evalu-
ated with probability vi = PPi , it moves into the model. 
After this, the SNP is evaluated in the next round again 
and moves out of the model. This results in, on aver-
age, 1/PPi cycles where the SNP is excluded and 1 
where it is included, which results in an estimate of 
PPi ≈ 1/( 1

PPi
+ 1) , which is as expected. If vi ≫ PPi , 

then αIi=0→1 < 1 , and the movement of the chain is not 
affected, but the SNP is often evaluated without moving 
into the model. With a very small evaluation probabil-
ity vi ≪ PPi , then αIi=1→0 < 1 , and the SNP stays often 
in the model once it is in it, which is to compensate for 
the long sequences of not being included into the model. 
The latter is due to the too low probability of being evalu-
ated, vi . Hence, too low vi values slow down the move-
ment of the chain, whereas vi ≥ PPi hardly affects the 
expected movement of the chain. In our implementation, 
the smallest vi value used was 0.01, which is still 20-fold 
larger than the average PPi value, which equaled the prior 
probability π = 0.0005 approximately (Table 2). With the 
lowest ranking SNPs expected to be evaluated 100 times 
out of 10,000 cycles, i.e. vi = 0.01, ~ 1 million non-fitted 
SNPs were evaluated per MCMC cycle, i.e. a reduction of 
a factor of ~ 5 compared to evaluating all SNPs. Thus, the 
skipping of the non-fitted SNPs with probabilities vi redi-
rected the updating of the SNPs towards the SNPs with 
actual effects and sped up calculations by a factor of ~ 5. 
We preferred a small but non-zero probability of evaluat-
ing the lowest ranking SNPs since van den Berg et al. [11] 
found that dropping substantial numbers of SNPs from 
the analyses reduced prediction accuracy.

Memory requirements were reduced by storing four 
genotypes per byte of memory, following the binary stor-
age approach of PLINK [13]. Although this increased 
the probability that the data could be stored in the RAM 
of the computer, it slowed down computations involv-
ing stored genotypes since genotypes first needed to be 
translated from this four genotypes per byte form into 
usual integers. Since a byte contained the genotypes of 
four animals for a particular SNP, all four genotypes were 
needed when evaluating this SNP (i.e. the software did 
not need to look-up for a particular genotype amongst 
those four stored in a byte since all of them were needed). 
These computational tunings mean that, to the best 

αIi=0→1 ≈ min(1,
PPi

vi
),
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of our knowledge for the first time, a variable selection 
genomic prediction method could be applied to a large 
WGS dataset on 35,688 animals within approximately a 
week of computer wall time and requiring only ~ 70 Gb of 
RAM.

Modern high-performance computers (HPC) can run 
many threads in parallel and can contain large amounts 
of memory. However, memory intensive tasks can occupy 
all this memory and thereby an entire computer node, 
even if they do not use parallelization, i.e. most threads 
on the node will be idle. The availability of many threads 
makes the running of several (short) MCMC chains 
efficient. However, the memory requirements for run-
ning several single-threaded programs are high (each 
program stores a large matrix of genotypes and G−1 ), 
which will block the running of many single-threaded 
programs simultaneously. Bayes GC stores the genotype 
and G−1 matrices only once and then runs several par-
allel chains using the same stored genotypes and G−1 . 
Short replicated chains can be run and their results can 
be combined and used for convergence diagnostics. I.e. 
the results across the chains are compared together with 
their Monte Carlo sampling error. In the current study, 
we used 10 parallel chains, but with modern computers 
many more chains can be run simultaneously, and espe-
cially for the mapping of QTL this could be advantageous 
(see below).

The proposal of using many, short parallel chains is 
limited by the burn-in cycles, i.e. each chain must be at 
least as long as the burn-in period. If each chain is as 
long as the burn-in period, the number of independent 
samples equals the number of chains. Parallel compu-
tations result in more CPU time per hour of wall-time, 
but parallel algorithms tend to require more CPU time 
for the same task than single-thread algorithms (due to 
costs of setting-up parallel tasks, waiting-time of threads, 
less efficient algorithms, etc.). Here, multi-threaded par-
allel chains contain more burn-in cycles than a single-
threaded long MCMC chain. Thus, the cost of this type 
of parallelization is related to the number of MCMC 
cycles needed to obtain the next (virtually) independ-
ent MCMC sample relative to the number of the burn-
in cycles. Using good starting values reduces the number 
of burn-in cycles, and more research on how to obtain 
good starting values for the MCMC chains is needed. 
Computations per cycle are dominated by the evalua-
tions of the SNPs, which increase approximately linearly 
with the number of individuals, and less than linearly 
with the number of SNPs, since as the number of SNPs 
increases a larger fraction of the SNPs will be out of the 
model. Computations for the within-cycle updating of 
the polygenic effects increase quadratically with the 
number of individuals. The eigen-decomposition of the 

R1/2G
−1

R1/2 matrix, which is of size number of animals, 
is with current algorithms limited to ~ 100,000 animals, 
but computation costs are small relative to those of the 
MCMC computations. Storage of the eigen-vectors and 
the G−1 matrix increases quadratically with the number 
of animals, and storage of the genotypes increases with 
the product of the number of animals times the number 
of SNPs. Generally, computation costs are high, but fea-
sible for large numbers of individuals (< 100,000) with 
(imputed) WGS data.

Bayes GC to map QTL
The Bayes GC model resembles the standard GWAS 
model, since GWAS models generally fit a polygenic 
component and a single SNP effect simultaneously. 
Hence, the Bayes GC model may be seen as an extension 
of the standard GWAS model towards fitting many SNPs 
simultaneously. This increases mapping precision, since 
a QTL effect will not yield mapping signals across long 
distances, because a closer SNP, which is in stronger LD 
with the QTL, will be fitted and pick-up the QTL’s effect. 
The latter is not the case for the typical GWAS meth-
ods that fit the SNPs one-by-one. However, the complex 
inheritance pattern at the beginning of BTA14, which 
suggests the presence of several causal mutations (e.g. 
[24]), seemed too complicated to unravel by simply run-
ning Bayes GC. Fitting the K232A mutation in DGAT1 
[25] as a fixed effect in the Bayes GC model might help 
to locate the other QTL, but this was beyond the scope of 
the current study.

Our approach to fine-scale mapping was to first identify 
(250-kb) regions with a large variance of local GEBV. This 
gives clearer QTL signals than a genome-wide search for 
high posterior probability SNPs for two reasons. First, if 
there are multiple SNPs in high LD with the causal vari-
ant, no one SNP may have a high posterior probability. 
Second, a SNP may have its posterior probability overes-
timated, for instance, because the MCMC chain has not 
converged due to the SNP being stuck in the model for 
too many MCMC cycles. The latter is remedied substan-
tially by running multiple chains. We constructed a 95% 
credibility interval surrounding the SNP with the highest 
posterior probability, by identifying within every MCMC 
sample the SNP that was closest to this position estimate.

The construction of 95% posterior probability intervals 
is often performed by summing the posterior probabili-
ties of individual SNPs in the region until they exceed 
0.95 (e.g. [34]). However, when a SNP that explains a 
large QTL moves to a new position, first a second SNP 
is fitted in the region, and next the first SNP, after a num-
ber of MCMC cycles of competition between the SNPs, 
is sampled out of the model. Hence, during many cycles 
there are two or more SNPs fitted to explain the QTL, 
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which increases posterior probabilities, and makes the 
posterior probability intervals unrealistically short, i.e. 
the estimates of the intervals are anti-conservative. In 
fact, using this approach one could fit intervals that con-
tain more than 100% posterior probability, which is not 
possible under the assumption of only one QTL in the 
region (but the GC model may fit more QTL). Our 95% 
credibility interval based on the nearest fitted SNP con-
tained a total sum of posterior probabilities of the SNPs 
contained in the interval of on average 1.50 for the inter-
vals fitted in this study. Hence, our alternative way of fit-
ting posterior probability intervals is more conservative.

Additional file  4: Tables S1 and S2 show examples 
where a single SNP reaches a posterior probability higher 
than 0.95 and both ways of estimating confidence inter-
vals would result in an interval containing only a single 
SNP. Such a single SNP credibility interval indicates that 
the implicated SNP clearly has the strongest association 
with a QTL (or several QTL in the region). However, 
since the causative polymorphism may not be in our 
data, it may differ from the implicated SNP and thus 
reside outside the single SNP credibility interval. Hence, 
the 95% credibility interval holds strictly for the SNPs 
associated with the causative mutation, and not for the 
causative mutation itself which may not be in our data 
and outside this interval. If, however, the 95% posterior 
probability contains many SNPs in a LD-block that also 
contains the causative mutation, it becomes unlikely that 
the causative mutation is among the most peripheric 
variants on this LD-block. Hence, if the 95% credibility 
interval contains many SNPs (ideally > 100, which may 
be the case for sequence data), this interval contains the 
causative mutation with a probability of ~ 95%. Therefore, 
if the 95% credibility interval contains many SNPs (> 100 
SNPs), it may be interpreted as containing the causative 
mutation with a probability of ~ 95%, otherwise it con-
tains with a 95% probability the SNP that is most associ-
ated with the QTL. The 95% credibility intervals for the 
fat percentage QTL in Fig.  3 and [see Additional file  3: 
Figures S9 to S12] contained on average 398 SNPs (rang-
ing from 36 to 750) and contained the corresponding 
COJO SNPs [24], and the DGAT1 and GHR mutations.

The Manhattan plots in Fig.  1, and the detailed map-
ping results of the six largest QTL for fat percentage 
on BTA2, 5, 11, 14, and 20 (Figs. 2, 3, 4) and [see Addi-
tional file 1: Figures S1 to S4, Additional file 2: Figures S5 
to S8, and Additional file 3: Figures  S9 to S12], demon-
strated the mapping precision of Bayes GC. These map-
ping results and the top 10 of the 250-kb regions with the 
largest variances of local GEBV, aligned closely with the 
QTL mapping results from the meta-analysis of van den 
Berg et  al. [24]. This may be partly due to the fact that 
the current Holstein and Jersey data also participated in 

this meta-analysis, but the current dataset is still consid-
erably smaller than that of [24] and their data may have 
contained information on QTL that were not present in 
our study. Hence, considering the size of the current data, 
and that only two breeds were used for QTL mapping 
(the Australian Red data were masked), the two studies 
agree remarkably well. In addition, the mapping preci-
sion achieved by combining imputed WGS data across 
breeds and MCMC-based variable selection methods 
that fit the most associated SNPs (as shown in Figs.  3 
and 4) and [see Additional file  3: Figures  S9 to S12 and 
Additional file  4: Tables S1 and S2] seemed remarkably 
high. When applied to milk yield, Bayes GC was able to 
map three QTL within a 5-Mb region on BTA20. This 
included the F27Y mutation in the GHR gene [31], a QTL 
at 30.145126 Mb, which was also found in [24], and a new 
QTL affecting milk production at position 34.501126 Mb 
on BTA20.

Genomic prediction
For the Jersey and Australian Red data, the average 
increases in accuracy were (across the traits) 2.5 and 
16.5%, respectively, when applying Bayes GC instead of 
GBLUP (ignoring the increase for protein percentage, 
which was exceptionally large). In the case of Holsteins, 
which have a large reference population, this average 
increase in accuracy was only 1.2%. The relative large 
increase in accuracy of AR cows was probably because 
the GBLUP accuracy was low at an average of 0.218 
(excluding protein percentage), i.e. there was a lot of 
room for improvement. The genomic prediction accura-
cies in Table 2 may be considered relative to the accura-
cies of the (D)YD. Since the (D)YD own accuracy reflects 
the maximum accuracy by which the (D)YD can be pre-
dicted by a (perfect) GEBV. The accuracies of DYD are 
all higher than 0.949, so that scaling by the accuracies of 
DYD hardly makes any difference to the results. For AR 
cattle, scaling by the accuracies of the YD results in most 
of the accuracies of Bayes GC GEBV lying within a nar-
row range from 0.51 to 0.6 (across the traits), i.e. across-
breed predictions of AR cows in the absence of a within 
breed reference population were moderately accurate.

The Jersey and, particularly, the Holstein bulls already 
had high prediction accuracies (0.6 to 0.8), and data/
model improvements only resulted in moderate increases 
of their GEBV accuracies. Comparing Tables 2 and 3, it 
seems that it was also possible to achieve very similar 
improvements in accuracies by Bayesian variable selec-
tion methods using HD data, although for AR cows the 
accuracy was about 2% higher when using WGS data. 
Similar increases in accuracy when including sequence 
data were found by Zhang et  al. [35]. Possible explana-
tions for why the major increase in genotype density 
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from HD to WGS results only in minor improvements 
in prediction accuracy are: (1) WGS genotypes are sub-
stantially less accurate than HD SNP-chip genotypes (due 
to imputation errors and sequencing errors); (2) the HD 
SNP-chip is sufficiently dense to detect SNPs in high 
across-breed-LD with the QTL and that WGS data result 
in a surplus of such high LD SNPs (the variable selec-
tion problem becomes more challenging whereas the 
improvements in LD are only moderate); and (3) only a 
limited fraction of the variance is explained by QTL with 
large effects that persist across breeds. For AR cows, the 
accuracy of across-breed GBLUP was low and Bayesian 
variable selection methods in combination with WGS 
data resulted in larger increases in prediction accuracies 
than for J and H animals which have rather large within-
breed reference populations.

In spite of the implemented speed improvements in the 
Bayes GC software, it is too slow for practical evaluations 
of breeding values. When using the GBLUP approach for 
genetic evaluations, one could give extra weight to the 
SNPs according to their posterior probability of being 
included into the model when setting up the G-matrix. 
This requires the availability of WGS data on all training 
animals and selection candidates, which may be obtained 
by genotype imputation using HD-SNP chip data (and 
probably lower density SNP chip data). The compu-
tational costs of WGS genotype imputation and data 
storage for all animals in the genetic evaluations will be 
high. An alternative approach is to use the QTL mapping 
results from the WGS analyses, possibly augmented with 
results from other analyses, and to add top-SNPs from 
each QTL region to the SNP-chip [36]. This is expected 
to extract most of the information from the WGS data 
for genomic predictions, and accuracies of prediction 
may be close to those obtained here, especially when sub-
stantial numbers of top-SNPs can be identified (~ 2000 to 
3000).

Conclusions
Across-breed variable selection based genomic predic-
tion improved prediction accuracies relative to GBLUP, 
especially in the absence of a sizeable within-breed refer-
ence population. Using WGS instead of 600 k SNP-chip 
data yielded on average a 3% accuracy improvement for 
Australian Red cows. The combination of across-breed 
WGS data and a variable selection genomic prediction 
method proved remarkably effective for the fine-mapping 
of QTL.
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