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Abstract

Background: The association between the gut microbiota and pediatric obesity was analyzed in a cross-sectional
study. A prospective study of obese children was conducted to assess the gut microbial alterations after a weight
change. We collected fecal samples from obese children before and after a 2-month weight reduction program
that consisted of individual counseling for nutritional education and physical activity, and we performed 16S rRNA
gene amplicon sequencing using an lllumina MiSeq platform.

Results: Thirty-six participants, aged 7 to 18 years, were classified into the fat loss (n=17) and the fat gain (n=19)
groups according to the change in total body fat (%) after the intervention. The baseline analysis of the gut
microbiota in the preintervention stages showed dysbiotic features of both groups compared with those of
normal-weight children. In the fat loss group, significantly decreased proportions of Bacteroidetes phylum,
Bacteroidia class, Bacteroidales order, Bacteroidaceae family, and Bacteroides genus, along with increased proportions
of Firmicutes phylum, Clostridia class, and Clostridiales order, were observed after intervention. The microbial
richness was significantly reduced, without a change in beta diversity in the fat loss group. The fat gain group
showed significantly deceased proportions of Firmicutes phylum, Clostridia class, Clostridiales order, Lachnospiraceae
family, and Eubacterium hallii group genus, without a change in diversity after the intervention. According to the
functional metabolic analysis by the Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States 2, the “Nitrate Reduction VI" and “Aspartate Superpathway” pathways were predicted to increase significantly
in the fat loss group. The cooccurring networks of genera were constructed and showed the different microbes
that drove the changes between the pre- and postintervention stages in the fat loss and fat gain groups.

Conclusions: This study demonstrated that lifestyle modifications can impact the composition, richness, and
predicted functional profiles of the gut microbiota in obese children after weight changes.

Trial registration: ClinicalTrials.gov NCT03812497, registration date January 23, 2019, retrospectively registered.
Keywords: Obesity, Child, 165 rRNA gene, Gut microbiota, Weight reduction programs

Background

The prevalence of pediatric obesity has increased over
the past decade, leading to an increase in concomitant
childhood health conditions, including type 2 diabetes
mellitus, hypertension, dyslipidemia, fatty liver disease,
and psychological problems [1]. The imbalance between
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energy intake and expenditure is considered the most
important cause of obesity [2]. The cornerstone of
pediatric obesity management is lifestyle intervention,
including dietary modification and increased physical
activity, and not weight loss medicines, calorie-restricted
diets, or bariatric surgery, which are current treatments
for obese adults [3, 4].

Several studies have shown that obesity is associated
with gut microbial dysbiosis [5, 6]. The contribution of
the microbiome to obesity has been considered using
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multifactorial approaches, such as supplying additional
calories to the host, affecting satiety, favoring fat storage,
and disrupting the integrity of the epithelial barrier [7].
Recently, many studies, regarding weight loss interven-
tions in adults, have investigated the relationship be-
tween the gut microbiota and obesity [8]. Some reports
have demonstrated that weight reduction by bariatric
surgery partially reversed obesity-associated microbial
alterations in obese adults [9, 10]. A randomized con-
trolled trial involving adults showed that modification of
the gut microbiota composition by probiotics could re-
duce body weight [11, 12]. Regarding childhood obesity,
most previous studies of the gut microbiota have been
cross-sectional in design [13, 14]. A recent study in
obese children revealed that secreted proteins of the gut
microbiota affect the microbial composition [15]. One
prospective study of children that investigated the mi-
crobial changes with weight gain over a four-year period
showed that the microbiome-host-diet configuration
could be a possible predictor of obesity [16]. However,
research on microbial changes over time after weight
reduction interventions has remained scarce [13, 17].

In this study, we aimed to investigate changes in the
composition, diversity, predicted functional metabolic
profiles, and correlation networks of the gut microbiota
in obese children after lifestyle modifications.

Results

After screening, 42 obese children participated in the
first intervention, and six obese children declined further
participation. In this study, adiposity was defined as the
measured total body fat percentage in body composition
analysis. A total of 36 participants in all of the interven-
tions were classified into two groups: the fat loss group
(n=17, 47.2%), including those who experienced a de-
crease in total body fat (%) after the intervention, and
the fat gain group (n =19, 52.8%), including those who
experienced an increase in total body fat (%) after the
intervention.

The mean ages of the children were 10.0 (SD: 2.4)
years in the fat loss group and 10.3 (SD: 2.7) years in the
fat gain group (t-test, P = 0.733), and 58% of participants
were male in each group (chi-square test, P=0.542,
Table 1). Birthweight, delivery type, duration of the
intervention, and numbers of exercises and nutritional
counseling sessions were not significantly different be-
tween the fat loss and fat gain groups (Table 1). The
questionnaire on general lifestyle and eating habits was
developed for this study, and its contents are shown in
Additional file 1. No significant differences were de-
tected in the results of the questionnaires between the
fat loss and fat gain groups (Table 1). As expected, the
fat loss group showed significantly decreased total body
fat (%), total body fat mass (kg), visceral fat area (cm?),
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and abdominal fat (%) in the body composition analysis,
whereas the fat gain group showed significantly in-
creased values after the interventions (paired t-test and
Wilcoxon’s signed-rank test, P<0.05, Table 2). Body
mass index (BMI) was significantly decreased in the fat
loss group and significantly increased in the fat gain
group after lifestyle modifications (paired t-test, P < 0.05,
Table 2). In the fat loss group, the level of alanine ami-
notransferase (ALT) was significantly decreased after the
intervention (Wilcoxon’s signed-rank test, P=0.022,
Table 2). The insulin level was significantly decreased in
the fat loss group; however, the homeostasis model as-
sessment method-insulin resistance (HOMA-IR) levels
were significantly increased in both groups (Wilcoxon’s
signed-rank test, P <0.05, Table 2). Comparison of the
anthropometric measurements and blood biochemical
profiles before the intervention showed no significant
differences between the fat loss and fat gain groups
(Table S1).

For the baseline analysis, 16S rRNA gene sequencing
data from the feces of the obese groups at the preinter-
vention stages were compared with those of 24 normal-
weight children (18 boys and 6 girls, aged 8.1 + 1.5 years
old) from our previous cross-sectional study of pediatric
obesity as controls using Quantitative Insights into Mi-
crobial Ecology 2 (QIIME2) [18]. Among the results of
anthropometric measurements, BMI in the obese group
before intervention was significantly higher than that in
the control group (Wilcoxon’s rank-sum test, P < 0.05,
Table S2). A total of 8,221,270 sequences (mean of 139,
343 sequences) were generated from 60 samples. After
quality control, the dataset was reduced to a total of 6,
074,850 sequences, with a mean of 102,963 sequences
per sample, for 13,431 features. At the phylum level, Fir-
micutes and Bacteroidetes were dominant components
of the gut microbiota, followed by Proteobacteria, Acti-
nobacteria, and Verrucomicrobia in the fat loss, fat gain,
and control groups (Fig. 1a). We compared the relative
abundances of taxa between the control and the prein-
tervention gut microbiota in the obese group using Stat-
istical Analysis of Metagenomic Profiles (STAMP)
software [19]. The relative abundance of Bacteroidetes
was significantly lower in the preintervention stage in
the fat gain group than in the control group (Welch’s t-
test, FDR = 0.000846, Fig. 1b). The compositional differ-
ences in the gut microbiota of the controls and the pre-
intervention stages in both groups at each phylogenetic
level are shown in Fig. 1b. At the genus level, in the pre-
intervention stage, both groups showed increased rela-
tive abundances of Blautia, Dorea, Eubacterium hallii
group, and Fusicatenibacter compared with the control
group, and the fat gain group also showed decreased
proportions of Bacteroides, Oscillibacter, and Parabac-
teroides (Welch’s t-test, FDR<0.05, Fig. 1b, c). No
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Table 1 Comparison between the Fat Loss and Fat Gain Groups in the Results of the Questionnaires
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Fat loss (n=17) Fat gain (n=19) P
Sex 0.542
Female: male 6 (35.3%): 10 (58.8%) 8 (42.1%): 11 (57.9%)
Age (years) 100+24 103+27 0.733
Birthweight (kg) 35+£05 32+05 0117
Delivery type 0.167
Vaginal: cesarean 5(29.4%): 12 (70.6%) 11 (57.9%): 8 (42.1%)
Duration of intervention (day) 57.0 [55.0; 62.0] 56.0 [51.0; 69.5] 0.536
Number of exercise counseling sessions 0.165
One 1 (5.9%) 0 (0.0%)
Two 1 (5.9%) 5 (26.3%)
Three 15 (88.2%) 14 (73.7%)
Number of nutritional counseling sessions 0.382
One 1 (5.9%) 0 (0.0%)
Two 1 (5.9%) 3 (15.8%)
Three 15 (88.2%) 16 (84.2%)
What did you feed your baby in the first year? 0.747
Exclusive breastfeeding 7 (41.2%) 8 (42.1%)
Exclusive formula feeding 2 (11.8%) 3 (15.8%)
Mixed with predominant breastfeeding 4 (23.5%) 2 (10.5%)
Mixed with predominant formula feeding 4 (23.5%) 6 (31.6%)
How long do you study after school? 0.540
Less than 1 h 2 (11.8%) 4 (21.1%)
1-2h 3 (17.6%) 7 (36.83%)
2-3h 5 (29.4%) 4(21.1%)
3-4h 5 (29.4%) 3 (15.8%)
More than 4 h 2 (11.8%) 1 (53%)
How long do you do perform regular exercise each day? 0.767
None 3 (18.8%) 4 (21.1%)
30min 2 (12.5%) 7 (36.83%)
30min-1h 7 (43.8%) 5 (26.3%)
1-2h 4 (25.0%) 6 (31.6%)
More than 2 h 0 (0.0%) 1 (5.3%)
How long do you use electronic devices each day? 0.504
Less than 2 h 7 (41.2%) 11 (57.9%)
More than 2 h 10 (58.8%) 8 (42.1%)
Is there an easily accessible place to exercise? 1.000
Yes 14 (82.4%) 16 (84.2%)
No 3 (17.6%) 3 (15.8%)
How do you get to school? 0.833
On foot 12 (70.6%) 15 (78.9%)
By bus 1 (5.9%) 1 (5.3%)
By private car 4 (23.5%) 3 (15.8%)
Do you eat breakfast? 0.308
Never 6 (35.3%) 2 (11.1%)
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Table 1 Comparison between the Fat Loss and Fat Gain Groups in the Results of the Questionnaires (Continued)
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Fat loss (n=17) Fat gain (n=19) P
2-3 times a week 0 (0.0%) 1 (5.6%)
4-5 times a week 2 (11.8%) 3 (16.7%)
Daily 9 (52.9%) 12 (66.7%)
How long does it take to eat a meal? 0.224
5min 0 (0.0%) 3 (16.7%)
10 min 6 (35.3%) 5 (27.8%)
15 min 8 (47.1%) 4 (22.2%)
20 min 2 (11.8%) 5 (27.83%)
More than 20 min 1 (5.9%) 1 (5.6%)
How many times a week do you eat late-night snacks? 0.990
Never 8 (47.1%) 10 (52.6%)
1-2 times a week 7 (41.2%) 7 (36.8%)
3-4 times a week 1 (5.9%) 1 (5.3%)
Daily 1 (5.9%) 1 (5.3%)
How many bottles of sugar-sweetened beverages do you drink a week? 0.537
None 2 (11.8%) 0 (0.0%)
1L bottle 7 (41.2%) 7 (46.7%)
2L bottle 6 (35.3%) 5 (33.3%)
3L bottle 2 (11.8%) 3 (20.0%)

Data are expressed as counts (%)

significantly different taxa at any phylogenetic level were
identified between the fat loss and fat gain groups at the
preintervention stage. The alpha rarefaction plot of the
observed_Operational Taxonomic Unit (OTU) s indices
presents the richness of the samples in the control and
the preintervention stages in both groups (Fig. Sla). The
Shannon diversity index showed no significant differ-
ences between the controls and the preintervention
stages in both groups (Fig. 1d). In the preintervention
stage, both groups showed significantly lower observed_
OTUs indices than the control group, and the fat gain
group showed significantly lower observed_OTUs in-
dices than the fat loss group (Wilcoxon’s rank-sum
test, controls vs fat loss pre q =0.009, controls vs fat
gain pre q=0.00006, fat loss pre vs fat gain pre q=
0.022, Fig. le). Principal coordinate analysis (PCoA)
based on the weighted Unifrac distances between the
genus-level microbial profiles showed a significant
separation between the controls and obese individ-
uals in both groups by permutational multivariate
analysis of variance (PERMANOVA) (controls vs fat
loss pre: q =0.002, controls vs fat gain pre: q=0.001,
fat loss pre vs fat gain pre: q = 0.279, Fig. 1f).

The 16S rRNA sequence datasets were collected from
feces of the participants before and after the lifestyle
modifications. A total of 10,895,632 sequences (mean of
151,328 sequences) were generated from 72 samples.
After quality control, the dataset was reduced to a total

of 7,296,519 sequences, with a mean of 99,854 sequences
per sample, for 9617 features. At the phylum level,
Firmicutes and Bacteroidetes were major components of
the gut microbiota, followed by Actinobacteria, Proteo-
bacteria, and Verrucomicrobia, in both the pre- and
postintervention stages in the fat loss and fat gain groups
(Fig. 2a, b). To investigate the changes in the microbial
community after intervention, we performed pairwise
differential abundance comparison with Analysis of
Differential Abundance Taking Sample Variation Into
Account (ALDEx2) (Bioconductor v.3.11) [20]. In the fat
loss group, a total of 8 taxa (2 phyla, 2 classes, 2 orders,
1 family, and 1 genus) showed significantly different
relative abundances after intervention (Wilcoxon signed-
rank test, P<0.05, Fig. 2c). The relative abundance of
Firmicutes was significantly increased in the fat loss
group (Wilcoxon’s signed-rank test, P = 0.009); conversely,
the relative abundance of Bacteroidetes was significantly
decreased in the fat loss group after intervention (Wilcox-
on’s signed-rank test, P =0.014, Fig. 2c). Bacteroidia class,
Bacteroidales order, Bacteroidaceae family, and Bacter-
oides genus were significantly decreased, and Clostridiales
order and Clostridia class were significantly increased in
the fat loss group (Wilcoxon’s signed-rank test, P < 0.05,
Fig. 2c). In the fat gain group, 6 taxa (2 phyla, 1 class, 1
order, 1 family, and 1 genus) showed significantly different
relative abundances after intervention (Wilcoxon’s signed-
rank test, P<0.05, Fig. 2d). The relative abundance of
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Table 2 Comparison of the Results of Anthropometric Measurements and Blood Biochemical Profiles between the Pre- and

Postintervention Stages in the Fat Loss and Fat Gain Groups

Fat loss group

Fat gain group

pre (n=17) post (n=17) pre (n=19) post (n=19)
Anthropometric measurements

Weight (kg) 57.50+16.90 5738+ 1672 57.60 [49.40; 67.70] 60.20 [50.00; 68.90]"
Weight (z-score) 2384076 229+077" 2.16 [1.93; 2.50] 220 [1.94; 2.64]
Height (cm) 14576 + 14.80 14678 +1459" 14873+ 1462 14975 +1459"
Height (z-score) 098 [0.17; 2.16] 104 [0.18; 2.17] 1.26 [0.75;1.46] 1.15 [0.86; 1.48]
BMI (kg/m?) 2641 +404 2601 +400" 25.70 [23.75; 27.30] 26.14 [23.94; 2813]"
BMI (z-score) 254 [1.95; 2.76] 236 [1.88; 2651 222 [1.96; 2.54] 234 [2.02; 3.54]
Systolic blood pressure (mmHg) 119.71 £13.74 118.18 +9.34 121.05+11.71 11926 +11.96
Diastolic blood pressure (mmHg) 77.00 [70.00; 82.00] 76.00 [69.00; 83.00] 72.05+10.31 7363+ 10.72
Waist circumference (cm) 88.90 [75.00; 93.20] 84.50 [74.80; 93.90]" 8881+ 1326 90.07 + 1364
Waist-to-height ratio 058 [0.54; 061] 0.56 [0.53; 060" 0. 59 [0.55; 0.62] 059 [0.56; 0.62]
Total body fat (%) 38.30 [35.60; 43.0] 37.2 [3440;39.70]" 3879+5.16 39344506

Skeletal muscle mass (kg)
Total body fat (kg)
Visceral Fat (cm?)
Abdomen fat (%)

Blood biochemical profiles
Glucose (mg/dL)
AST (IU/L)
ALT (IU/L)
Total cholesterol (mg/dL)
Triglyceride (mg/dL)
HDL cholesterol (mg/dL)
LDL cholesterol (mg/dL)
hs-CRP (mg/L)
Uric acid (mg/L)
25-OH vitamin D (ng/mL)
Ferritin (ng/mL)
Insulin (uU/mL)
HbATc (%)
HOMA-IR

17.70 [13.90; 21.80]
22.80+7.89

112.10 [74.30; 144.20]
0.85+0.08

98.00 [95.00; 103.00]
24.00 [21.00; 29.00]
20.0 [17.00; 35.00]
177.00 +30.20
90.00 [68.00; 117.00]
5094 +11.17

108.29 + 24.00

1.40 [0.60; 2.60]
4.90 [4.40; 5.40]
16.08 +£5.81

64.50 [48.30; 83.70]
15.54 [10.75; 27.49]
54+03

133 [1.22; 142]

1820 [14.20; 26.90]"
21.99+740"

105.10 [71.90; 136.80]

0.85+0.08

99.00 [98.00; 103.00]
24.00 [19.00; 26.00]
1800 [16.00; 24.00]"
17618+ 31.84
91.00 [67.00; 108.00]
5118+ 1067

107.06 + 27.04

140 [0.70; 1.90]

4.80 [4.50; 5.50]
1692 + 6.44

68.70 [51.90; 96.20]
1163817, 16121
54+02

267 [2.05;3.84]"

17.80 [15.70; 22.70]
21.60 [18.80; 26.80]
118.76 £49.54
0.86+0.10

104.00 [100.0; 106.0]
24.000 [20.50; 30.50]
25.00 [15.00; 46.50]
169.58 £22.99
77.00 [72.00; 115.00]
5247 +10.11
10232+£22.18

1.20 [0.80; 1.60]
551+093
1363+433

54.90 [41.40; 139.60]
19.29 [11.90; 39.21]
540 [5.35; 5.50]

1.39 [1.33; 1.46]

1940 [16.00; 23.80]
23.20 [19.20; 28201

123.76 £49.10
0.87 £0.09

99.00 [95.50; 107.00]
24.00 [20.00; 28.50]
26.00 [15.00; 42.50]
17384+ 1890
86.00 [64.00; 137.50]
5337+1087
10474+ 1933

1,60 [0.80; 2.00]
579+074

1672 +592

59.80 [46.55; 111.75]
1393 [1043; 22911
540 [5.30; 5.50]

299 [260;6.17]"

Data are expressed as the means + standard deviations or medians (interquartile ranges). "P < 0.05,”P < 0.01 paired t-test or Wilcoxon'’s signed-rank test between
the pre- vs postintervention stages in the fat loss and fat gain groups. Abbreviations: BMI Body mass index; AST Aspartate aminotransferase; ALT Alanine
aminotransferase; HDL High-density lipoprotein; LDL Low-density lipoprotein; hs-CRP High-sensitivity C-reactive protein

Firmicutes was significantly decreased (Wilcoxon’s signed-
rank test, P = 0.028) and the relative abundance of Actino-
bacteria was significantly increased in the fat gain group
(Wilcoxon’s signed-rank test, P =0.047, Fig. 2d). The pro-
portions of Clostridia class, Clostridiales order, Lachnos-
piraceae family, and Eubacterium hallii group genus were
significantly decreased in the fat gain group after interven-

tion (Wilcoxon’s signed-rank test, P < 0.05, Fig. 2d).

The alpha rarefaction plot of the observed OTUs indi-
ces clearly illustrates the richness of the samples in the

pre- and postintervention stages in both groups (Fig. S1b).
In the g2 longitudinal command in QIIME2, the alpha di-
versity indices, including the Shannon (Fig. 2e), Faith’s PD
(Fig. 2f), and observed_OTUs (Fig. 2g) indices, were sig-
nificantly changed in the fat loss group (Wilcoxon’s
signed-rank test, P <0.05) but not in the fat gain group.
The degree of difference of the observed_OTUs indices

after intervention was significantly higher in the fat loss

group than in the fat gain group (Wilcoxon’s rank-sum
test, FDR=0.045, Fig. 2g). In the linear mixed-effect
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comparing the relative abundance of taxa at each phylogenetic level between the controls and preintervention stages in the fat gain (b) and fat
loss groups (c). Violin plot for comparing the Shannon diversity index (d) and observed_OTUs index (e). Principal coordinate analysis based on
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models, the observed OTUs index was significantly de-
creased after lifestyle intervention in the fat loss group
(coefficient: -7.5 [IQR: - 14.789, - 0.102], SD; 3.747, P =
0.047, Fig. 2h). The weighted Unifrac distance showed no
significant differences between the pre- and postinterven-
tion stages in both groups (Fig. S2).

A total of 346 and 363 metabolic pathways in the
MetaCyc database were predicted by Phylogenetic Inves-
tigation of Communities by Reconstruction of Unob-
served States (PICRUSt)2 in the fat loss and fat gain
groups, respectively [21, 22]. The weighted nearest se-
quenced taxon index (NSTI) was used in the fat loss
(mean = SD: 0.127 +0.015) and fat gain (mean + SD:
0.109 £ 0.010) groups [23]. To identify significantly chan-
ged predicted pathways in the microbial community
after intervention, we performed pairwise differential
abundance comparisons with ALDEx2. At the FDR 0.5
level, the “Nitrate Reduction VI” and “Aspartate Super-
pathway” metabolic pathways were predicted to signifi-
cantly increase after intervention (Wilcoxon’s signed-
rank test, FDR =0.013, and 0.030, respectively, Fig. 3a,
b). In the fat gain group, no significantly changed pre-
dicted pathways were identified.

Analyses of the cooccurrence networks of genera in
the fat loss and fat gain groups were conducted (Fig. 4a,

b). Nodes represent the Amplicon Sequence Variant
(ASV) s at the genus level, with size reflecting the rela-
tive abundance in the community and color indicating
the phylum. The edge represents the correlation be-
tween connecting nodes, with edge thickness indicating
the correlation value and green and red colors indicating
positive and negative correlations, respectively. Only sig-
nificant correlations (two-sided pseudo P < 0.05 based on
permutations of 100 iterations) with correlation thresh-
olds = 0.3 are presented. The microbial dysbiosis index
(MD index) was 0.6009 in the pre/postintervention fat
loss group and 0.9251 in the pre/postintervention fat
gain group [24]. Regarding the network plot properties,
the average path length, total nodes, and total edges
decreased after the lifestyle intervention (Fig. 4c). On the
basis of NetShift analysis, the genera Romboutsia, Rumi-
nococcaeceae_UCG_013, Eubacterium coprostanoligenes-
group, and Parabacteroides were identified as driver
genera, with key roles in the changes in microbial inter-
actions during the intervention in the fat loss group
(Fig. 5a, c). We were also able to identify the genera
Romboutsia, Eubacterium_halli_group, and Clostridium_
sensu_stricto_1 as driving the microbial community
changes from the pre- to the postintervention stages in
the fat gain group (Fig. 5b, c).



Cho BMC Microbiology (2021) 21:10

Page 8 of 15

a 0.4
Group
B3 Post
B3 Pre
0.3
2
£
3
0.2
0.1

Post Pre
Group

Fig. 3 Functional profile analysis of the gut microbiota on the basis of the MetaCyc database in the fat loss group. The “Nitrate Reduction VI" (a)
and “Aspartate Superpathway” (b) were predicted to increase after intervention in the fat loss group
A

Group
B3 Post
0.50 BS Pre
0.45
o
k]
t
2
2 ) x
0.35
0.30
Post Pre
Group

Discussion

The main treatment for obesity in children includes life-
style modifications, such as dietary modification, in-
creased physical activity, and behavioral modification,
rather than medications or bariatric surgery [25]. In
recent decades, growing evidence has identified an asso-
ciation between the gut microbiota and obesity, and
microbiota-targeted strategies have attracted attention in
the context of obesity treatment [26]. This study demon-
strated that lifestyle modifications could exert a signifi-
cant influence on the composition, diversity, and
predicted functional profiles of the gut microbiota in
childhood obesity.

In the baseline analysis, the obese children in the fat
gain group showed decreased proportions of Bacteroidetes
compared with the controls, as described by previous
studies [15, 18, 27, 28]. The gut microbiota in the obese
children showed a different microbial composition from
that in the controls, including increased proportions of
the genera Blautia, Dorea, Eubacterium hallii group, and
Fusicatenibacter, which were reported to be associated
with obesity, as well as decreased proportions of the gen-
era Bacteroides, Oscillibacter, and Parabacteroides, which
were positively associated with leanness [18, 29-31]. In
both the preintervention groups, reduced microbial rich-
ness was noted, and the beta diversity showed significant
separation between the control and obese groups, gener-
ally implicating dysbiotic features [30].

Recent studies have reported that the microbiome
adapts quickly to lifestyle changes [32]. In the fat loss
group, the relative abundances of Firmicutes and Bacter-
oidetes were changed significantly after lifestyle

modifications. Previous clinical weight reduction trials
reported no consistent results regarding these major
phyla. Some trials showed an increase in the relative
abundance of Bacteroidetes along with a decrease in Fir-
micutes; others reported the opposite effects on these
phyla, similar to the results of our study, while a few tri-
als observed no impact [13, 33-35]. A population-based
study of school-aged children showed that these incon-
sistent results in microbial communities are related to
environmental factors, including socioeconomic status,
age, and weight [36]. The members of Bacteroidetes
were reported to be more largely influenced by environ-
mental factors rather than by host genetics, and some
clinical trials demonstrated that these members are asso-
ciated positively with a diet rich in protein and animal
fat [16, 37, 38]. Our study demonstrated that Bacteroidia
class, Bacteroidales order, Bacteroidaceae family, and
Bacteroides genus, belonging to the Bacteroidetes
phylum, were significantly decreased in the fat loss
group. This decrease could be related to diet changes,
including a decrease in highly processed foods rich in
animal fat for 2 months. Otherwise, among the members
of Firmicutes, increased proportions of Clostridiales
order and Clostridia class in the fat loss group as well as
decreased proportions of Clostridia class, Clostridiales
order, Lachnospiraceae family, and Eubacterium hallii
group genus in the fat gain were demonstrated after
intervention. One possible explanation for these changes
in the relative abundance of Firmicutes is that our life-
style modification program did not include a
carbohydrate-restrictive diet. A carbohydrate-restrictive
diet can result in a reduction in the abundance of
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Firmicutes due to low intake of complex carbohydrates,
which act as prebiotics [39]. Further studies are required
to determine whether the changes in microbiota com-
position were the result of lifestyle modifications.

In the fat loss group, the bacterial taxa richness was
decreased after the application of lifestyle modifications.
This observation is contrary to previous studies, which
showed that a diet intervention, including calorie and
carbohydrate restriction, increases in microbial gene rich-
ness with a decrease of adiposity in participants [40, 41].
However, some studies in adults have revealed that micro-
bial richness decreased after a short-term dietary restric-
tion, and other studies in pediatric populations showed no
differences [42-44]. A recent study in Mexican children
revealed significantly greater richness and diversity in the
obese group than in the normal-weight group [15]. In one

study of 61 adults who underwent bariatric surgery for
obesity treatment, low microbial gene richness was corre-
lated with truncal fat mass and remained low at 1 year
after surgery, suggesting a complex interplay between the
gut microbiome and host obesity [10]. Shoaie et al. ana-
lyzed the correlations of reduced bacterial gene counts
and the production of several amino acids with the occur-
rence of metabolic diseases using a computational tool,
and they showed that dietary interventions might reduce
these products and improve insulin sensitivity [45]. The
microbial richness in obesity with weight changes shows
an inconsistent pattern, suggesting that more studies are
required.

The mechanism by which the microbiota affects energy
balance in the human body are not clear. Our results from
the PICRUSt2 analysis demonstrated two metabolic
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Fig. 5 The driving genus that drove the changes between the pre- and postintervention stages in the fat loss group (a) and in the fat gain
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nodes that are colored red have increased betweenness from the prestage to the poststage. The large red nodes are considered drivers.
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pathways in the MetaCyc database that were predicted to
significantly increase after lifestyle modifications in the fat
loss group. In the “Nitrate Reduction VI” pathway, the
final product is L-glutamine, supplementation with which
has recently been reported to lead to weight loss [46, 47].
The “Aspartate Superpathway” pathway includes both L-
aspartate biosynthesis and degradation to oxaloacetate
due to reversible transamination. Oxaloacetate was re-
ported to activate brain mitochondrial biogenesis, leading
to enhancement of the insulin pathway [48]. However,
these predictions based on the 16S rRNA gene amplicon
sequencing data could be limited because the actual func-
tions of the full metagenome likely differ, although
amplicon-based predictions might be highly correlated
with functional profiles based on shotgun metagenomics
sequencing data [49]. To increase the accuracy of predic-
tions, we used the weighted NSTI value, which is a

measure of how closely related the ASVs in each sample
are to the reference genomes in the database [50]. Analysis
was conducted after excluding ASVs presenting weighted
NSTI values of 0.15 or greater, indicating generally
unreliable prediction [49]. Much more research is re-
quired to determine the specific mechanisms associated
with functional analysis.

We analyzed the microbial cooccurrence network with
Sparse Correlation for Compositional data (SparCC)
analysis, which is capable of avoiding the microbial com-
positional bias introduced when correlating relatively
abundant data in Spearman’s and Pearson’s analyses
[51]. The MD index in SparCC is the log ratio of the
total abundance of genera increased in the preinterven-
tion group to the total abundance of genera decreased in
the postintervention group [24]. In the previous study,
this index showed a strong positive correlation with
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clinical disease severity and a negative correlation with
species richness, resulting in an empirical estimation of
the degree of dysbiosis within the microbiome [24]. The
fat gain group had a higher MD index value than the fat
loss group, representing dysbiosis or an imbalance in the
microbial community after intervention. In the network
plot properties, the degrees of decrease in the average
path length, total nodes, and total edges in the postinter-
vention stage compared to those in the preintervention
stage in the fat gain group were greater than those in
the fat loss group. This outcome suggests that the rela-
tionships of the gut microbiota in the fat gain group
decreased to be fewer than those in the fat loss group
after intervention.

In the NetShift analysis, the driver genera that played
key roles in microbial interactions were different be-
tween the fat loss and fat gain groups. The role of Para-
bacteroides as a driver of community change after
lifestyle intervention was greater in the fat loss group
than in the fat gain group. This finding suggested that
Parabacteroides might play a key role in the process of
weight loss during lifestyle modifications. Recent studies
have revealed that Parabacteroides exerts an anti-
obesogenic effect and could suppress the systemic in-
flammatory response by regulating IL-10 and Treg cells
[31, 43]. Another driver taxon in the fat loss group was
Ruminococcaceae_ UICG_013, which was demonstrated
to be associated with a decreased risk of weight gain,
suggesting functional linkage to a lean phenotype in a
large-scale, longitudinal adult study [52]. Another driver
genus in the fat loss group was Eubacterium_coprostano-
ligenes_group, which is known to reduce cholesterol by
cholesterol-to-coprostanol conversion [53]. The only
common driver taxon between the fat loss and fat gain
groups was Romboutsia, which was recently described
[54]. Romboutsia produces end products such as acetic
acid, ethanol, iso-butanoic acid and iso-valeric acid,
which are substrates involved in gluconeogenesis and
lipogenesis [55]. Other driver taxa in the fat gain group
were Eubacterium hallii and Clostridium sensu stricto
groups, which produce short-chain fatty acids [56, 57].
These results suggest that lifestyle modifications might
exert a different effect on the interactions between mi-
crobial communities according to the direction of weight
change.

In adult studies, changes in the gut microbiota were
associated with weight reduction interventions, including
restrictive diets, bariatric surgery, and medications in-
cluding pre, pro-, and synbiotics and metformin; these
interventions are difficult to apply in children due to the
risk of nutritional imbalance and surgery [58]. Our study
showed BMI reduction in approximately 50% of partici-
pants; this result was relatively higher than those in adult
studies involving weight loss interventions, which have
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generally resulted weight loss in 5-20% of participants
[59, 60]. Our weight reduction program was a multidis-
ciplinary individualized approach with frequent contact,
which is the principal treatment of pediatric obesity, ra-
ther than restricted diet or surgery. Frequent manage-
ment seemed to be effective in reducing the weight of
the participants in our study. Most previous cross-
sectional studies of childhood obesity have reported al-
tered gut microbiota; however, few clinical trials have in-
vestigated gut microbial changes with weight reduction
interventions [13, 14]. One study in preschool children
participating in a behavioral intervention program re-
ported no significant changes in microbial composition
or functional profiles associated with weight loss [13].
However, our study showed altered gut microbial com-
position, richness, and predicted functional profiles with
weight loss. These inconsistent results could be related
to the report that the gut microbiota varies with age,
ethnicity and diet [36]. Our study of Korean obese chil-
dren could provide additional valuable information on
common traits characterizing pediatric obesity.

Among the markers of the insulin resistance of the fat
loss group, the fasting insulin level was improved after
the intervention, although HOMA_IR was increased.
One possible explanation is that the increase of HOMA-
IR levels could be associated with unchanged fasting
glucose and HbA1C levels, because our intervention in-
cluded no carbohydrate restriction. Some studies have
reported limitations of HOMA-IR in subjects with high
fasting glucose levels and indicated that the fasting insu-
lin value, rather than HOMA-IR, could be a surrogate
measure of insulin resistance [61, 62].

Although the duration of the intervention, number of
exercises, and nutritional counseling were not signifi-
cantly different between the fat loss and fat gain groups,
the responses to the intervention were different. In this
regard, some considerations were noted in our study. In
the baseline study, higher microbial richness was identi-
fied in the fat loss group than in the fat gain group. This
observation agrees with other studies revealing that
higher bacterial richness was associated with greater de-
creases in adiposity for obese adults with bariatric sur-
gery and dietary interventions [10, 42]. The microbial
richness at baseline might be a predictive potential factor
for the efficacy of interventions. Further, a recent study
revealed that baseline microbiota composition is not
predictive of weight loss for the intervention [32]. In line
with this finding, our baseline study showed no signifi-
cant differences in the microbial composition between
the fat loss and fat gain groups. One limitation of our
study was the small number of participants. Another
limitation is that we cannot identify whether the gut
microbiota will recover and how long it will take. To clar-
ify the function and pathophysiology of the gut microbiota
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in relation to childhood obesity, further trials that include
a larger number of obese children are necessary.

Conclusions

In conclusion, we observed significant alterations in the
composition, richness, and expected functional profiles
of the gut microbiota with weight loss after lifestyle
modifications. Lifestyle modifications could impact
microbiota dynamics, although little is known about the
effect in obese children.

Methods

Participants, questionnaires, and anthropometric
measurements

This longitudinal cohort study was an analysis of fecal
samples collected from obese children before and after a
2-month weight reduction program. We recruited 50
obese children aged 7 to 18 years old at Hallym Univer-
sity Kangnam Sacred Heart Hospital from August 2018
to August 2019. Obesity was defined as a BMI > 95th
percentile based on the 2017 Korean growth chart [63].
Those who had congenital heart disease, chronic in-
flammatory bowel disease, chronic liver disease, or
chronic renal disease were excluded. The participants
were required to take no antibiotics, probiotics, or
steroids for 1 month prior to the intervention. If partic-
ipants had acute inflammatory diseases, such as influ-
enza, pneumonia, or acute gastroenteritis, we delayed
the lifestyle modification program by 1 month. The
participants completed questionnaires, which provided
multiple choice questions on general lifestyle (the time
spent studying and using electronic devices, the dur-
ation and frequency of regular exercise, the presence of
easily accessible locations to exercise, and their mode
of transportation to school) and eating habits (meal
duration, the consumption of late-night snacks, the
consumption of breakfast, and the intake of sugar-
sweetened beverages) and submitted them at the first
hospital visit. Anthropometric measurements, including
height, weight, waist circumference, and blood pressure,
were performed by professionally trained research
nurses at the first and third hospital visits [64, 65].
Body composition analysis of total body fat mass, skel-
etal muscle mass, total body fat percent, visceral fat
area, and abdominal fat percent was performed with an
InBody 770 analyzer (Biospace Co. Ltd., Seoul, South
Korea) at the first and third hospital visits.

Weight reduction programs

Over 8weeks, the participants received weight reduction
counseling from dietitians, exercise professionals, research
nurses, and a pediatric clinician three times. At the first visit,
the pediatric clinician, who specialized in childhood obesity,
designed individualized feasible lifestyle modification
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programs in conjunction with dietitians, exercise pro-
fessionals, and research nurses based on interviews with
the participants and their guardians. Dietitians provided
practical nutritional counseling on eating habits rather
than a restrictive meal menu, and they suggested one
or two individualized “must-follow” recommendations,
such as eating breakfast, avoiding sugar-sweetened bev-
erages, decreasing processed foods rich in animal fat or
lengthening meal duration, to the participants at every
counseling session. Exercise professionals found ways
for obese children to exercise without a disruption to
their general lives after analyzing the participants’ life-
styles, and they suggested one or two individualized
“must-follow” recommendations, such as performing
daily stretching exercises at home, cycling after school
or on the weekends, using stairs instead of elevators if
safe, and walking to school or academy, to the partici-
pants at every counseling session. The research nurse
monitored the children to confirm that they were fol-
lowing the recommendations provided every 2 weeks.
At the third visit, the pediatric clinician interviewed the
participants and their guardians and suggested practical
ways for participants to maintain their “must-follow”
recommendations in general life.

Blood sampling and biochemical analysis

At the first and third visits, blood samples were obtained
from the participants after an 8-h overnight fast. The
levels of glucose, aspartate aminotransferase (AST),
ALT, total cholesterol, triglycerides, high-density lipopro-
tein (HDL) cholesterol, low-density lipoprotein (LDL)
cholesterol, high-sensitivity C-reactive protein (hs-CRP)
and uric acid were measured using a Hitachi 7600 autoa-
nalyzer (Hitachi, Tokyo, Japan). Concentrations of ferritin,
insulin, and 25-OH vitamin D were determined using an
ADVIA Centaur XP instrument (Siemens Diagnostics,
Deerfield, IL, USA). The hemoglobin Alc (HbAlc) level
was determined using a D-100 system (Bio-Rad Labora-
tories, Hercules, CA, USA). HOMA-IR was calculated as
[insulin (UIU / mL) x glucose (mg / dL)]/ 405.

16S rRNA gene amplicon sequencing using an Illumina
MiSeq platform and bioinformatics analysis

Fecal samples were collected before and after the
interventions. Fecal samples were subsequently stored at
-80°C within 1h of sampling until DNA extraction.
The genomic DNA in fecal samples was extracted using
a FastDNA™ SPIN Kit for Soil (MP Biomedicals, Santa
Ana, CA, USA) according to the manufacturer’s instruc-
tions. The DNA concentration was measured using a
Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen,
Waltham, MA, USA). 16S rRNA gene amplicon sequen-
cing of the V3—4 regions was performed by a commer-
cial company (Chunlab Inc., Seoul, South Korea) using
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an Illumina MiSeq platform (Illumina, San Diego, CA,
USA) [66]. The sequencing outputs were generated as
demultiplexed fastq sequences for downstream analysis
using QIIME2, which identifies ASVs rather than OTUs.
AVS approaches are generally considered to provide
more precise identifications of microbes than OTU ap-
proaches [67]. The dada2 denoise-paired command was
used to filter the low-quality and chimeric sequences in
the fastq reads. The taxonomy of these features was
assigned via the Silva-genes reference database classifier
(version 136) considering 99% similarity. 16S rRNA gene
sequencing data of the preintervention stages in both
groups were compared with those of 24 normal-weight
children in our previous cross-sectional study of
pediatric obesity as controls [18]. The differential com-
positional analyses of the gut microbiota between the
controls and both groups in the preintervention stages
were performed by STAMP software [19]. Alpha diver-
sity (observed_OTUs index and Shannon index) and
beta diversity (weighted Unifrac distance) between the
control and the preintervention stages of the obese
groups were analyzed at the sequence depth of 5041 in
QIIME2 and were visualized by the ggplot2 package in R
software. Pairwise significant differences in the relative
abundances at phylogenetic levels between the pre- and
postintervention stages of both groups were assessed by
the ALDEx2 package and were visualized by the ggplot2
package in R software. The q2 longitudinal command in
QIIME2 was used to analyze pairwise diversity changes
after the intervention at the sequence depth of 5100.
Linear mixed-effect models were constructed to analyze
the relationships of the statistically significant alpha di-
versity indices. The PICRUSt2 (v2.3.0 beta) tool was
used to infer the functional potentials of the gut micro-
biota on the basis of Enzyme Classification (EC) num-
bers in the MetaCyc database from 16S rRNA gene
amplicon sequencing [21, 22]. The ASV table generated
from QIIME2 was rarefied at the sequence depth of
5100 and then applied to PICRUSt2. After transforming
the relative abundance, the ALDEx2 package was used
to identify the significantly changed predicted functional
pathways in our data after the intervention.

SparCC analysis at the genus level was conducted to de-
tect coabundance and coexclusion correlations with two-
sided pseudo P-values (P-values < 0.05 considered signifi-
cant) based on 100 iterations in the MicrobiomeAnalyst
web application [68]. NetShift analyses were performed to
detect the driver microbes in the web application based
on the networks generated by SparCC [69].

Statistical methods

Paired normally distributed data were analyzed using the
paired t-test and are presented as the means and stand-
ard deviations; paired nonnormally distributed data were
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analyzed using the Wilcoxon’s signed-rank test and are
presented as medians and interquartile ranges. The t-
test and Wilcoxon’s rank-sum test were used to analyze
the independent normally distributed data and the inde-
pendent skewed continuous data, respectively. Categor-
ical variables were analyzed by the chi-square test and
are presented as frequencies and percentages. Statistical
significance was declared at a P-value <0.05. Resulting
P-values were adjusted for multiple testing with the false
discovery rate (FDR) method.
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