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Abstract

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is the most common 

complication in extreme premature infants (born before 28 weeks gestation). Despite advances in 

perinatal care, modern clinical management remains devoid of therapies specifically promoting 

lung repair and lung growth. Recent progress in stem cell biology has uncovered the promise of 

stem/progenitor cells to repair damaged organs. Contrary to the original theory that stem cells 

engraft and repopulate the damaged organ, evidence suggests that stem cells act via a paracrine 

mechanism. This review highlights the pre-clinical evidence for the therapeutic potential of cell-

based therapies in animal models of neonatal chronic lung injury and the multiple therapeutic 

avenues offered by soluble stem cell-derived factors.

INTRODUCTION

The incidence of premature delivery in North America is at 12.5% and rising (1). 

Prematurity is the leading cause of perinatal mortality and morbidity, placing these neonates 

at high-risk for long-term medical impairments such as bronchopulmonary dysplasia (BPD). 

First documented in 1967 by Northway et al., BPD was described as a chronic lung disease 

following mechanical ventilation and oxygen therapy for acute respiratory failure at birth 

(2). Since then, antenatal steroids and postnatal surfactant have aided in overcoming the 

biochemical immaturity of the lung. These advances in perinatal care together with more 

incremental improvements enabled neonatologists to push back the limits of viability from 

then 34 weeks gestation to today around 24 weeks gestation. Injury to more immature lungs 

changed the pathology of BPD (3, 4). Today, BPD is characterized by impaired alveolar 

development and dysmorphic pulmonary microvascular growth, along with a lesser degree 

of inflammation and fibrosis compared to the original BPD (5). Injury at these earlier stages 
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may be more challenging to prevent and increases the risk of long-term consequences 

including pulmonary hypertension and early onset emphysema (6), which add to the burden 

of health care (7, 8). Thus, therapies that promote both lung repair and lung growth are 

desirable.

Recent insights into stem cell biology promise the regeneration of damaged organs. Stem 

cells are capable of self-renewal and differentiation into specialized cell types and thus have 

the potential to promote organogenesis, tissue regeneration, maintenance and repair (9). 

Mesenchymal stromal cells (MSC) attracted particular interest because of their ease of 

isolation, characterization, apparent multipotency and pleiotropic effects. Adult bone 

marrow-derived MSCs (BMSCs) apparently differentiate into cells of various non-

hematopoietic tissues. BMSC studies in various disease models, including cardiovascular 

and neurodegenerative disorders, demonstrated their efficacy in attenuating organ injury 

(10–13). The demonstration that a bone marrow derived stem cell could differentiate into 

alveolar epithelial cells ignited stem cell research in the lung (14). Accordingly, pre-clinical 

studies suggested that bone marrow derived stem/progenitor cells were capable of migrating 

to the injured lung to promote repair (15) and administration of exogenous BMSCs 

prevented lung injury in various adult lung disease models (reviewed in Weiss et al. (9)). 

These studies offered substantial promise to mitigate the impaired alveolar growth in 

experimental models mimicking BPD. The multipotency and self-renewal of stem cells 

make cell-based therapies appealing for providing both lung injury prevention and lung 

growth.

Cell-based therapies to prevent experimental chronic neonatal lung injury - Proof of 
concept

In 2007, Tian et al. showed that intravenous injection of rat BMSCs could ameliorate 

neonatal lung injury (16). Shortly after, two simultaneously published papers confirmed the 

therapeutic potential of BMSCs. Intravenously-delivered BMSCs reduced alveolar loss and 

lung inflammation, and prevented pulmonary hypertension in hyperoxia-induced mice (17). 

Likewise, intratracheal delivery of BMSCs increased survival and exercise capacity of 

hyperoxia-exposed rats while attenuating alveolar and vascular injury and pulmonary 

hypertension (18). Subsequent studies also showed benefits in weight gain (19) and 

decreased fibrosis (20).

A clinically relevant source of stem cells, especially for the treatment of neonatal diseases, is 

offered by umbilical cord blood (UCB) (21). UCB contains stem cells that are easily 

accessible at birth and also capable of differentiating into various cell types (22–24), 

including alveolar epithelial cells (25). Intratracheal and intraperitoneal administration of 

human UCB-derived MSCs also improved alveolar growth through various mechanisms (26) 

and in a dose-dependent manner: 5×103 cells failed to attenuate both hyperoxia-induced 

lung injury and inflammation, while 5×104 and 5×105 cells attenuated both hyperoxia-

induced injuries and inflammatory responses, but the latter dose was more effective (27). 

Human cord-derived pericytes and UCB-derived MSCs not only prevented but could also 

repair lung injury in neonatal rats when administered two weeks after established hyperoxia-

induced lung injury (28). Long term assessment at six months showed persistent 
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improvement in lung architecture and exercise capacity and no adverse effects were 

observed (28).

While MSCs are affirming their promise in regenerative medicine, other stem and progenitor 

cells are emerging. Amnion epithelial cells prevent antenatal lipopolysaccharide (29)-and 

ventilation (30)-induced lung injury in fetal sheep. Multipotent amniotic fluid-derived stem 

cells are capable of differentiating into lineages of all three embryonic germ layers and 

promote alveolar epithelial cell wound healing and lung growth (31, 32). Consistent with the 

importance of angiogenesis during lung growth, injury and repair (33), bone marrow-derived 

angiogenic cells - a novel population of bone marrow myeloid progenitor cells that express 

angiogenic markers - demonstrated the capacity to restore impaired alveolar and vascular 

lung growth in hyperoxia-exposed newborn mice (34).

Overall, these observations (summarized in Table 1) provide evidence for the therapeutic 

benefit of bone marrow and cord blood-derived MSCs in chronic oxygen-induced lung 

injury in rodents. A recurrent finding, however, is the paucity of cell engraftment, suggesting 

that stem cell properties such as self-renewal and differentiation are not required for their 

therapeutic action (35). This finding has led to the hypothesis that MSCs act through a 

paracrine effect (36), rather than through cell replacement. This realization has expanded the 

therapeutic options of cell-based therapies.

MSCs prevent lung injury via a paracrine mechanism - it’s in the juice

Several lines of evidence suggest that MSCs act via a paracrine mechanism to protect the 

developing lung from injury. In vitro cell-free BMSC conditioned media prevented 

hyperoxia-induced alveolar epithelial cell apoptosis, accelerated alveolar epithelial cell 

wound healing and preserved endothelial cord formation on matrigel during hyperoxia (18).

In vivo, the paracrine effect could also be inferred from the efficacy of intraperitoneal 

administration of MSCs in preventing oxygen-induced neonatal lung injury (20, 26). 

Accordingly, Aslam et al. provided direct in vivo evidence showing that a single injection of 

cell-free BMSC-derived conditioned media had a more pronounced effect on alveolar injury 

and fibrosis prevention than BMSCs themselves (17). In a follow-up study, a single 

intravenous dose of BMSC-derived conditioned media normalized lung function, reversed 

alveolar injury and pulmonary hypertension (37). A single intratracheal injection of BMSC 

or BMSC-free conditioned media protected from oxygen-induced alveolar and vascular 

injury with a persistent benefit followed up to 3 months (38). Likewise, cell-free conditioned 

media derived from human UCB-MSCs and pericytes prevented and reversed arrested 

alveolar growth and lung function in hyperoxic-exposed rats with persistent benefits at 6 

months of age and without adverse effect on lung structure or tumour formation (28). Dose-

response studies have not yet been performed.

Although the therapeutic benefit of the conditioned media is undeniable, a potential caveat 

of this strategy is the lack of cell adaptation to the local injurious environment. In an attempt 

to overcome this potential limitation, Waszak et al. exposed BMSCs to a “deleterious BPD 

environment” by priming them ex vivo in hyperoxia for 24 hours (39). Conditioned media 
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collected from these preconditioned cells and injected into hyperoxic rats exerted a more 

potent therapeutic effect in vivo on lung architecture compared to non-preconditioned media.

Thus, rather than replacing injured cells and differentiating into lung cells, MSCs may 

release factors that protect resident lung cells from injury or modulate the function of 

inflammatory cells. Tropea and colleagues recently provided evidence for such a scenario. 

Bronchio-alveolar stem cells (BASCs) are putative epithelial lung stem/progenitor cells at 

the bronchio-alveolar junction, capable of self-renewal and differentiation in culture, and 

also proliferate in response to alveolar injury (40). Both BMSC and BMSC-derived 

conditioned media increase the number of BASCs in neonatal mice exposed to hyperoxia 

(41). This study also offers new therapeutic perspectives, i.e. the protection of resident lung 

progenitor cells rather than exogenous supplementation of stem cells. In addition, there is 

increasing evidence that MSCs interact with inflammatory cells to modulate their response 

to injury. MSCs can direct macrophages from a M1 (pro-inflammatory) to a M2 (healer) 

phenotype in various disease conditions (42, 43). Overall, these observations suggest that 

cell-free conditioned media exerts similar therapeutic benefit to the cell itself. The exciting 

challenge is how to harness the multiple healing properties of stem cells.

MSCs prevent lung injury via a paracrine mechanism - what’s in the Juice?

Indeed, the identification of soluble factors in the conditioned media may allow the 

discovery of novel healing molecules that each by itself or in combination could yield new 

therapeutic options (44). Besides factors already known to be lung protective including 

keratinocyte growth factor (45), vascular endothelial growth factor (46) or adiponectin (47), 

novel molecules secreted by MSCs have already been identified and shown therapeutic 

benefit in various disease models, such as staniocalcin-1 (48) – a potent anti-oxidant – or 

tumor necrosis factor-alpha-stimulated gene/protein 6 (TSG-6) (49) – a potent anti-

inflammatory protein.

From a clinical perspective, a relevant question for the design of clinical trials is to 

determine the most efficacious and safest stem cell-based approach: whole cell therapy vs. 

cell free-derived conditioned media vs. identification of single bioactive molecules vs. 

identification and determination of the most efficacious combination of molecules. This 

daunting task could be circumvented by the recent recognition that MSCs release membrane 

vesicles, exosomes in particular, that act as nano-packages containing a combination of 

bioactive molecules and microRNA (miRNA) (50). miRNA are small non-coding RNA 

molecules involved in transcriptional regulation of gene expression. In particular, miRNA 

could become interesting therapeutic targets in the prevention of BPD (51) by silencing 

specific genes with deleterious effects during lung injury. Exosomes are 40–100 nm in size 

and represent a specific subtype of secreted membrane vesicles formed through the fusion of 

multivesicular endosomes with the plasma membrane. Although known for several decades, 

membrane vesicles have long been thought of as mere cell debris. Recent evidence, however, 

suggests that MSC-derived exosomes play important roles in cell communication and 

mediate the therapeutic benefit of MSCs. For example, MSC-derived exosomes attenuate 

lung macrophage influx, decrease pro-inflammatory cytokine levels in the bronchoalveolar 

lavage and prevent pulmonary vascular remodeling and hypoxic-induced pulmonary 
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hypertension in mice (52). With the exosomes removed, the conditioned media showed no 

therapeutic effect in this model. Similar therapeutic benefits of MSC-derived exosomes are 

reported in kidney (53) and cardiac (54) injury. A limitation for the exploitation of exosomes 

as therapeutic tools remains the process of isolation, characterization, quality control, and 

large-scale manufacturing. Novel findings continue to uncover the mechanisms by which 

MSCs protect resident lung cells including the transfer of mitochondria via nanotubes (55). 

These pleiotropic effects (Figure 1) open exciting avenues in particular for multifactorial 

diseases such as BPD and provide traction for the discoveries of cell-free products.

Considerations for Clinical Trials

A clinical trial testing the safety and efficacy of MSCs in adult patients with COPD has been 

completed (56). Although this clinical trial was predominantly for safety, no substantial 

evidence of efficacy of the MSCs was recorded. More recently, a phase I clinical trial testing 

the safety of human umbilical cord blood derived MSCs in nine premature infants at risk of 

developing BPD has been completed (ClinicalTrials.gov: NCT01297205). Although this 

study upholds the safety of MSC therapy, long-term follow-up is warranted. Further clinical 

trials are already planned (ClinicalTrials.gov: NCT01207869, NCT01828957).

Pre-clinical studies have generated proof of concept evidence that cell-based therapies can 

prevent and restore experimental neonatal lung injury in rodent and sheep. Rather than cell 

replacement, the therapeutic benefit of stem cells is mediated through a paracrine effect. It is 

likely that the combination of bioactive molecules contained in the conditioned media 

provide the compounding pleiotropic effects attributed to MSCs. Administration of the 

entire cocktail containing unidentified products may conjure unforeseen side effects and 

some components may be more beneficial in repair. Thus, further specification of which 

molecule(s) have reparative properties and/or the isolation of specific micro/nano carriers 

such as exosomes may lead to pharmacological therapies for BPD.

The cell most suitable for clinical trials appears to be MSCs, likely because of their ease of 

isolation, characterization and pleiotropic effects. However, endothelial progenitor cells and 

other stem/progenitor cells have also proven to be effective in pre-clinical BPD models. 

These various cells differ in their roles and respective factors, therefore possibly producing a 

more pronounced effect when administered in concert (57), although this remains to be 

proven in the lung.

Likewise, the source of cells is an important consideration. Umbilical cord and cord blood 

are easily accessible at birth and may have more potent repair capabilities than adult 

BMSCs. Autologous UCB-derived cell therapies may avoid immunological risks and allows 

the use of minimally manipulated cells. However, given the immunological properties of 

MSCs, allogeneic cell therapy is feasible and may facilitate the logistics of cell-based 

therapies.

The timing of the treatment is another factor to be resolved. Recent pre-clinical evidence 

showed UCB-derived MSCs time-dependently attenuated hyperoxia-induced injury, eliciting 

significant protection in the early, but not the late phase of inflammation (58). In the clinic, 

the early identification of infants at the most risk of developing BPD through the use of 
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estimators and models may allow for the selection of an appropriate patient population. 

Patients with early and persistent pulmonary dysfunction have a close to 70% risk of 

developing BPD, as defined by Laughon et al. (59), and may represent an at-risk population 

of choice for cell-based therapies.

Finally, the safety of each of these cell-based therapies must be investigated thoroughly in 

well-designed pre-clinical trials including large animal models.

In summary, as the incidence of prematurity and chronic neonatal lung disease rises (60), 

novel therapies are required. Pre-clinical studies have brought substantial promise in 

developing an effective clinical therapy that could fulfill the dual role of preventing injury 

and promoting lung growth. The paracrine effect of cell-based therapies has opened 

unexpected therapeutic options through the identification of individual molecules or 

mechanisms including microRNA, mitochondrial transfer and microparticles. The promise 

may not lie in the stem cell itself, but rather in its vast array of bioactive mediators - ‘it’s in 

the juice’.
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Figure 1. 
Schematic representation of possible repair mechanisms associated with stem cells. Many 

therapeutic mechanisms for stem cells have recently emerged. These include microparticle 

carriers such as microvesicles, exosomes or multivesicular bodies which are speculated to be 

released by stem cells and elicit a therapeutic response. MicroRNA packaged in these 

vesicles or as a sole effector may also play a therapeutic role. The role of secreted soluble 

proteins/peptides in neonatal and adult lung injury has been extensively studied. This has 

lead to the discovery of promising bioactive molecules such as the anti-inflammatory IL-10, 

Staniocalcin-1, TSG-6 and TNF-alpha antagonists, the combination of which may contribute 

to the pleiotropic effects promoting repair. Recent evidence also unveiled therapeutic 

mitochondria transfer via nanotubes. These mechanisms can signal endogenous stem cells to 

amplify or transduce similar repair actions.

Fung and Thébaud Page 10

Pediatr Res. Author manuscript; available in PMC 2014 July 01.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

Fung and Thébaud Page 11

Ta
b

le
 1

St
em

/p
ro

ge
ni

to
r 

ce
ll 

pr
e-

cl
in

ic
al

 tr
ia

ls
 in

 e
xp

er
im

en
ta

l n
eo

na
ta

l l
un

g 
di

se
as

es

C
el

l T
yp

e
So

ur
ce

/R
ou

te
/C

on
tr

ol
 c

el
l

A
ni

m
al

 M
od

el
A

ge
 o

f 
A

ni
m

al
s

O
ut

co
m

es
R

ef
er

en
ce

M
SC

B
M

/I
V

/n
o

95
%

 h
yp

er
ox

ia
 (

ra
t)

P-
10

R
ed

uc
ed

 le
ve

ls
 o

f 
T

N
F-

al
ph

a 
an

d 
T

G
F-

be
ta

1,
 in

cr
ea

se
d 

ra
di

al
 a

lv
eo

la
r 

co
un

t.
(1

6)

M
SC

M
SC

-C
M

B
M

/I
T

/P
A

SM
C

95
%

 h
yp

er
ox

ia
 (

ra
t)

P-
14

in
 v

itr
o:

 p
re

fe
re

nt
ia

l M
SC

 m
ig

ra
tio

n 
to

w
ar

d 
O

2-
da

m
ag

ed
 lu

ng
s.

 M
SC

-C
M

 
pr

ev
en

te
d 

O
2-

in
du

ce
d 

A
E

C
2 

ap
op

to
si

s,
 a

cc
el

er
at

ed
 A

E
C

2 
w

ou
nd

 h
ea

lin
g 

an
d 

en
ha

nc
ed

 e
nd

ot
he

lia
l c

or
d 

fo
rm

at
io

n.
in

 v
iv

o:
 a

tte
nu

at
ed

 a
lv

eo
la

r 
an

d 
va

sc
ul

ar
 in

ju
ry

, a
nd

 P
H

.

(1
8)

M
SC

B
M

/I
V

/n
o

95
%

 h
yp

er
ox

ia
 (

ra
t)

P-
3,

 P
-7

, P
-1

4
Im

pr
ov

ed
 w

ei
gh

t g
ai

n,
 p

re
ve

nt
ed

 a
lv

eo
la

r 
gr

ow
th

 a
rr

es
t a

nd
 s

up
pr

es
se

d 
lu

ng
 

in
fl

am
m

at
io

n.
(1

9)

M
SC

-C
M

B
M

/I
P/

lu
ng

 f
ib

ro
bl

as
ts

95
%

 h
yp

er
ox

ia
 (

ra
t)

P-
14

Pr
es

er
ve

d 
al

ve
ol

ar
 g

ro
w

th
. C

M
 f

ro
m

 O
2-

ex
po

se
d,

 p
re

co
nd

iti
on

ed
 B

M
SC

s 
ex

er
te

d 
m

or
e 

po
te

nt
 th

er
ap

eu
tic

 p
ot

en
tia

l a
nd

 p
re

ve
nt

ed
 P

H
.

(3
9)

M
SC

M
SC

-C
M

B
M

/I
V

/P
A

SM
C

 f
or

 C
M

75
%

 h
yp

er
ox

ia
 (

m
ou

se
)

P-
14

M
SC

s 
re

du
ce

d 
al

ve
ol

ar
 lo

ss
 a

nd
 lu

ng
 in

fl
am

m
at

io
n,

 p
re

ve
nt

ed
 P

H
. M

SC
-

C
M

 h
ad

 a
 m

or
e 

pr
on

ou
nc

ed
 e

ff
ec

t, 
pr

ev
en

te
d 

al
ve

ol
ar

 a
nd

 lu
ng

 v
as

cu
la

r 
in

ju
ry

.

(1
7)

M
SC

B
M

/I
P/

no
60

%
 h

yp
er

ox
ia

 (
m

ou
se

)
P-

45
in

 v
itr

o:
 c

o-
cu

ltu
ri

ng
 o

f 
in

ju
re

d 
lu

ng
 ti

ss
ue

 in
cr

ea
se

d 
m

ig
ra

tio
n 

po
te

nt
ia

l o
f 

B
M

SC
 a

nd
 S

P-
C

 e
xp

re
ss

io
n.

in
 v

iv
o:

 B
M

SC
 h

om
e 

to
 in

ju
re

d 
lu

ng
, e

xp
re

ss
 S

P-
C

, i
m

pr
ov

e 
pu

lm
on

ar
y 

ar
ch

ite
ct

ur
e,

 a
tte

nu
at

e 
pu

lm
on

ar
y 

fi
br

os
is

 a
nd

 in
cr

ea
se

 s
ur

vi
va

l r
at

e.

(2
0)

M
SC

-C
M

B
M

/I
V

/lu
ng

 f
ib

ro
bl

as
ts

75
%

 h
yp

er
ox

ia
 (

m
ou

se
)

P-
14

R
ev

er
se

d 
pa

re
nc

hy
m

al
 f

ib
ro

si
s 

an
d 

pe
ri

ph
er

al
 P

A
 d

ev
as

cu
la

ri
sa

tio
n,

 
pa

rt
ia

lly
 r

ev
er

se
d 

al
ve

ol
ar

 in
ju

ry
, n

or
m

al
iz

ed
 lu

ng
 f

un
ct

io
n,

 r
ev

er
se

d 
PH

 a
nd

 
R

V
H

 a
nd

 a
tte

nu
at

ed
 p

er
ip

he
ra

l P
A

 m
us

cu
la

ri
za

tio
n.

(3
7)

M
SC

M
SC

-C
M

B
M

/I
V

/P
A

SM
C

75
%

 h
yp

er
ox

ia
 (

m
ou

se
)

P-
10

in
 v

itr
o:

 M
SC

-C
M

 in
cr

ea
se

d 
B

A
SC

s 
gr

ow
th

.
in

 v
iv

o:
 M

SC
s 

&
 M

SC
-C

M
 in

cr
ea

se
d 

B
A

SC
s 

in
 lu

ng
s.

(4
1)

M
SC

M
SC

-C
M

B
M

/I
T

/n
o

90
%

 h
yp

er
ox

ia
 (

ra
t)

P-
16

, P
-3

3,
 P

-1
00

Im
pr

ov
ed

 a
lv

eo
la

ri
za

tio
n 

an
d 

lu
ng

 v
as

cu
la

r 
gr

ow
th

 w
ith

 M
SC

 a
nd

 M
SC

-
C

M
 u

p 
to

 3
 m

on
th

s 
po

st
-t

re
at

m
en

t. 
D

ec
re

as
ed

 in
fl

am
m

at
io

n 
an

d 
up

-
re

gu
la

tio
n 

of
 a

ng
io

ge
ni

c 
fa

ct
or

s.

(3
8)

M
SC

U
C

B
/I

T
 &

 I
P/

no
95

%
 h

yp
er

ox
ia

 (
ra

t)
P-

14
IT

 &
 I

P:
 a

tte
nu

at
ed

 th
e 

in
cr

ea
se

 in
 T

U
N

E
L

-p
os

iti
ve

 c
el

ls
, m

ye
lo

pe
ro

xi
da

se
 

ac
tiv

ity
, a

nd
 I

L
-6

 m
R

N
A

 le
ve

l.
IT

: i
m

pr
ov

ed
 a

lv
eo

la
ri

za
tio

n 
an

d 
de

cr
ea

se
d 

lu
ng

 c
ol

la
ge

n,
 T

N
F-

al
ph

a 
an

d 
T

G
F-

be
ta

 m
R

N
A

, a
lp

ha
-S

M
A

 p
ro

te
in

.

(2
6)

M
SC

U
C

B
/I

T
/n

o
95

%
 h

yp
er

ox
ia

 (
ra

t)
P-

14
Im

pr
ov

ed
 a

lv
eo

la
ri

za
tio

n,
 d

ec
re

as
ed

 lu
ng

 c
ol

la
ge

n,
 a

nd
 a

tte
nu

at
ed

 lu
ng

 
in

fl
am

m
at

io
n 

(d
ec

re
as

ed
 m

ye
lo

pe
ro

xi
da

se
 a

ct
iv

ity
, T

N
F-

al
ph

a,
 I

L
-1

be
ta

, 
IL

-6
, T

G
F-

be
ta

 m
R

N
A

, u
p-

 r
eg

ul
at

io
n 

of
 c

yt
os

ol
ic

 a
nd

 m
em

br
an

e 
p4

ph
ox

) 
in

 a
 d

os
e 

de
pe

nd
en

t m
an

ne
r.

(2
7)

M
SC

 &
 P

er
ic

yt
es

U
m

bi
lic

al
 c

or
d 

&
 U

C
B

/I
T

/
H

um
an

 n
eo

na
ta

l d
er

m
al

 
fi

br
ob

la
st

s

95
%

 h
yp

er
ox

ia
 (

ra
t)

P-
22

, P
-3

5,
 6

 
m

on
th

s
Im

pr
ov

ed
 a

lv
eo

la
ri

za
tio

n 
an

d 
lu

ng
 v

as
cu

la
r 

gr
ow

th
 w

ith
 w

ho
le

 c
el

l a
nd

 c
el

l-
fr

ee
 C

M
. P

re
ve

nt
io

n 
an

d 
re

sc
ue

. E
ff

ic
ac

y 
an

d 
sa

fe
ty

 u
p 

to
 6

 m
on

th
s 

po
st

-
tr

ea
tm

en
t.

(2
8)

M
ye

lo
id

 p
ro

ge
ni

to
r

B
M

/I
V

/e
m

br
yo

ni
c 

E
PC

, m
ou

se
 

em
br

yo
ni

c 
fi

br
ob

la
st

s
80

%
 h

yp
er

ox
ia

 (
m

ic
e)

P-
21

R
es

to
re

d 
lu

ng
 s

tr
uc

tu
re

.
(3

4)

Pediatr Res. Author manuscript; available in PMC 2014 July 01.



C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

Fung and Thébaud Page 12

C
el

l T
yp

e
So

ur
ce

/R
ou

te
/C

on
tr

ol
 c

el
l

A
ni

m
al

 M
od

el
A

ge
 o

f 
A

ni
m

al
s

O
ut

co
m

es
R

ef
er

en
ce

E
pi

th
el

ia
l

A
m

ni
on

/I
V

/n
o

L
PS

 (
sh

ee
p)

Im
pr

ov
ed

 lu
ng

 f
un

ct
io

n 
an

d 
st

ru
ct

ur
e 

(l
un

g 
vo

lu
m

e,
 ti

ss
ue

-t
o-

 a
ir

sp
ac

e 
ra

tio
, 

an
d 

se
pt

al
 c

re
st

 d
en

si
ty

),
 r

ed
uc

ed
 in

fl
am

m
at

or
y 

cy
to

ki
ne

s 
(T

N
F-

al
ph

a,
 

IL
-1

be
ta

, I
L

-6
).

(2
9)

E
pi

th
el

ia
l

A
m

ni
on

/I
V

/n
o

V
en

til
at

io
n 

(s
he

ep
)

A
tte

nu
at

ed
 lu

ng
 f

ib
ro

si
s 

an
d 

no
rm

al
iz

ed
 s

ec
on

da
ry

 s
ep

ta
l c

re
st

s.
 

D
if

fe
re

nt
ia

te
d 

in
to

 A
E

C
1 

an
d 

A
E

C
2 

in
 th

e 
in

ju
re

d 
lu

ng
.

(3
0)

A
bb

re
vi

at
io

ns
: 

A
E

C
1/

2:
 a

lv
eo

la
r 

ep
ith

el
ia

l t
yp

e 
I/

II
 c

el
l, 

B
A

SC
: b

ro
nc

hi
oa

lv
eo

la
r 

st
em

 c
el

ls
, B

M
: b

on
e 

m
ar

ro
w

, C
M

: c
on

di
tio

ne
d 

m
ed

ia
, E

PC
: e

nd
ot

he
lia

l p
ro

ge
ni

to
r 

ce
ll,

 I
V

: i
nt

ra
ve

no
us

, I
T

: i
nt

ra
tr

ac
he

al
, 

IP
: i

nt
ra

pe
ri

to
ne

al
, L

PS
: l

ip
op

ol
ys

ac
ch

ar
id

e,
 P

-(
n)

: p
os

tn
at

al
 d

ay
-(

n)
, P

A
: p

ul
m

on
ar

y 
ar

te
ry

, P
A

SM
C

: P
A

 s
m

oo
th

 m
us

cl
e 

ce
lls

, P
H

: p
ul

m
on

ar
y 

hy
pe

rt
en

si
on

, R
V

H
: r

ig
ht

 v
en

tr
ic

ul
ar

 h
yp

er
tr

op
hy

, S
M

A
: 

sm
oo

th
 m

us
cl

e 
ac

tin
, S

P-
C

: s
ur

fa
ct

an
t p

ro
te

in
 C

, T
N

F:
 tu

m
or

 n
ec

ro
si

s 
fa

ct
or

, T
U

N
E

L
: t

er
m

in
al

 d
eo

xy
nu

cl
eo

tid
yl

 tr
an

sf
er

as
e 

dU
T

P 
ni

ck
 e

nd
 la

be
lin

g,
 U

C
B

: u
m

bi
lic

al
 c

or
d 

bl
oo

d.

Pediatr Res. Author manuscript; available in PMC 2014 July 01.


	Abstract
	INTRODUCTION
	Cell-based therapies to prevent experimental chronic neonatal lung injury - Proof of concept
	MSCs prevent lung injury via a paracrine mechanism - it’s in the juice
	MSCs prevent lung injury via a paracrine mechanism - what’s in the Juice?
	Considerations for Clinical Trials

	References
	Figure 1
	Table 1

