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Today, it has become a hot issue in cancer research to make precise prognostic prediction for breast cancer patients, which can
not only effectively avoid overtreatment and medical resources waste, but also provide scientific basis to help medical staff and
patients family members tomake rightmedical decisions. Aswell known, cancer is a partly inherited diseasewith various important
biological markers, especially the gene expression profile data and clinical data.Therefore, the accuracy of prediction model can be
improved by integrating gene expression profile data and clinical data. In this paper, we proposed an end-to-endmodel, Attention-
based Multi-NMF DNN (AMND), which combines clinical data and gene expression data extracted by Multiple Nonnegative
Matrix Factorization algorithms (Multi-NMF) for the prognostic prediction of breast cancer. The innovation of this method is
highlighted through using clinical data and combining multiple feature selection methods with the help of Attention mechanism.
The results of comprehensive performance evaluation show that the proposed model reports better predictive performances than
eithermodels only using data of singlemodality, e.g., gene or clinical, ormodels based on any single NMF improvedmethodswhich
only use one of the NMF algorithms to extract features. The performance of our model is competitive or even better than other
previously reported models. Meanwhile, AMND can be extended to the survival prediction of other cancer diseases, providing a
new strategy for breast cancer prognostic prediction.

1. Introduction

Nowadays, cancer has become the leading cause of morbidity
and mortality worldwide, in which breast cancer is one
of the most common malignant tumors, especially among
women [1–9]. According to the statistics, around the world,
an estimated 1.2 million women are diagnosed with breast
cancer as well as around 50 million women died of breast
cancer each year. Hence, it is urgent to develop efficient
computational methods to predict the survival time of breast
cancer patients more precisely and promote the development
of personalized treatment and management. At the same
time, accurate prognostic prediction for breast cancer is of
vital importance for the clinical decision of early breast cancer

patients in adjuvant therapy. It is never easy tomake decisions
about patient treatment because it depends on a variety of
clinical characteristics, genomic factors, tumor pathology,
and cell classification [10, 11], in which clinical data and gene
expression profile data are the most typical data for cancer
prognosis prediction. Accordingly, more accurate prediction
of cancer prognosis can not only help breast cancer patients
understand their life expectancy, but also help clinicians
make informed decisions and further guide the follow-up
treatment. Thus, it would ultimately contribute to reducing
overall mortality rate of breast cancer and further improving
the quality of life of breast cancer patients.

During the past decades, gene expression profiling has
become a powerful instrument for studying the biology of
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breast cancer. With these techniques, many prognostic fea-
tures in gene expression can predict breast cancer recurrence
risk [12]. Van de Vijver et al. [13] took multivariate analysis
method to find out 70 genetic makers related to survival
time of breast cancer from the gene expression data of 98
breast cancer patients. Their work indicates that the genetic
markers play a significant role in the prediction of breast
cancer survival time, but this method only requires simple
genetic markers screening methods such as multivariate
analysis, which still remains flawed. Gene expression data
is high-dimensional and contains a large number of genes,
resulting in a limited efficiency for these gene expression-
based technologies. Therefore, in order to efficiently extract
characteristic genes in high-dimensional data, Xu et al. [14]
proposed a feature selection method based on support vector
machine (SVM) for the selection of key features in data. This
method uses two-step feature selection algorithm to process
high-dimensional feature set in order to select characteristic
that can help prediction. Their results show that the feature
selection method based on machine learning is superior to
the traditional artificial one. However, the above methods
were only performed around single-modal data of gene
expression, and important features related to breast cancer
prognosis in other omics data (such as clinical data) were
not considered. To take into account multimodality data and
improve the accuracy of breast cancer prognosis predictions,
Gevaert et al. [15] proposed a prediction algorithm based
on probability graph, which fully integrated two modal
data, gene expression data, and clinical information. On the
METABRIC data set, the 5-year survival forecast accuracy
of 82% was achieved. Meanwhile, Sun et al. [16] proposed a
hybrid model, which can predict the survival time of breast
cancer by combining I-RELIFE, a gene feature selection
method, and support vector machine, using gene expression
data and clinical information at the same time. In spite of
the significant improvements achieved in these studies via
combining multimodality data, it is still challenging with the
fusion of multiple feature extraction methods to obtain better
feature representation and consider the relationship between
multimodality data.

Recently, the Attention method is proposed and it is
argued that it is able to adaptively consider the importance
of a single feature to the final global feature representation. It
assigns different weights to each part of the feature sequence,
extracting more critical and important information, allowing
the model to make more accurate judgments. Based on this
attribute, it has been widely used in machine translation
and speech recognition. For example, Bahdanau et al. [17]
proposed an encoder-decoder neural network based on
Attention mechanism, which uses Attention mechanism to
calculate the degree of association between each word in
the input sequence and a particular word in the output
sequence, so as to explain the corresponding relationship
between French and English words. It not only achieves
better translation effect, but also facilitates the calculation
and storage of the model. Chorowski et al. [18] proposed
an end-to-end trainable speech recognition model based on
the Attention mechanism, which can combine the content
and location information to select the next position in the

input sequence for decoding. It is thus possible to identify
speech inputs that aremuch longer in length than the training
data. Google mind team [19] used the Attention mechanism
to automatically capture local features of images in the field
of computer vision to realize image classification. Similarly,
the original data may contribute to the final representation
differently. So we assume that the Attention mechanism can
fully consider the importance within data and explore the
correlation between multimodality data for better represen-
tation. To the best of our knowledge, there are no previous
works which fuse features from different feature extraction
algorithms with the help of Attention mechanism.

In this paper, we propose a deep neural network model
(AMND) based on the Attention mechanism which fuses
the patients gene expression data and clinical data for the
breast cancer prognosis. The preprocessed gene expression
profile data is decomposed by AMND with five algo-
rithms, NMF mu (NMF based onmultiplicative update algo-
rithms), NMF als (NMF based on Alternating Least Square
algorithms), NMF alsobs (NMF based on Optimal Brain
Surgery and Alternate Least Square algorithms), NMF pg
(NMF based on projection gradient algorithms), and PNMF
(probabilistic nonnegative matrix factorization), respectively.
Through the five algorithms, five characteristic matrices can
be obtained. In order to individualize the importance of rep-
resentations obtained from different NMF methods, Atten-
tion mechanism is introduced to calculate the weight of these
representations of each sample according to its clinical data.
After that, the weighted summating of these representations
obtained by five single NMF methods is concatenated with
clinical data, which serves as the final feature representation.
This representation is input into the deep neural network
for the classification task. This method not only takes into
account the multimodality data, but also integrates multiple
feature extraction methods, which can fully extract the high-
level feature expression of gene expression data and clinical
data, so as to improve the prognostic performance of breast
cancer. Importantly, this method can be extended to survival
prediction studies of other tumors, which provides a new
strategy for other diseases prognosis.

2. Proposed Method

2.1. Feature Selection

2.1.1. Nonnegative Matrix Factorization. Nonnegative matrix
factorization (NMF) [20] refers to the search for nonnegative
matrix 𝑊𝑚×𝑟 and 𝐻𝑟×𝑛 given a nonnegative matrix 𝑉𝑚×𝑛 and
a positive integer 𝑟, (𝑟 ≪ min{𝑚, 𝑛}). It can be presented as
follows:

𝑉 ≈ 𝑊𝐻 (1)

where 𝑟 is smaller than 𝑚 or 𝑛, forcing the dimensions of𝑊 and 𝐻 to be less than the dimensions of the original
matrix. If 𝑉𝑚×𝑛 represents the pretreatment gene expression
data matrix, 𝑚 represents the number of samples, and 𝑛
represents the number of genes, the NMF algorithm is to
decompose the pretreatment genetic data matrix into feature
matrix 𝑊𝑚×𝑟 and coefficient matrix 𝐻𝑟×𝑛, so as to achieve
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dimensionality reduction. In general, the objective function
is used to guarantee the approximation effect before and
after NMF factorization. Lee and Seung [21] gave two cost
functions for judging convergence.

Cost function based on Euclidean distance squared is as
follows:

‖𝑉 −𝑊𝐻‖2 = ∑
𝑖𝑗

(𝑉𝑖𝑗 − (𝑊𝐻)𝑖𝑗)2 (2)

If and only if 𝑉 = 𝑊𝐻, (2) gives the optimal solution.
Cost function based on generalized KL (Kullback-

Leibler) divergence is as follows:

𝐷(𝑉 ‖ 𝑊𝐻) = ∑
𝑖𝑗

(𝑉𝑖𝑗 log 𝑉𝑖𝑗
(𝑊𝐻)𝑖𝑗 − 𝑉𝑖𝑗 + (𝑊𝐻)𝑖𝑗) (3)

If and only if 𝑉 = 𝑊𝐻, (3) gets the minimum value.
The nonnegative matrix factorization problem is not only

a nonconvex optimization problem, but also a NP hard
problem [22].Therefore, in order to find the optimal solution
ofWandH, various improvedNMFalgorithms are proposed.

2.1.2. NMF Based on Multiplicative Update Algorithms. Lee
and Seung [20] proposed NMF based on multiplicative
update rules, which is simply noted as NMF mu in this
paper. It combines the two rules of gradient descent and
multiplicative iteration skillfully and overcomes their respec-
tive disadvantages. The specific steps of the algorithm are as
follows:

(a) Initialization matrix𝑊 ≥ 0 and matrix𝐻 ≥ 0.
(b) Iterate the matrix W and matrix H, respectively.
The updating rule of (2) is

𝑊𝑖𝑎 ←󳨀 𝑊𝑖𝑎 (𝑉𝐻𝑇)
𝑖𝑎(𝑊𝐻𝐻𝑇)𝑖𝑎 (4)

𝐻𝑎𝑢 ←󳨀 𝐻𝑎𝑢 (𝑊𝑇𝑉)
𝑎𝑢(𝑊𝑇𝑊𝐻)𝑎𝑢 (5)

The updating rule of (3) is

𝑊𝑖𝑎 ←󳨀 𝑊𝑖𝑎∑𝑢𝐻𝑎𝑢𝑉𝑖𝑢/ (𝑊𝐻)𝑖𝑢∑V𝐻𝑎V (6)

𝐻𝑎𝑢 ←󳨀 𝐻𝑎𝑢∑𝑖𝑊𝑖𝑎𝑉𝑖𝑢/ (𝑊𝐻)𝑖𝑢∑𝑘𝑊𝑘𝑎 (7)

(c) Repeat steps (b) until convergence occurs.

2.1.3. NMF Based on Alternating Least Square Algorithms.
Although the nonnegative matrix factorization is a noncon-
vex optimization problem, when the matrix W is fixed, it
is a convex optimization problem for the matrix H, that
is, the convex optimization problem of finding the optimal
factor H for the fixed factor W. Paatero et al. [23] proposed
NMF algorithm based on alternating least squares (ALS)
algorithms, which is simply noted as NMF als in this paper.
The specific steps of the algorithm are as follows:

(a) Initialize matrix𝑊 ≥ 0.
(b) Fix matrix W and update H with formula (8):

𝐻 ←󳨀 arg min
𝐻∈𝑅𝑟×𝑛 ,𝐻≥0

‖𝑉 −𝑊𝐻‖2𝐹 (8)

(c) Fix matrix H and update W with formula (9):

𝑊 ←󳨀 arg min
𝑊∈𝑅𝑚×𝑟 ,𝑊≥0

‖𝑉 −𝑊𝐻‖2𝐹 (9)

Loop until convergence or maximum number of itera-
tions is reached.

2.1.4. NMF Based on Optimal Brain Surgery and Alternate
Least Square Algorithms. Optimal Brain Surgery algorithm
(OBS) [24, 25] is a network pruning algorithm based on
Hessian matrix. The steps of the algorithm are as follows:

(a) Construct a local model of the error surface and
analyze the influence of the weight disturbance. Taylor
expansion of the error function is as follows:

𝜕𝐸 = (𝜕𝐸𝜕𝜔)
𝑇 𝜕𝜔 + 1

2𝛿𝜔𝑇𝐻𝛿𝜔 + 𝑂 (‖𝛿𝜔‖3) (10)

whereH is the Hessian matrix, T represents the transposition
of the matrix, 𝜔 is the parameter in the neural network, and E
is the training error of the training set.The pruning algorithm
is applicable to any optimization algorithm.

(b)The constraint optimization problem can be solved by
Lagrange multiplier method.

𝑆 = 1
2△𝜔𝑇𝐻△𝜔 − 𝜆 (𝑙𝑇𝑖 △𝜔 + 𝜔𝑖) (11)

where 𝜆 is Lagrange multiplier. Using the inverse of the
matrix, the optimal change in weight vector 𝜔 is obtained:

△𝜔 = − 𝜔𝑖[𝐻−1]𝑖,𝑖𝐻
−1𝑙𝑖 (12)

(c)The corresponding optimal value of Lagrange operator
S for element 𝜔𝑖 is

𝐿 𝑖 = 𝜔2𝑖2 [𝐻−1]𝑖,𝑖 (13)

where𝐻−1 is the inverse of the Hessian matrix and [𝐻−1]𝑖,𝑖 is
the (𝑖, 𝑖)𝑡ℎ element in the inverse matrix. In the OBS process,
the weight of the minimum eigenvalue will be deleted, and
the remaining weight will be corrected according to (12).

NMF is based on Optimal Brain Surgery and Alternate
Least Square algorithms, which is simply noted as NMF
alsobs in this paper. NMF alsobs is based on OBS algorithm
to iteratively optimize W and H in (8) and (9). The optimiza-
tion steps are as follows:

(a) Based on the iterative optimization problem of alter-
nate least squares, a local model of the error surface is
constructed to analyze the impact of negative perturbations
in the matrix.

(b) Construct Lagrange operator to solve the constraint
optimization problem.

(c) Get the optimal W or H.
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2.1.5.NMFBased on Projection Gradient Algorithms. Because
of

𝐹 (𝑊,𝐻) = 1
2 ‖𝑉 −𝑊𝐻‖2𝐹 = 1

2
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑉⋆𝑖 − (𝑊𝐻)⋆𝑖󵄩󵄩󵄩󵄩22 (14)

the nonnegative matrix factorization problem can be
regarded as 𝑛 independent nonlinear optimization problems
on convex sets. The following nonlinear optimization
problems can be solved using the projection gradient
method:

min
𝑥∈𝑅𝑛+

𝑓 (𝑥) (15)

where 𝑓(𝑥) is the differentiable function defined on 𝑅𝑛. Lin
[26] proposed projection gradient methods for NMF, which
is simply noted as NMF pg in this paper and solve (15). The
specific steps of the algorithm are as follows:

(a) Input: constant 𝛽 and 𝜎, where 0 < 𝛽 < 1, 0 < 𝜎 < 1;
initial feasible point 𝑥1.

(b) For the number of iterations, that is, 𝑘 = 1, 2, 3, 4 . . .,
𝑥𝑘+1 = 𝑃 [𝑥𝑘 − 𝛼𝑘󳶚𝑓(𝑥𝑘)] (16)

where 𝛼𝑘 = 𝛽𝑡𝑘 , 𝑡𝑘 takes the values 1, 2, 3 . . . in turn. When𝛼𝑘 satisfies formula (17), the value of 𝑡𝑘 is stopped, and it is
denoted as 𝑡 at the same time.

𝑓 (𝑥𝑘+1) − 𝑓 (𝑥𝑘) ≤ 𝜎󳶚𝑓(𝑥𝑘)𝑇 (𝑥𝑘+1 − 𝑥𝑘) (17)

Check whether 𝑥𝑘+1 satisfies the following convergence crite-
rion:

󵄩󵄩󵄩󵄩󵄩󳶚𝑝𝑓 (𝑥𝑘)󵄩󵄩󵄩󵄩󵄩 ≤ 𝜖 󵄩󵄩󵄩󵄩󵄩󳶚𝑓 (𝑥1)󵄩󵄩󵄩󵄩󵄩 (18)

󳶚𝑝𝑓 (𝑥)𝑖 ≡=
{{{{{{{{{

󳶚𝑓 (𝑥)𝑖 𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖
min (0,󳶚𝑓 (𝑥)𝑖) 𝑥𝑖 = 𝑙𝑖
max (0,󳶚𝑓 (𝑥)𝑖) 𝑥𝑖 = 𝑢𝑖

(19)

When the conditions above are satisfied, then {𝑥𝑘}∞𝑘=1 is
output and the algorithm stops. If not, repeat step (b) until
the conditions satisfied.

2.1.6. Probabilistic Nonnegative Matrix Factorization. Since
the gene expression profile data contains fixed noise, it is
necessary to take the random characteristics of the data
into account to conduct systematic processing and anal-
ysis. Belhassen Bayar et al. [27] proposed a probabilistic
nonnegative matrix factorization algorithm, which is simply
noted as PNMF in this paper. It extends the architecture and
algorithm of NMF in random cases and assumes that the data
is obtained from a polynomial probability density function.

The objective function of PNMF is

𝑅 (𝑊,𝐻) = ‖𝑉 −𝑊𝐻‖2𝐹 + 𝛼 ‖𝑊‖2𝐹 + 𝛽 ‖𝐻‖2𝐹 (20)

The iteration rules are as follows:

𝑊𝑖𝑗 ←󳨀 𝑊𝑖𝑗
(𝑉𝐻𝑇)

𝑖𝑗

(𝑊𝐻𝐻𝑇 + 𝛼𝑊)𝑖𝑗 (21)

𝐻𝑖𝑗 ←󳨀 𝐻𝑖𝑗
(𝑊𝑇𝑉)

𝑖𝑗

(𝑊𝑇𝑊𝐻 + 𝛽𝐻)𝑖𝑗 (22)

Under the iterative rule of (21) and (22), the objective function
of (20) is nonadditive, while the function R is fixed when W
and H are fixed at a point.

2.1.7. Nonnegative Double Singular Value Decomposition. The
nonnegative matrix factorization algorithm is a nonconvex
optimization process in the iteration. Furthermore, the result
of the iteration depends to some extent on the initial value,
which is generated randomly. As a result, the selection of
the initial values of W and H will directly affect the iterative
results of the decomposition algorithm. Most NMF algo-
rithms in the literature use random nonnegative initialization
for (W, H). Iterates converge to a local minimum, so it
becomes necessary to run several instances of the algorithm
using different random initializations and then select the best
solution. This obviously reduces the efficiency and real-time
performance of the algorithm. Therefore, we use the method
of Nonnegative Double Singular Value Decomposition [28]
as an initialization strategy, which makes the NMF model
converge more quickly within a limited number of iteration
steps and can be combined with all available NMF algorithms
readily. The following is a detailed description of the initial-
ization process:

Let the singular value decomposition of matrix Y be

𝑌 = 𝑀Σ𝑁𝑇 (23)

From the singular value decomposition of matrix Y, it can
be seen that the matrix 𝑌𝑘 consists of the largest K pairs of
singular values (𝜎𝑖, 𝑚𝑖, 𝑛𝑖)𝑘𝑖=1 of matrix Y,

𝑌𝑘 =
𝑘∑
𝑖=1

𝜎𝑖𝑚𝑖𝑛𝑇𝑖 (24)

which is the best 2 norm approximation of the matrix Y with
rank k (k≤ rank(Y)). If the matrix Y is a nonnegative matrix,
it can be seen from Perron-Frobenius theorem that𝑚1 and 𝑛1
are also nonnegative vectors, so the first column of the matrix
W can be

𝑊(: ,1) = √𝜎𝑖𝑚1 (25)

Similarly, the first row of matrix H can be

𝐻(1, :) = √𝜎𝑖𝑛𝑇1 (26)

The following singular vectors 𝑚2 and 𝑛2 may contain
negative elements due to the orthogonality of singular value
decomposition. For the matrix 𝑋 = 𝜎2𝑚2𝑛2, the negative
element in X is replaced by 0, and the remaining elements
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are unchanged, that is, taking the positive part 𝑋+ of matrix
Y. As an approximate matrix of X,𝑋+ is subjected to singular
value decomposition, andW is initialized by the first singular
value vector of 𝑋+. The initialization of other columns is the
same. In this way, NNDSVD initial matrix is constructed as
the initial value of nonnegative matrix.

2.2. Attention-Based Multi-NMF Deep Neural Network. The
NMF algorithm decomposes the nonnegative matrix into
two matrixes in multiplication forms without changing the
original data structure. Because there is no negative value in
the process of NMF and the factorization results are highly
interpretable, NMF analysis of gene expression data makes
the research results more valuable [29]. Compared with the
traditional methods, the NMF algorithm is not only simple
to implement, but also takes up very little storage space. As
a result, NMF has a wide range of applications in the field
of biological information. The NMF mu algorithm combines
the two rules of gradient descent and multiplicative itera-
tion skillfully and overcomes their respective shortcomings.
However, in practical application, neither local convergence
is guaranteed nor stable performance is obtained. At the
same time, 0 deadlock will also occur during iteration. In
order to ensure the convergence of the algorithm, NMF als
can be used to optimize the loss function of nonnegative
matrix factorization. Each iteration of the algorithm will
reduce the error, so the result will definitely converge. On
the basis of NMF alsobs, the error is reduced by removing
the weight of the minimum eigenvalue, so as to accurately
solve W and H. NMF pg is one of the classical methods for
solving boundary constraint optimization problems, whose
advantage is that the convergence is easy to guarantee and
only gradient information is used to judge each iteration.
NMF pg has better convergence than NMF mu and can
effectively avoid the 0 deadlock phenomenon encountered by
NMF mu. However, NMF pg converges slowly. The PNMF
algorithm avoids the errors and noises generated during
the measurement or observation of gene expression profile
data. The feature vectors decomposed by different NMF
improved algorithms are different. Usually, the eigenvalue
matrices can only reach the local optimal solution, and
important features in the original data cannot be completely
expressed. Simply using a single NMF algorithm can even
lose some important genetic features. Therefore, in order
to better express the characteristics of the original gene
expression profile, this paper proposes an AMND model,
which combines the feature vectors decomposed by the above
five NMF algorithms through Attention mechanism. It can
not only compensate for the loss of important information,
but also obtain better feature representation.

Attention mechanism was originally used to deal with
alignment problems in machine translation, because each
word in the original sentence may contribute to a word
in the target sentence with different contribution. Attention
mechanism, however, can adaptively consider the importance
of each word in the original sentence to the word in the target
sentence. Similarly, the eigenvectors obtained by different
NMF algorithms are only an approximation of the original
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Figure 1: The overall process of our AMND model for the breast
cancer prognosis prediction.

data matrix and can not fully represent the information of the
original data. Therefore, the concept of Attention mechanism
applied in RNN is used to generate a more biological feature
vector by adaptively summing the eigenvectors obtained
by different NMF algorithms. In this way, not only was
the correlation between clinical data and gene expression
data considered, but also the feature vectors obtained by
multiple NMF improved algorithm were combined to better
express the original data and further improve the prediction
performance.

This paper focuses on the efficient fusion of multiple
feature extraction algorithms. The commonly used method
is to directly concatenate the results obtained by multiple
feature extraction methods or to carry out weighted summa-
tion.However, directweighted summation results in the same
weight for each feature extraction method, which is not the
most effective. Therefore, we propose the AMND method to
solve this problem. The model effectively fuses Multi-NMF
to obtain new gene expression feature vectors, which is fused
with clinical data features and put into DNN for prediction.
The structure of the AMND is shown in Figure 1. First, we
use NMF mu, NMF als, NMF alsobs, NMF pg and PNMF
algorithms to extract the features of gene expression profile
data and obtain five feature matrices. Then, the weighted
sum of each NMF improved algorithms is obtained by
the Attention mechanism. Different from direct weighted
summation, Attention mechanism calculates the weight of
each NMF improved algorithm adaptively, according to the
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Table 1: Division of data of MITTABRIC dataset.

Long time survivors Short time survivors Total
Training set 1191 393 1584
Testing set 149 49 198
Validation set 149 49 198
Total 1489 491 1980

clinical data of each patient sample. 𝐹𝑗 𝑥𝑖 is used to represent
the eigenvector of the i-th sample in the eigenvalue matrix
obtained by the j-th NMF decomposition method, and the
clinical feature vector of the sample is denoted as 𝐶 𝑥𝑖. So,
Weight calculation formula is as follows:

𝑤𝑖𝑗 = (𝐹𝑗 𝑥𝑖)𝑇𝑋(𝐶 𝑥𝑖) (27)

where T represents transposition and X is a weight matrix
used to establish a relational mapping between 𝐹𝑗 𝑥𝑖 and𝐶 𝑥𝑖. 𝑤𝑖𝑗 is the weight corresponding to the feature vector of
the i-th sample in the j-th NMF decomposition algorithm.
According to formula (27), 𝐹𝑗 𝑥𝑖 and the 𝐶 𝑥𝑖 are input
into neural network which can get 𝑤𝑖𝑗. The weights obtained
are normalized using softmax function. For example, the
normalized 𝑤𝑖𝑗 can be considered as the contribution of j-th
NMF algorithm to the i-th sample.

𝑤𝑖𝑗 = 𝑒𝑤𝑖𝑗
∑5𝑗=1 𝑒𝑤𝑖𝑗 (28)

Finally, the weighted sum of the Multi-NMF is used to obtain
F:

𝐹 = 5∑
𝑗=1

𝑤𝑖𝑗𝐹𝑗 𝑥𝑖 (29)

However, F obtained from the above equation actually con-
tains only gene expression profile data. In order to consider
the multimodality data, F is fused with clinical data and put
into DNN for classification prediction. AMND is an end-to-
end model where DNN parameters can be optimized and
adjusted through training.

3. Results and Discussion

3.1.The Data. We downloaded theMETABRIC breast cancer
dataset from the website Synapse (synapse.sagebase.org) and
used the dataset’s gene expression and clinical data. The
METABRIC dataset used in this study included 1980 samples.
Moreover, according to the research work of Khademi et
al. [30], five-year slot was used as the threshold to classify
the two types of patients. Among them, 491 patients were
divided into short-term survival samples and 1,489 patients
into long-term survival samples. Meanwhile, the labels of
short survival samples were set to 0 and the long life samples
to 1. For gene expression data, handling methods of Sun
et al. [31] were used to preprocess it. Then, the processed

gene expression profile data and clinical data are normalized
to between 0 and 1. For gene expression profile data, five
NMF algorithms are used to extract the features of the same
dimension, especiallywith the feature dimension of 200. Each
sample contained 25 dimensions of clinical information, such
as age of diagnosis, tumor size, cancer grade, etc. In order to
evaluate the performance of the algorithm, in this paper we
randomly divide the data set into three groups, that is, 80%
of the samples do training set, 10% of the samples do test set,
and the remaining 10% of the samples do verification set. The
division of data sets can be seen fromTable 1.The training set
is used to train the model, while the verification set is used to
adjust the parameters of the neural network model, and the
test set is used to test. The experimental results in this paper
are all from the test set.

3.2. Experimental Results. For the performance evaluation
of AMND, we plot the ROC curve to show the interaction
between True Positive (TP) and False Positive (FP) by chang-
ing the threshold, and calculate the AUC. In addition toAUC,
Accuracy (Acc), Precision (Pre), F1-score, and recall are also
used for performance evaluation. The following experimental
results are derived from the average of the results obtained
from 100 repartitioning data sets.

3.2.1. Compare with the Model of Single NMF Improved
Algorithm. In order to verify the effectiveness of Multi-NMF
algorithm fused by Attention mechanism, we compare the
results of ourmodel with that of algorithms using singleNMF
algorithm on the dataset. Here, we choose the model of the
three most effective single NMF improved algorithm to draw
ROC curve together with AMND. As shown in Figure 2,
compared with the model based on a single NMF improved
algorithm, AMND has better overall performance. In addi-
tion to the ROC curve, the corresponding AUC values of
each method are also calculated, as shown in Figure 3. Com-
pared with the deep neural network models using other five
NMF improved algorithms, namely, DNN-NMF mu, DNN-
NMF PNMF, DNN-NMF als, DNN-NMF pg, and DNN-
NMF alsobs, AMND obtained the best AUC value (87.04%).
The predictive performance of AMND was improved by
2.34%, 2.69%, 1.66%, 1.31%, and 1.11%, respectively, compared
with the deep neural network model based using single NMF
improved algorithm.

In addition, the Acc, Pre, F1-score, and recall perfor-
mance indicators of the five deep neural network models
using single NMF improved algorithm were compared with
that of AMND, and the results were shown in Figure 4.
The results show that the overall performance of AMND
is better than that of the other five models using single
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Figure 2: ROC curves obtained using the AMND and Multi-NMF.

NMF improved algorithm. Meanwhile, the Acc, Pre, F1-
score, and recall values corresponding to the six methods
are shown in Table 2. The Acc-value of DNN-NMF PNMF,
DNN-NMF als, and DNN-NMF pg were 80.81%, 81.39%,
and 82.55%. AMND obtained the highest prevalue, 84.88%,
which is 4.07%, 3.49%, and 2.33% higher than that of DNN-
NMF PNMF, DNN-NMF als, and DNN-NMF pg, respec-
tively. The results showed that the forecast level of AMND
for both positive and negative samples was better than the
other five models. In addition, in terms of Pre indicators,
AMND also achieved corresponding improvement, with a
1.65% increase in AMND over DNN-NMF alsobs. All the
above comparison results show that the overall performance
of AMND is better than that of the model using single
NMF improved algorithm. It can be concluded that using
single NMF improved algorithm does lose some important
information with in the original data. Furthermore, the
fusion technology of multiple feature extraction algorithms
based on Attention mechanism play a significant role in
compensating for that loss of information and improving the
performance of cancer prediction.

3.2.2. Compare with Variants of the Proposed Model. In order
to verify the effectiveness of Attention mechanism in AMND
model and the significance of fusing multimodality data, we
designed the following four comparative experiments:

(i) Clinical data are only used for weight calculation of
Attention mechanism
In this experiment, clinical data only provide super-
vised information for computing the weights of

Attention mechanism, and the eigenvectors obtained
by the five NMF algorithms are weighted and
summed using the obtained weights. The final eigen-
vectors obtained by weighted summation are directly
input into the neural network for classification. The
purpose of this experiment is mainly to verify the
effectiveness of the Attention mechanism. The corre-
sponding model is named clinical first here.

(ii) Clinical data are only used to fuse multimodality data
In this experiment, the eigenvectors obtained by
the five NMF algorithms are respectively assigned
with weights of 0.2 and summed (assuming each
contributes equally to the representation). Then this
middle representation is concatenated with clinical
data to obtain the final representation, which is then
put into neural network for classification. In this
variant, the Attention mechanism is not used and this
variant is named clinical second here.

(iii) Neural network model based on clinical data
Many clinical features are directly related to progno-
sis. Therefore, clinical data are directly input into the
neural network for training and prediction to verify
the validity of the fusion of multimodality data. The
corresponding model is named only clinical here.

(iv) Neural network model based on gene expression
profile data
In this experiment, the eigenvectors obtained by the
five NMF algorithms are, respectively, assigned with
weights of 0.2, and the final eigenvectors obtained
by weighted summation are input into the neural
network for classification. The corresponding model
is named only exp here.

The experimental results are shown in Figure 5. From
the figure, we can draw the following conclusions: AMND
achieves the best results. Its AUC value reaches 87.04%, which
is higher than clinical second, clinical first, only clinical, and
only exp by 2.12%, 5.95%, 11.11%, and 8.12%, respectively.
The results of clinical first and clinical second show that the
good effect of AMND is closely related to the two uses of
clinical data. The first is to calculate the weight by Attention
mechanism, and the second is to fuse multimodality data.
That is to say, Attentionmechanism and fusion ofmultimodal
data both can improve the predictive performance of breast
cancer survival.The results of clinical first and only exp show
that the eigenvectors obtained by weighted summation of
five NMF algorithms using Attention mechanism are more
representative than those obtained by weighted summation
based on the same weight. It proves that Attention mecha-
nism, an adaptive method of calculating weights, can better
fuse the eigenvectors obtained by five NMF algorithms and
thus get better feature representation. From only clinical and
only exp, we can see that clinical data do have a direct impact
on the prognosis, but the effect is not obvious. Therefore,
the feature representation obtained by fusing multimodality
data is more representative and contains more biometric
information.
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Table 2: ACC, Pre, F1-score, and Recall predictive performance indexes of AMND and Mutli-NMF.

Method Acc Pre F1-score Recall
AMND 0.8488 0.8576 0.9084 0.9723
DNN-NMF alsobs 0.8081 0.8211 0.8825 0.9538
DNN-NMF pg 0.8255 0.8472 0.8905 0.9384
DNN-NMF als 0.8139 0.8266 0.8857 0.9538
DNN-NMF PNMF 0.8081 0.8299 0.8808 0.9384
DNN-NMF mu 0.8139 0.845 0.8823 0.923
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DNN-PNMF

DNN-NMF_mu

DNN-NMF_als
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AMND

DNN-NMF_pg
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Figure 3:The AUC values of AMND and Multi-NMF.

3.2.3. Performance Comparison of Existing Methods. In order
to further verify the good effect of the proposed method
on the prediction of breast cancer survival, this paper also
compared AMND with SVM, LR, and RF. Figure 6 shows
the ROC curve of the four methods. It can be seen from the
figure that the overall performance of the AMND method is
better than other methods. In addition to the ROC curve, the
corresponding AUC value of each method is also calculated,
as shown in Figure 7. The AUC values of SVM, LR, and RF
were 80.13%, 76.391%, and 72.8%, respectively.TheAUCvalue
of the AMNDmethod is 87.04%, which is 6.91%, 10.65%, and
14.24% higher than that of the other three methods. These
results indicated that the fusion of multimodality data was
significantly helpful to improve the predictive performance
of breast cancer survival, and the AMND method could
better usemultiple feature extraction methods to improve the
prediction accuracy of survival.

This paper also analyzes the values of Acc, Pre, F1-score,
and recall of different methods. The corresponding results
are shown in Figure 8 and Table 3. As demonstrated in
Figure 8, the performance of AMND method on Acc, Pre,
F1-score, and recall is higher than the other three methods.
AMND is higher than SVM methods on Acc, Pre, F1-score,
and recall by 5.37%, 3.68%, 1.96%, and 1.63%, respectively. In
addition, compared with LR and RF, AMND also achieved
better performance. In summary, AMND is superior to other
methods under different performance evaluation indexes,
indicating that it performs well when making the prediction
of breast cancer survival.

In order to verify the performance of themodel, it is com-
pared with the results obtained from similar studies. Sun et al.
[31] conducted a survival prediction study on gene expression

profile, CAN spectrum and clinical data in METABRIC data
and proposed MDNNMDmethod. The AUC value obtained
in their study was 84.5%. Gevaert et al. [15] proposed a
predictive algorithm based on Bayesian network, which is
noted as BPIM.This algorithm fully integrated the two kinds
of modal data, namely, gene expression data and clinical
information. They obtained the predictive performance of
84.5% AUC value in the prediction of breast cancer survival.
Khademi et al. [30] proposed a probabilistic graph model
(PGM) incorporating gene expression profiling and clinical
data from METABRIC data and obtained an AUC value of
82%. As shown in Table 4, the AUC values of AMND were
2.54%, 2.54%, and 5.04% higher than that of MDNNMD,
PGM, and BPIM, respectively. Thus, AMND has achieved
good results in predicting the survival of breast cancer.

In conclusion, the AMND model proposed in this paper
improves the prediction accuracy of breast cancer prognosis
prediction research. It can not only help patients understand
their life expectancy, but also provide a theoretical support
for clinicians in making medical decisions and avoid wasting
medical resources. Firstly, NMF algorithm is used to extract
features from the original gene expression profile data, which
can be high-dimensional and hard to be directly used.
Therefore, using NMF algorithm can reduce the dimension
of the gene data. From a biological point of view, each line in
matrixWobtained byNMF can be regarded as a combination
of the different features within the original gene data for each
sample. Therefore, the decomposed W is the characteristic
matrix and H is the coefficient matrix. W not only reduces
the dimension based on the original gene matrix, but also
achieves the purpose of feature extraction. Secondly, based on
five NMF decomposition algorithms, five low-dimensioned
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Table 3: Comparison of Pre, Acc, F1-score, and recall between AMND, SVM, RF, and LR.

Acc Pre F1-score Recall
AMND 0.8488 0.8576 0.9084 0.9723
SVM 0.7951 0.8208 0.8888 0.9560
LR 0.8031 0.8375 0.8690 0.8720
RF 0.7610 0.8145 0.8460 0.8570

AMND
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DNN-NMF_als
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DNN-NMF_mu

F1-score RecallAccPre
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Figure 4: Predicted performance of AMND and Mutli-NMF on
Acc, Pre, F1-score, and recall.

Table 4: Comparison of AMND and existing research results.

Method AUC
AMND 87.04%
MDNNMD 84.5%
BPIM 84.5%
PGM 82%

eigenvectors are obtained, which are then fused by Attention
mechanism to generate a more biologically meaningful fea-
ture representation, which can greatly help the downstream
classification task. Finally, we use multimodality data and
deep learning methods in our proposed model. Not only can
better low-dimensional representation of the original data be
obtained, but also higher classification performance can be
achieved.
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Figure 5: 1ROC curves of AMND algorithm, clinical first,
clinical second, only clinical, and only exp models.

4. Conclusions

In a summary, a deep neural network model based on
Attention mechanism (AMND) was proposed for prediction
of breast cancer. To effectively extract useful information
within the gene profile data, clinical data is first used to
compute the weights of five eigenvectors obtained by five
NMFalgorithms.Then theweighted summation of five eigen-
vectors is concatenated with clinical data to generate the final
representation, which is put into deep neural networks for
classification. The AMND method is a preliminary attempt
to study the prediction of the prognosis of breast cancer by
the Attention mechanism. The results show that the use of
the Attention mechanism can better consider the connection
between patients’ clinical data and gene expression data;
furthermore, the results also demonstrate that the use of
multimodality data can improve the representative ability of
the final feature vector. We also compare our performance
with an existing method, namely, MDNNMN. Our results
show that the proposed model is superior to MDNNMN on
multiple evaluation indexes. The most important success of
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Figure 6: ROC curves of AMND algorithm and SVM, LR, and RF
methods.
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Figure 7: AUC values of AMND algorithm and SVM, LR, and RF
methods.

this work is the improvements for the in-depth understand-
ing breast cancer omics data and the development of relevant
prediction methods for survival. Moreover, this method can
be extended to predict the survival time of other cancer
diseases, providing a new strategy for cancer prognosis.
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