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ABSTRACT: In large-scale industrial fault detection, a distributed model is
typically established on the basis of blocked units. However, blocked distributed
methods consider units as independent of one another and disregard the
relationship between units, thus leading to incomplete information on local units.
In fact, the operation status of a unit is affected by a local unit and its
surrounding neighboring units. In addition, the fault detection performance of a
system is seriously reduced once data are missing from the data source.
Variational autoencoder (VAE) is not only a popular deep generative model but
also has a powerful nonlinear feature extraction capability. In this study, VAE is extended to the distributed case. In this study, a
distributed fault detection method DVAE based on VAE is proposed. This method can not only describe local and neighboring
information, but it can also reconstruct missing data. First, system variables are divided into local and neighboring units in
accordance with the system mechanism. Second, for each local unit, a DVAE model is established to map the multivariable data onto
the latent variable space. The obtained latent variable contains the information on a local unit and can reflect the complex
relationship with its neighboring units. Lastly, Euclidean distance is used to detect system faults. When applied on the Tennessee
Eastman process for verification, the proposed method shows good performance in fault detection and missing data reconstruction.

■ INTRODUCTION

With the continuous improvement of operation safety and
product quality requirements, fault detection technology for
industrial processes has attracted increasing attention.1−3 In
the initial stage, model-based approaches are the mainstream
by analyzing the residuals of actual and estimated values.
However, owing to the continuous scale, complexity, and
integration of complex industrial processes, process data are
characterized by redundancy, high dimension, and non-
linearity. An accurate mechanism model of the system is
increasingly difficult to obtain, thereby posing a new challenge
to traditional fault diagnosis methods. Owing to the develop-
ment of computer and sensor technology, extensive data
reflecting the operation state of the system can be collected
and saved, and the fault detection method driven by data has
developed rapidly. This type of method does not need an
accurate mechanism model and does not rely on empirical
knowledge, thereby leading to the popularity of this research
field.4,5

Multivariate statistics approaches, which are some of the
data-driven methods used for industrial process fault detection,
project the monitored multivariable sample space onto a low-
dimensional subspace that is composed of latent variables.
These methods first reduce the dimension of the high-
dimensional observation data and construct monitoring
statistics in the low-dimensional space to realize fault
detection. They are a major component of current studies6

and typically include principal component analysis (PCA),7

linear discriminant analysis,8 locality-preserving projections,9

independent component analysis,10 and their extensions.11,12

Considerable nonlinearity constantly exists in process data
because of the complex physical and chemical reaction
characteristics between variables. Kernel methods (e.g., kernel
PCA13 and kernel Fisher linear discrimination14) have received
widespread attention. Despite the widespread use of kernel
approaches, kernel determination remains a considerable
challenge.15 Due to the immense power in extracting the
intrinsic feature, machine learning methods have received more
and more attention. Such methods include self-organizing
maps,16 deep belief networks,17 Gaussian belief networks,18

Bayesian network,19,20 and autoencoder (AE).21,22 Among
these methods, AE is an efficient and flexible unsupervised
learning dimensionality reduction model for large-scale data. It
plays a central role because of its excellent performance in data
reconstruction. Variational AE (VAE),23 an extension of AE,
can find an efficient latent variable space as a multivariate
normal distribution by adding a constraint on the coding
network and can be regarded as the nonlinear form of
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probabilistic PCA. VAE applies variational Bayesian inference
in parameter estimation and introduces AE into the generative
framework. It can be used for dimensionality reduction,
reconstruction, and generation and has thus attracted extensive
attention in recent studies.
With the expansion of the production scale and the progress

of instrument monitoring technology, processes have become
characterized by large scales, multiple operating units, and
complex interactions.24,25 The failure of a unit affects the entire
production process. A global monitoring model is easily
affected by irrelevant information. Therefore, numerous
distributed methods have been proposed to address large-
scale plant-wide processes. In distributed fault detection, the
whole process is divided into sub-blocks in accordance with
process knowledge or data characteristic analysis.26 For
example, He27 proposed an online distributed process
monitoring and alarm analysis system by using novel canonical
variate analysis with multicorrelation blocks. In consideration
of the difficulty encountered in dividing process variables
without any prior knowledge, Xu28 proposed a block division
strategy that is based on maximal information coefficient−
spectral clustering. This strategy can divide the process
variables into several blocks without any prior knowledge.
However, these methods only consider the local block and
disregard relationships with their surroundings. In consid-
eration of the inherent connection between blocks, Cao29

developed a distributed PCA method that is based on the
industrial process connection. Jiang30 proposed a variational
Bayesian-based PCA method for distributed process monitor-
ing. Jiang31 proposed a local−global modeling and distributed
computing framework for handling complex nonlinear
processes. Although these works have enhanced the perform-
ance of industrial fault detection, they do not incorporate
variable relationships with surrounding neighboring units into
the generative framework and show weak robustness when
data are missing. In fact, the problems of large scale,
nonlinearity, and missing samples often coexist simultaneously
in practical production. Consequently, a distributed nonlinear
detection method that reflects the complex relationship with
neighboring units and then reconstructs missing data is
necessary.
This study aims to propose a distributed probabilistic model

based on VAE, namely, DVAE, which incorporates deep VAE
and the blocked distributed computing technique. First, the
proposed DVAE model divides system variables into local and
neighboring units in accordance with the system mechanism.
Second, for each local unit and its corresponding neighboring
units, a DVAE probability model that takes into account the
local and neighboring information is constructed to map the
complex distributed process data onto the latent variable space.
Third, monitoring statistics based on Euclidean distance (ED)
are calculated based on calculated latent variables, which
realize the fault detection and fault location of local faults.
Given that process data usually violate the Gaussian
distribution assumption, the confidence limits of the DVAE
in each block are determined by kernel density estimation
(KDE). The main contributions of this paper are as follows.

(1) VAE is not only a popular deep generative model, but it
also has a powerful nonlinear feature extraction
capability. However, the application of VAE in industrial
fault detection is insufficient. This study extends VAE to
distributed fault detection in industrial processes. In

principle, this improvement may also be used in other
generative models.

(2) The proposed method is a distributed fault detection
method for industrial processes. It can describe the
correlation between local unit data and latent variables
as well as reflect complex relationships with neighboring
units.

(3) The proposed method has strong data reconstruction
capability. In the case study, we use reconstructed data
to replace randomly missing data, and the proposed
method exhibits good performance in missing data
processing.

The remainder of the paper is organized as follows. Section
2 introduces the basic theory of VAE. Section 3 presents the
proposed model DVAE and discusses the framework of fault
detection based on DVAE. Section 4 applies the proposed
model to verify the performance of fault detection. Lastly,
Section 5 provides the conclusions.

■ PRELIMINARIES
VAE is a popular generative model for nonlinear dimension
reduction, which combines Bayesian inference with deep

neural networks.23 As shown in Figure 1, the structure of VAE
comprises two parts: encoder and decoder. Observed data x =
[x1, x2, ..., xn]

T are generated by some random process and
involve the latent variables z = [z1, z2, ..., zk]

T, and x can be
reconstructed by z through a generation model. The
recognition model qϕ(z|x) is considered a probabilistic
encoder, and pθ(x|z) is considered a probabilistic decoder.

Figure 1. Illustration of the VAE structure.

Figure 2. Illustration of the VAE architecture.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06033
ACS Omega 2022, 7, 2996−3006

2997

https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 2 shows the graphical representation of VAE. The
shaded and hollow circles represent observed and latent
variables, respectively. Arrows imply dependencies, and plates
indicate the number of instances.
VAE approximates the distribution of latent variables to a

multivariate normal distribution =p z I( ) (0, )i( ) . The
recognition model qϕ(z|x) is described as a multivariate
normal distribution. That is, for a given data point x, the
encoder derives the mean vector μz = [μz1, μz2, ..., μzk]

T and

variance vector δz
2 = [δz1

2, δz2
2, ..., δzk

2]T. For this reason,
dimensionality reduction based on VAE is feasible.
The assumption is that the observed samples are

independent, and the goal of VAE is to estimate the unknown
parameters and latent variables by maximizing the log-
likelihood function as follows:

∑=
=

p x p xlog ( ) log ( )
i

N
i

1

( )

(1)

In variational inference, the marginal likelihood of each
individual data point is written as follows

θ ϕ= | ∥ | +θ ϕ θp x q z x p z x xlog ( ) KL( ( ) ( )) ( , ; )i i i i( ) ( ) ( ) ( )

(2)

where ϕ are the variational parameters, θ are the generative
parameters, pθ(x

(i)) are the marginal likelihood of the ith data
points, KL( ) is the KL divergence of the approximate qϕ(z|
x(i)) from the true posterior pθ(z|x

(i)), and θ ϕ x( , ; )i( ) is
called the variational lower bound on the marginal likelihood
of the ith data points, which is written as follows:
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Given that the KL divergence is non-negative, we obtain

θ ϕ≥θp x xlog ( ) ( , ; )i i( ) ( ) . The maximize marginal likelihood
problem is converted into maximizing the lower bound

θ ϕ x( , ; )i( ) . Thereafter, the loss function is a minimized eq 4

| ∥ − [ | ]ϕ θ θ|ϕ
q z x p z p x zKL( ( ) ( )) log ( )i

q z x
i( )

( )
( )

i( )
(4)

where the first term is the regularized constraint item to make
the approximate posterior as close to the prior distribution as
possible. The second term represents the expectation of
negative reconstruction error, which can force the output as
close to the input as possible.
In general, the term of KL divergence can obtain an accurate

analytic solution. However, obtaining the analytic solution for

calculating the expectation [ | ]θ|ϕ
 p x zlog ( )q z x

i
( )

( )
i( ) of eq 4 is

difficult because of the integral. The reparameterization
strategy is used to estimate the true expectation with the
samplings. For z(i) = [z1

(i), z2
(i), ..., zl

(i)]T, which is sampled
from pθ(z|x

(i)), the expectation is calculated as follows

∑[ | ] ≈ |θ θ|
=

ϕ
 p x z

L
p x zlog ( )

1
log ( )q z x

i

i

L
i

( )
( )

1

( )
i( )

(5)

where z = μ(i) + σ2(i) × ε(l), ε ∼ (0, 1)l( ) , and L is the
number of sampling.

■ PROPOSED METHODOLOGY
Proposed DVAE Model. The entire process is divided into

multiple subsets U = [U1, U2, ..., Un] according to the

mechanism knowledge. Observed data of the local unit Ui are
denoted as x = [x1, x2, ..., xp]

T, and the neighboring units Uj≠i

are denoted as y = [y1, y2, ..., yq]
T. Moreover, ∈ ℜ ×t D n is used

to stand for all of the related data: t = [xT, yT]T. Given that the
latent variables of the local unit are related with Ui and also
with its neighboring units Uj≠i, the model of distributed fault
detection can be described as follows

= +

= +

z f t e

x g z e

( )

( )

x

x (6)

where ∈ ℜ ×z k n is the latent variable and p(z) ∼ N(0, I), k is
the dimension of latent space, n is the data number, ∈ ℜ ×ex

D n

is the noise, p(ex) ∼ N(0, vxI), vx is the variance, p(vx) ∼
IGamma(a0, b0), and D is the dimension of the observed data.
The Gaussian model is used to approximate the distribution of
z, and the encode process is expressed as p(z|t) ∼ N(μ(t),
δ2(t)), p(vx|t) ∼ Halfnormal(θ). The Gaussian model is used
to generate the original data, and the decode process is
expressed as p(x|z, vx) ∼ N( f(z), vxI).
The graphical representation of the proposed model is

shown in Figure 3. Note that the latent variable z is influenced
by the local unit and its neighboring units.

Approximate Inference. The objective is to estimate the
posterior probabilities of latent variable z, given the observed
data. Once z is obtained, dimensionality reduction is
achievable. Faults may be detected using some statistical
indexes. Given that direct inference is analytically intractable,
an approximated distribution qϕ(z|x

(i)) is used, similar to VAE.
Model evidence log pθ(X) can be decomposed as

Figure 3. Illustration of the VAE architecture.
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∑ θ= p xlog ( )i
N

i1 . Variational posterior qϕ(z, vx|t) can be

decomposed as ∏ |ϕ =q v z t( ) ( )x i
N

i i1 and

ϕ θ≥

= [ − | ]ϕ|ϕ


p x x

p x z v q z v t

log ( ) ( , , )

log ( , , ) ( , )
i i

q z v t i i x i x i( , )i x i (7)

which can be derived as follows
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The first term of eq 8 has an accurate analytic solution as
follows:

∑ δ μ σ
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= + [ ] − [ ] − [ ]

ϕ

=

q z t p z

t t

KL( ( ) ( ))

1
2

(1 log ( ) ( ) )

i i i

j

J

j
i

i j
i

j
i

i
1

( ) 2 ( ) 2 ( ) 2

(9)

Monte Carlo sampling estimation is used to estimate the other
two terms. zi and vx are sampled by

μ δ

θ

∼

∼

z N t t

v

( ( ), ( ))

Half Normal( )

i
i

i i

x

( ) 2 i( )

(10)

The reparameterization strategy is also applied in our model
to obtain a differentiable estimator

∑
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μ δ ε ε

θ δ δ
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z t t

v

( ( ) ( ) , and (0, 1)
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i
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Fault Detection. Given the local unit x = [x1, x2, ..., xp]
T

and with the neighboring units training data set y = [y1, y2, ...,
yq]

T representing the training data set, the latent variable z =
[z1, z2, ..., zk]

T is obtained through the DVAE model. The
Euclidean metric is the distance representation of two points in
the Euclidean space, which is the simplest and most widely
used to reflect the similarity between two signals. On this basis,
the monitoring quantity based on ED is established as follows:

Figure 4. Fault detection procedure of the proposed DVAE model.
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Suppose the confidence limit of D̅ exists; whether the
statistical distribution of D is normal or abnormal is to judge
whether they have exceeded the control limit. This study
considers that the actual process data distribution is unknown
and there is noise and error interference. Hence, KDE is used
to calculate the confidence limit. The statistics of training
samples is denoted as the same variable S2 = [s1

2, s2
2, ..., sn

2],
and the probability distribution density of S2 is estimated using
KDE as follows

∑
γ γ

̂ =
−

=

i

k
jjjjj

y

{
zzzzzf

n
k

s s
S( )

1

i

n
i2

1

2 2

(14)

where n is the number of training samples, γ is the window
width (smoothing parameter), and k(·) is the kernel function.
This research selects the Gaussian kernel function, and the
probability distribution density can be described as follows:

∑
γ π γ

̂ = −
−

=

i

k
jjjjj

y

{
zzzzzf

n
s s

S( )
1

2
exp

( )
2i

n
i2

1

2 2

2
(15)

Given the confidence limit of normal samples, process faults
will be detected if the statistics of new samples exceeds the
confidence limit.
Detection Procedure. The entire detection procedure of

the fault detection based on DVAE is shown in Figure 4.
I: Off-line training process:

1. Acquire normalized local unit data x = [x1, x2, ..., xp]
T

and neighboring unit data y = [y1, y2, ..., yq]
T as training

samples under the normal running state.

2. Initialize the parameters ϕ and θ.
3. Compute the variational evidence lower bound by

using eqs 8−12.
4. Calculate the gradients of and update the parameters.
5. Determine whether ϕ and θ are converged. If not, return

to step 3.
6. Draw sample latent variables z = [z1, z2, ..., zl]

T through
the trained DVAE model.

7. Construct a fault detection model by calculating the ED
statistics of training data.

8. Estimate the confidence limit based on the KDE model.

II: Online detection process:

1. Acquire the new local unit data xnew and the new
neighboring units data ynew and normalize them with the
mean and variance of training samples.

2. Draw sample latent variables znew = [z1new, z2new, ...,
zlnew]

T of test data through the trained DVAE model.
3. Calculate the ED statistics of the test data.
4. Monitor whether the ED statistics exceeds the

confidence limit obtained in step 6 in the offline process.
5. Calculate the fault detection rate (FDR).

■ CASE STUDY
Tennessee Eastman Process. The Tennessee Eastman

(TE) process is a simulated benchmark platform developed by
Downs and Vogel based on a realistic chemical industrial
process. The system simulation can be found from http://web.
mit.edu/braatzgroup/links.html. This process is widely used to
verify the fault detection performance in industrial process
fault detection. The TE process consists of five main operating
units: continuous stirring-type reactor, condenser, recycling
compressor, vapor−liquid separator, and stripping tower (see
Figure 532). This process is also comprised of 52 variables: 12
manipulated variables, 19 composition measurements, and 22

Figure 5. Tennessee Eastman process flowchart.
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continuous variables. In this study, 22 continuous and 12
manipulated variables under normal states are selected as the
training data set, and 21 types of fault data are chosen as the
test data set. Corresponding variables and units are listed in
Table 1.30,32,33 The five units from top to bottom are called
units 1−5.
Table 2 shows that TE data consist of 21 types of fault and

normal data: faults 1−7 are step faults; faults 8−12 are caused
by random changes in variables; fault 13 is a variable slow drift
fault; faults 14, 15, and 21 are caused by valve sticking; and
faults 16−20 are unknown faults. Each data set includes 960
samples. In the fault state, all types of faults are injected at the
161st sample.

Table 1. Operating Units and Corresponding Variables in
the TE Process

variable description variable name unit

A feed (flow 1) XMEAS1 feed
D feed (flow 2) XMEAS2
E feed (flow 3) XMEAS3
A & C feed XMEAS4
D feed flow XMV1
A feed flow XMV2
E feed flow XMV3
A & C feed flow XMV4
reactor feed flow XMEAS6 reactor
reactor pressure XMEAS7
reactor liquid level XMEAS8
reactor temperature XMEAS9
reactor water temperature XMEAS21
reactor cooling water feed flow XMV10
condenser cooling water feed flow XMV11
separator temperature XMEAS11 separator
separator liquid level XMEAS12
separator pressure XMEAS13
separator bottom flow XMEAS14
separator water temperature XMEAS22
separator liquid flow XMV7
stripper liquid level XMEAS15 stripper
stripper pressure XMEAS16
stripper bottom flow XMEAS11
stripper temperature XMEAS11
stripper steam flow XMEAS11
stripper produce flow XMV8
stripper steam valve opening XMV9
recirculation flow XMEAS5 compress
discharge rate XMEAS10
compressor power XMEAS21
compressor recirculation valve XMV5
drain valve XMV6

Table 2. Disturbances in the Tennessee Eastman Process

number disturb type

1 A/D feed ratio changes, B composition constant step
2 B feed ratio changes, A/D composition constant step
3 D feed temperature changes step
4 reactor cooling water inlet temperature changes step
5 condenser cooling water inlet temperature changes step
6 A feed loss step
7 C head pressure loss step
8 A/B/C composition changes random
9 D feed temperature changes random
10 C feed temperature changes random
11 reactor cooling water inlet temperature changes random
12 separator cooling water inlet temperature changes slow drift
13 reactor dynamic constant changes slow drift
14 reactor valve sticking
15 separator valve sticking
16 unknown unknown
17 unknown unknown
18 unknown unknown
19 unknown unknown
20 unknown unknown
21 stable valve in stream 4 constant

Table 3. Average FDR (%) with Different Network Layers

encode/decode 2 3 4 5

2 50.33 47.96 42.28 42.32
3 45.11 47.16 43.18 42.66
4 51.56 52.11 40.37 41.35
5 52.60 43.12 43.18 43.87
6 44.8 43.53 42.87 43.79

Figure 6. Average FDR with different hidden layer dimension.

Figure 7. Average FDR with different hidden layer dimension.
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Parameter Selection and Model Training. To study the
impact of neural network depth, the number of recognition
and generation models are tested. Given that the amount of
data is not considerably large, the range of depth is set from 2
to 6. Note that detecting faults 3, 9, and 15 is extremely
difficult for all methods because there are not any observable
changes in the means, variance, or peak time. They have
minimal effects on the measured variables because they are
weak faults.34−36 Thus, the three failures are not considered in
our study and the average FDR (the number of faults detected
correctly/the number of faults) mentioned below does not
include faults 3, 9, and 15. In addition, the false alarming rate
(FAR: the number of normal samples that are detected as
faults/the number of normal samples) is always associated with
the FDR, and the FAR of nonlinear methods is slightly higher
than that of linear methods. Thus, we restrict the FAR in an

appropriate range (<2%) to filter the results. If unit 5 is used as
an example, then the average FDR with variable network depth
is shown in Table 3. The average FDR is naturally not
satisfactory because a single unit is insensitive to some faults.
However, all units have a similar change tendency with the
variation of parameters and it is reasonable to tune parameters
with a single unit. Overall, FDR decreases with increasing
depth of the generation model, and the recognition model
depth reached its maximum at 5.
We set the recognition and generation models’ depth at 2

and 5, respectively, and change the dimension of the hidden
layer. As shown in Figure 6, when the dimension is below 300,
FDR increases with increasing hidden layer dimension. Above
300, FDR decreases or shows minimum change with increasing
hidden layer dimension. The primary reason is that the size of
the network parameters increases with the increase in layer
sizes; the proposed approach may suffer from an overfitting
problem and tends to degrade detection performance under
limited training samples. Thus, the proper number of hidden
layer dimension in this study is 300. In addition, the leaky
ReLU is used as an activation function for the hidden layers of
the encoder and decoder because it enables the efficient
training of deep neural networks.37,38

Note that, except for the network structure, the latent
variable number significantly impacts the performance of the
proposed approach. The reason is that insufficient quantity
leads to lack of information. By contrast, considerably large
latent variables will lead to information redundancy, such as
the noise information. Hence, we also turned the number of
latent variable of 5 units with fixed neural network parameters.
In particular, the average FDR over different latent variables is
shown in Figure 7. The result shows that the units obtain the
highest detection rate when the number of latent variables is 5,
6, 6, 4, and 4.

Fault Detection Results. The five units have been verified
to evaluate the detection performance of the proposed method,
and the maximum FDR of the five units is considered to be the
detection results of DVAE. As shown in Table 4, the FDRs of

Table 4. FDR (%) of Five Units in the TE Process

fault/unit unit 1 unit 2 unit 3 unit 4 unit 5 DVAE

fault 1 99.12 39.3 34.29 93.62 51.06 99.12
fault 2 96.5 89.49 95.12 97.5 98.62 98.62
fault 4 4.88 100 6.76 10.64 3.75 100
fault 5 25.41 26.53 19.52 31.04 27.41 31.04
fault 6 98.75 99.75 98.87 98.37 99.62 99.75
fault 7 100 37.67 33.17 49.44 43.80 100
fault 8 89.36 90.24 90.86 92.62 96.37 96.37
fault 10 24.66 27.03 22.78 52.32 34.54 52.32
fault 11 6.38 90.71 7.63 22.78 4.63 90.71
fault 12 86.36 93.87 97.87 93.49 87.86 97.87
fault 13 85.86 88.61 86.36 93.87 84.23 93.87
fault 14 15.02 100 1.63 6.76 3.13 100
fault 16 14.14 17.4 13.39 49.69 23.28 49.69
fault 17 46.18 96.12 29.66 36.67 30.79 96.12
fault 18 89.49 88.36 90.24 87.86 88.99 90.24
fault 19 4.38 11.51 2.88 11.26 80.48 80.48
fault 20 12.77 14.27 44.56 37.05 70.59 70.59
fault 21 6.26 46.43 30.41 59.95 13.14 59.95

Table 5. FDR (%) of DVAE and Comparative Methods in the TE Process

KPCA GLPP SPCA39 NDPCA15

fault T2 SPE T2 SPE T2 SPE T2 SPE DBN12 VAE DPCA DVAE

fault 1 99.75 99.38 99.25 99.37 99.86 99.36 99.5 99.5 98 99.87 99.5 99.12
fault 2 98.25 98.13 98.62 98.25 99.55 96.69 98.12 98.5 97 98.50 98.13 98.62
fault 4 81.13 93.15 3.75 57.32 13.21 10.81 13.77 12.28 97 90.49 99.75 100
fault 5 23.5 23.38 99.37 24.41 12.76 10.29 35.71 38.47 70 25.66 21.63 31.04
fault 6 99.63 99.5 100 100 100 100 100 100 99 99.50 99.75 99.75
fault 7 100 100 100 100 20.27 18.81 49.69 53.57 100 100 99.75 100
fault 8 97.25 97.5 96.50 97.62 98.07 97.81 97.75 98.25 72 97.75 96.75 96.37
fault 10 30.88 38.88 35.17 38.67 70.9 46.26 56.8 58.32 47 41.30 32.38 52.32
fault 11 62.25 61.25 19.52 53.94 86.31 90.43 23.78 29.66 68 64.83 86.75 90.71
fault 12 98.5 98.38 98.5 98.5 51.19 43.52 97.37 97.87 77 98.75 97.38 97.87
fault 13 94.75 94.25 94.12 94.37 96.1 94.33 94.49 94.74 70 94.74 95.25 93.87
fault 14 100 99.88 81.73 100 93.76 54.45 90.74 91.99 97 100 99.63 100
fault 16 12.88 23.25 32.54 20.53 27 25.41 28.75 49.69
fault 17 89.38 88.88 72.59 85.61 83 86.61 95.63 96.12
fault 18 89.75 89.5 89.11 89.36 73 89.49 98.88 90.24
fault 19 2.88 3 0.75 1.88 64 22.28 8.38 80.48
fault 20 37.88 45.5 38.17 41.68 71 43.68 48.63 70.59
fault 21 42.75 38.25 34.79 38.17 50 42.68 59.95
average 70.08 71.78 66.36 68.87 75.56 73.42 83.71
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faults 4, 7, 10, 11, 14, 17, 19, and 20 are significantly higher in
one unit compared with others. That is, these faults are more
likely to occur in units with higher detection rates. For
example, fault 4 is a local fault influencing reactor under
cooling water inlet temperature, leading to a step change in
measurement of reactor cooling water flow. In addition, the
result shows that the FDR of unit 2 is considerably higher than
the other four, which agrees with the fault setting. Variables
interact with each other throughout the entire process, and the
FDRs of some faults are not significantly different in various
units. However, DVAE does not lead to poor experimental
performance because each unit considers information from
local and neighboring units.
For an in-depth discussion, some types of common methods

are used for comparison with the proposed distributed VAE.
Given that the majority of them are nonlinear approaches that
may lead to high FAR, the confidence limitation is set to 99%
to ensure a reasonable range of FAR. The FDRs of all five units
are shown in Table 5. The detection performance of DVAE is
superior to the other methods overall, and the FDRs with faults
1, 6, 7, and 14 are nearly 100%. Note that the performance of
fault 5 is unsatisfactory because, through the negative feedback
of the system, most of the relevant variables of fault 5 will
return to the previous state. In the following section, three
types of fault detection charts using KPCA, GLPP, VAE, and
DVAE are shown: step fault (fault 4), random fault (fault 11),
and unknown fault (fault 19).
Fault 4 is a local fault and caused by step variations in the

reactor cooling water (RCW) inlet temperature. The detection

results derived via KPCA, GLPP, VAE, and DVAE are
presented in Figure 8. In GLPP and KPCA, T2 and SPE
statistics are used to represent the change of principal
component space and residual space, respectively. For VAE
and DVAE, ED statistics is used to integrate the variations of
principal component space and residual space. The detection
performance of GLPP is worse than the others, especially for
T2 statistics (Figure 8a). The possible reason is that GLPP is
completely linear, which is not suited for the nonlinear process.
KPCA (Figure 8b) and VAE (Figure 8c) can detect the fault
but fail to detect the fault type. By contrast, the proposed
method is able to locate the unit where the fault occurred.
Figure 8d shows the results of all five units from top to bottom.
The results demonstrate that only unit 2 (reactor) detects the
fault without delay (at the 161st sample), while others are not
affected by the fault, which is consistent with the fault setting.
Fault 11 is a random variation caused by the inlet

temperature changes of RCW, the detection results of which
are shown in Figure 9. Overall, the detection performance of
DVAE is superior over GLPP, KPCA, and VAE. In particular,
although GLPP (Figure 9a) and KPCA (Figure 9b) can
relatively detect fault 11, the statistics fluctuate significantly.
VAE (Figure 9c) and DVAE (Figure 9d) achieved good
detection results for fault 11, whereas DVAE has a higher
detection rate, reaching 90.11%. Moreover, the statistics of unit
2 is evidently different from the other four units (Figure 9d).
Fault 19 is an unknown fault. The detection results are shown
in Figure 10. Evidently, only DVAE shows good detection
performance of fault 19, while GLPP, KPCA, and VAE cannot

Figure 8. Detection charts of fault 4 in the TE process: (a) GLPP, (b) KPCA, (c) VAE, and (d) DVAE (unit 1 to unit 5).
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alarm the fault immediately. Thus, by comparing several
methods, a higher fault detection sensitivity and the capability
of the fault location of DVAE is again demonstrated.
Fault Detection with Missing Data. Missing data are

among the problems that are frequently encountered in data
analysis. In this study, we construct 5−30% random missing
data to simulate the normal operating data to explain the
influence of missing data on detection performance. For
comparative analysis, the following strategies are adopted to
address missing values: (1) Replace the missing data with the
data reconstructed by DVAE. (2) Fill in the missing data with
the sample mean.
The average FDR error is used to evaluate the detection

performance of missing data, which is calculated as follows:

= ∑ − ̂
= D D JErr ( )/i
J

i i1 , where J is the number of effective
faults and D and D̂ denote the FDR of complete data and
missing data, respectively. The decline in the detection results
is shown in Figure 11 by using unit 5 as an example. As the
proportion of missing data increases, the FDR of the mean
filling strategy rapidly decreases. By contrast, the performance
of DVAE in reconstruction has not significantly changed
compared with that when the data are complete. The data can
be completely reconstructed when only a few values are
missing. This result shows that reconstruction with DVAE
provides an excellent outcome. Therefore, the proposed DVAE
method has a good effect on the reconstruction of missing
data.

■ CONCLUSION

This study proposes a novel distributed fault detection
approach based on DVAE. This approach is suitable for
large-scale multiunit fault detection problems. First, the entire
industrial process is divided into components by mechanism.
Second, local and neighboring unit data sets are used to train
the DVAE model. Given this improvement, the proposed
method can determine the correlation between local unit data
and latent variables and also describe the neighboring unit data
and latent variables. The results for the case study show that
the proposed fault detection approach outperforms the existing
latent-variable-based methods in nonlinear and non-normal
situations in high-dimensional processes. In addition, it has
been verified to be capable of locating the local fault. Given the
characteristics of the generation model, it also shows good
performance in missing data processing.
The proposed DVAE distributed fault detection model is

highly suitable for large-scale processes. The model considers
the variable relationship with the surrounding neighboring
units and can determine the approximate scope of local faults.
However, this study focuses on a single-mode process, and
fault detection performance relies heavily on data-based
models. Therefore, future studies should focus on the
extension of the model to multimodal processes and the
incorporation of process knowledge into the proposed method.

Figure 9. Detection charts of fault 11 in the TE process: (a) GLPP, (b) KPCA, (c) VAE, and (d) DVAE (unit 1 to unit 5).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06033
ACS Omega 2022, 7, 2996−3006

3004

https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


■ AUTHOR INFORMATION
Corresponding Author
Yi Chai − College of Automation, Chongqing University,
Chongqing 400044, China; State Key Laboratory of Power
Transmission Equipment and System Security and New
Technology, Chongqing University, Chongqing 400044,
China; Email: Chaiyi@cqu.edu.cn

Authors
Chenghong Huang − College of Automation, Chongqing
University, Chongqing 400044, China; State Key Laboratory
of Power Transmission Equipment and System Security and
New Technology, Chongqing University, Chongqing 400044,
China; orcid.org/0000-0002-6252-653X

Zheren Zhu − College of Control Science and Engineering,
Zhejiang University, Hangzhou 310058, China

Bowen Liu − College of Automation, Chongqing University,
Chongqing 400044, China; State Key Laboratory of Power
Transmission Equipment and System Security and New
Technology, Chongqing University, Chongqing 400044,
China

Qiu Tang − College of Control Science and Engineering,
Shandong University, Shandong 250061, China

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c06033

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the National Key Research and
Development Project (2019YFB2006603) and the National
Natural Science Foundation of China (61633005, U2034209).

■ REFERENCES
(1) Ge, Z. Review on data-driven modeling and monitoring for
plant-wide industrial processes. Chemom. Intell. Lab. Syst. 2017, 171,
16−25.
(2) Yin, S.; Li, X.; Gao, H.; Kaynak, O. Data-Based Techniques
Focused on Modern Industry: An Overview. IEEE Trans. Ind. Electron.
2015, 62, 657−667.

Figure 10. Detection charts of fault 19 in the TE process: (a) GLPP, (b) KPCA, (c) VAE, and (d) DVAE (unit 1 to unit 5).

Figure 11. Variation of FDR with missing data in unit 5.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06033
ACS Omega 2022, 7, 2996−3006

3005

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yi+Chai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:Chaiyi@cqu.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Chenghong+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6252-653X
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zheren+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bowen+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiu+Tang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?ref=pdf
https://doi.org/10.1016/j.chemolab.2017.09.021
https://doi.org/10.1016/j.chemolab.2017.09.021
https://doi.org/10.1109/TIE.2014.2308133
https://doi.org/10.1109/TIE.2014.2308133
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06033?fig=fig11&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(3) Ma, L.; Dong, J.; Peng, K. A Novel Hierarchical Detection and
Isolation Framework for Quality-Related Multiple Faults in Large-
Scale Processes. IEEE Trans. Ind. Electron. 2020, 67, 1316−1327.
(4) Yin, S.; Ding, S. X.; Haghani, A.; Hao, H.; Zhang, P. A
comparison study of basic data-driven fault diagnosis and process
monitoring methods on the benchmark Tennessee Eastman process.
J. Process Control 2012, 22, 1567−1581.
(5) Alauddin, M.; Khan, F.; Imtiaz, S.; Ahmed, S. A Bibliometric
Review and Analysis of Data-Driven Fault Detection and Diagnosis
Methods for Process Systems. Ind. Eng. Chem. Res. 2018, 57, 10719−
10735.
(6) Tao, Y.; Shi, H.; Song, B.; Tan, S. Parallel quality-related
dynamic principal component regression method for chemical process
monitoring. J. Process Control 2019, 73, 33−45.
(7) Nomikos, P.; MacGregor, J. F. Monitoring batch processes using
multiway principal component analysis. AIChE J. 1994, 40, 1361−
1375.
(8) Jia, Z.; Zeng, Y.; Zhang, Y.; Liang, W. Local class-specific
discriminant analysis with variable weighting and its application in
fault diagnosis. Comput. Chem. Eng. 2020, 141, 107023.
(9) He, X.; Niyogi, P. Locality Preserving Projections. Proceedings
of the 16th International Conference on Neural Information
Processing Systems. 2003, pp 153−160.
(10) Lee, J.-M.; Yoo, C.; Lee, I.-B. Statistical process monitoring
with independent component analysis. J. Process Control 2004, 14,
467−485.
(11) Tao, Y.; Shi, H.; Song, B.; Tan, S. A Novel Dynamic Weight
Principal Component Analysis Method and Hierarchical Monitoring
Strategy for Process Fault Detection and Diagnosis. IEEE Trans. Ind.
Electron. 2020, 67, 7994−8004.
(12) Tang, Q.; Chai, Y.; Qu, J.; Fang, X. Industrial process
monitoring based on Fisher discriminant global-local preserving
projection. J. Process Control 2019, 81, 76−86.
(13) Lee, J.-M.; Yoo, C.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I.-B.
Nonlinear process monitoring using kernel principal component
analysis. Chem. Eng. Sci. 2004, 59, 223−234.
(14) Yang, M.-H. Kernel Eigenfaces vs. Kernel Fisherfaces: Face
Recognition Using Kernel Methods. Proceedings of the Fifth IEEE
International Conference on Automatic Face and Gesture Recognition.
USA, 2002, 215.
(15) Yu, H.; Khan, F. Improved latent variable models for nonlinear
and dynamic process monitoring. Chem. Eng. Sci. 2017, 168, 325−
338.
(16) Yu, H.; Khan, F.; Garaniya, V.; Ahmad, A. Self-Organizing Map
Based Fault Diagnosis Technique for Non-Gaussian Processes. Ind.
Eng. Chem. Res. 2014, 53, 8831−8843.
(17) Liu, B.; Chai, Y.; Liu, Y.; Huang, C.; Wang, Y.; Tang, Q.
Industrial process fault detection based on deep highly-sensitive
feature capture. J. Process Control 2021, 102, 54−65.
(18) Yu, H.; Khan, F.; Garaniya, V. Nonlinear Gaussian Belief
Network based fault diagnosis for industrial processes. J. Process
Control 2015, 35, 178−200.
(19) Arunthavanathan, R.; Khan, F.; Ahmed, S.; Imtiaz, S.; Rusli, R.
Fault detection and diagnosis in process system using artificial
intelligence-based cognitive technique. Comput. Chem. Eng. 2020,
134, 106697.
(20) Amin, M. T.; Imtiaz, S.; Khan, F. Process system fault detection
and diagnosis using a hybrid technique. Chem. Eng. Sci. 2018, 189,
191−211.
(21) Yan, S.; Yan, X. Quality-Driven Autoencoder for Nonlinear
Quality-Related and Process-Related Fault Detection Based on Least-
Squares Regularization and Enhanced Statistics. Ind. Eng. Chem. Res.
2020, 59, 12136−12143.
(22) Jiang, L.; Ge, Z.; Song, Z. Semi-supervised fault classification
based on dynamic Sparse Stacked auto-encoders model. Chemom.
Intell. Lab. Syst. 2017, 168, 72−83.
(23) Kingma, D. P.; Welling, M. Auto-Encoding Variational Bayes,
2014.

(24) He, Y.-L.; Ma, Y.; Xu, Y.; Zhu, Q.-X. Fault Diagnosis Using
Novel Class-Specific Distributed Monitoring Weighted Naive Bayes:
Applications to Process Industry. Ind. Eng. Chem. Res. 2020, 59,
9593−9603.
(25) Ma, L.; Dong, J.; Peng, K. A Novel Hierarchical Detection and
Isolation Framework for Quality-Related Multiple Faults in Large-
Scale Processes. IEEE Trans. Ind. Electron. 2020, 67, 1316−1327.
(26) Jiang, Q.; Huang, B.; Ding, S. X.; Yan, X. Bayesian Fault
Diagnosis With Asynchronous Measurements and Its Application in
Networked Distributed Monitoring. IEEE Trans. Ind. Electron. 2016,
63, 6316−6324.
(27) He, Y.-L.; Zhao, Y.; Zhu, Q.-X.; Xu, Y. Online Distributed
Process Monitoring and Alarm Analysis Using Novel Canonical
Variate Analysis with Multicorrelation Blocks and Enhanced
Contribution Plot. Ind. Eng. Chem. Res. 2020, 59, 20045−20057.
(28) Xu, X.; Ding, J. Decentralized dynamic process monitoring
based on manifold regularized slow feature analysis. J. Process Control
2021, 98, 79−91.
(29) Cao, Y.; Chen, Z.; Yuan, X.; Wang, Y.; Gui, W. Distributed
PCA for plant-wide processes monitoring with partial block
communication. Control and Decision 2020, 35, 1281−1290.
(30) Jiang, J.; Jiang, Q. Variational Bayesian probabilistic modeling
framework for data-driven distributed process monitoring. Control
Engineering Practice 2021, 110, 104778.
(31) Jiang, Q.; Yan, S.; Cheng, H.; Yan, X. Local-Global Modeling
and Distributed Computing Framework for Nonlinear Plant-Wide
Process Monitoring With Industrial Big Data. IEEE Transactions on
Neural Networks and Learning Systems 2021, 32, 3355−3365.
(32) Chiang, L.; Russell, E.; Braatz, R. Fault Detection and Diagnosis
in Industrial Systems; Springer-Verlag: London, 2001.
(33) Downs, J.; Vogel, E. A plant-wide industrial process control
problem. Comput. Chem. Eng. 1993, 17, 245−255.
(34) Huang, C.; Chai, Y.; Liu, B.; Tang, Q.; Qi, F. Industrial process
fault detection based on KGLPP model with Cam weighted distance.
J. Process Control 2021, 106, 110−121.
(35) Russell, E. L.; Chiang, L. H.; Braatz, R. D. Fault detection in
industrial processes using canonical variate analysis and dynamic
principal component analysis. Chemom. Intell. Lab. Syst. 2000, 51, 81−
93.
(36) Grbovic, M.; Li, W.; Xu, P.; Usadi, A. K.; Song, L.; Vucetic, S.
Decentralized fault detection and diagnosis via sparse PCA based
decomposition and Maximum Entropy decision fusion. J. Process
Control 2012, 22, 738−750.
(37) Maas, A. L. Rectifier Nonlinearities Improve Neural Network
Acoustic Models, 2013.
(38) Lee, S.; Kwak, M.; Tsui, K.-L.; Kim, S. B. Process monitoring
using variational autoencoder for high-dimensional nonlinear
processes. Engineering Applications of Artificial Intelligence 2019, 83,
13−27.
(39) Yu, H.; Khan, F.; Garaniya, V. An Alternative Formulation of
PCA for Process Monitoring Using Distance Correlation. Ind. Eng.
Chem. Res. 2016, 55, 656−669.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06033
ACS Omega 2022, 7, 2996−3006

3006

https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1016/j.jprocont.2012.06.009
https://doi.org/10.1021/acs.iecr.8b00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.8b00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.8b00936?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jprocont.2018.08.009
https://doi.org/10.1016/j.jprocont.2018.08.009
https://doi.org/10.1016/j.jprocont.2018.08.009
https://doi.org/10.1002/aic.690400809
https://doi.org/10.1002/aic.690400809
https://doi.org/10.1016/j.compchemeng.2020.107023
https://doi.org/10.1016/j.compchemeng.2020.107023
https://doi.org/10.1016/j.compchemeng.2020.107023
https://doi.org/10.1016/j.jprocont.2003.09.004
https://doi.org/10.1016/j.jprocont.2003.09.004
https://doi.org/10.1109/TIE.2019.2942560
https://doi.org/10.1109/TIE.2019.2942560
https://doi.org/10.1109/TIE.2019.2942560
https://doi.org/10.1016/j.jprocont.2019.05.010
https://doi.org/10.1016/j.jprocont.2019.05.010
https://doi.org/10.1016/j.jprocont.2019.05.010
https://doi.org/10.1016/j.ces.2003.09.012
https://doi.org/10.1016/j.ces.2003.09.012
https://doi.org/10.1109/AFGR.2002.4527207
https://doi.org/10.1109/AFGR.2002.4527207
https://doi.org/10.1016/j.ces.2017.04.048
https://doi.org/10.1016/j.ces.2017.04.048
https://doi.org/10.1021/ie500815a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ie500815a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jprocont.2021.04.003
https://doi.org/10.1016/j.jprocont.2021.04.003
https://doi.org/10.1016/j.jprocont.2015.09.004
https://doi.org/10.1016/j.jprocont.2015.09.004
https://doi.org/10.1016/j.compchemeng.2019.106697
https://doi.org/10.1016/j.compchemeng.2019.106697
https://doi.org/10.1016/j.ces.2018.05.045
https://doi.org/10.1016/j.ces.2018.05.045
https://doi.org/10.1021/acs.iecr.0c00735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c00735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c00735?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemolab.2017.06.010
https://doi.org/10.1016/j.chemolab.2017.06.010
https://doi.org/10.1021/acs.iecr.0c01071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c01071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c01071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1109/TIE.2019.2898576
https://doi.org/10.1109/TIE.2016.2577545
https://doi.org/10.1109/TIE.2016.2577545
https://doi.org/10.1109/TIE.2016.2577545
https://doi.org/10.1021/acs.iecr.0c02209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c02209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c02209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.0c02209?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.jprocont.2020.12.006
https://doi.org/10.1016/j.jprocont.2020.12.006
https://doi.org/10.1016/j.conengprac.2021.104778
https://doi.org/10.1016/j.conengprac.2021.104778
https://doi.org/10.1109/TNNLS.2020.2985223
https://doi.org/10.1109/TNNLS.2020.2985223
https://doi.org/10.1109/TNNLS.2020.2985223
https://doi.org/10.1016/0098-1354(93)80018-I
https://doi.org/10.1016/0098-1354(93)80018-I
https://doi.org/10.1016/j.jprocont.2021.09.004
https://doi.org/10.1016/j.jprocont.2021.09.004
https://doi.org/10.1016/S0169-7439(00)00058-7
https://doi.org/10.1016/S0169-7439(00)00058-7
https://doi.org/10.1016/S0169-7439(00)00058-7
https://doi.org/10.1016/j.jprocont.2012.02.003
https://doi.org/10.1016/j.jprocont.2012.02.003
https://doi.org/10.1016/j.engappai.2019.04.013
https://doi.org/10.1016/j.engappai.2019.04.013
https://doi.org/10.1016/j.engappai.2019.04.013
https://doi.org/10.1021/acs.iecr.5b03397?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.iecr.5b03397?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06033?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

