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ABSTRACT
High-throughput sequencing is increasingly favoured to assay the presence and abundance of microRNAs
(miRNAs) in biological samples, even from low RNA amounts, and a number of commercial vendors now
offer kits that allow miRNA sequencing from sub-nanogram (ng) inputs. Although biases introduced during
library preparation have been documented, the relative performance of current reagent kits has not been
investigated in detail. Here, six commercial kits capable of handling <100ng total RNA input were used for
library preparation, performed by kit manufactures, on synthetic miRNAs of known quantities and human
total RNA samples. We compared the performance of miRNA detection sensitivity, reliability, titration
response and the ability to detect differentially expressed miRNAs. In addition, we assessed the use of
unique molecular identifiers (UMI) sequence tags in one kit. We observed differences in detection sensitivity
and ability to identify differentially expressedmiRNAs between the kits, but none were able to detect the full
repertoire of synthetic miRNAs. The reliability within the replicates of all kits was good, while larger
differences were observed between the kits, although none could accurately quantify the relative levels of
the majority of miRNAs. UMI tags, at least within the input ranges tested, offered little advantage to improve
data utility. In conclusion, biases in miRNA abundance are heavily influenced by the kit used for library
preparation, suggesting that comparisons of datasets prepared by different procedures should be made
with caution. This article is intended to assist researchers select the most appropriate kit for their experi-
mental conditions.
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Introduction

MicroRNAs (miRNAs) are ~22 nucleotide long non-coding
small RNAs that regulate gene expression at a post-
transcriptional level by binding to their mRNA targets to
inhibit translation. First discovered in the early 1990s [1,2],
miRNAs have been shown to impact biological processes such
as cellular differentiation and development [3–14]. Alterations
in miRNA expression have been observed in various diseases
[15–17] and an accurate method for detecting and measuring
miRNA expression is therefore crucial. In recent years, next
generation sequencing (NGS) has evolved as the method of
choice. The main advantages of NGS, compared to qPCR and
microarray techniques, are the possibility to discover novel
miRNAs and the ability to detect differences in miRNA
sequences on a single base level. Furthermore, NGS enables
the study of low-abundance miRNAs, which is especially

useful when examining miRNAs in specific cell types or
body fluids like serum and plasma. Accordingly, the latest
miRNA library preparation kits allow inputs as low as 0.05
nanograms total RNA. The library preparation process typi-
cally consists of (i) addition of adapter sequences onto the
miRNA, (ii) reverse transcription and (iii) PCR amplification
prior to sequencing. The kits investigated in this study used
both two adapter and single-adapter circularization protocols
which can broadly be divided into two classes: those employ-
ing RNA ligases (e.g. T4 RNA ligase) and those employing
polyadenylation (poly-A) and template-switching oligonu-
cleotides to attach adapter sequences to the single-stranded
miRNAs.

Despite the reported advantages of NGS, the miRNA abun-
dance detected by sequencing and that in the original sample
have been shown to differ by up to four orders of magnitude
[18]. In particular, the addition of adapters onto the miRNA
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insert has been identified as a major contributor to this bias
[19,20]. For protocols utilizing T4 RNA ligase, adapter liga-
tion is influenced by the ligase used, the miRNA insert and
adapter primary sequence, as well as the GC content and the
secondary structures of miRNA insert and adapter [19–23].
For poly-A utilizing protocols, the enzyme poly (A) polymer-
ase has also been reported to be influenced by miRNA pri-
mary sequence and secondary structure [24]. Other reported
possible sources of bias during library preparation include the
reverse transcription and PCR steps, with PCR in particular
able to introduce both amplification bias and duplicate reads,
but results have been contradictory [19–21]. A recent study
recommended the use of unique molecular identifiers (UMI)
to mitigate the reverse-transcription and PCR biases in future
experiments [25]. Previous studies also reported that the
incorporation of UMIs into sequence adapters resulted in
improved accuracy both in RNA-seq and smallRNA-seq ana-
lysis [26,27].

In this study we aimed to systematically assess the miRNA
repertoire and frequency observed in NGS data using six
different low-input library preparation protocols (Table 1).
Commercial vendors marketing kits stating compatibility
with total RNA amounts ≤100 ng were invited to participate.
The performance of the protocols was compared with regard
to their detection rate sensitivity, reliability and ability to
identify differentially expressed miRNAs. In addition, the
relevance of UMIs was studied. All analyses were performed

on low-input well-defined synthetic miRNA and human-
derived total RNA samples.

Results

Experimental design and miRNA read yields

Synthetic miRNA (mixed with yeast total RNA, which does
not contain endogenous miRNA, to mimic a more typical
complex input sample) and biologically derived human total
RNA samples (21 samples in total) were distributed to parti-
cipating companies for library preparation (Fig 1A).
Participants processed all samples as they would normally
handle total RNA inputs for library preparation
(Supplementary Materials and Methods). Upon return of
libraries, library yield and size were measured
(Supplementary Fig 2). Libraries were pooled based on their
miRNA content with the aim of obtaining at least 5 million
reads apiece. Based on the presence of additional small RNAs
in some libraries, particularly those prepared with the CATS
and SMARTer-beta reagents, which displayed a wider range
of insert sizes, we did not expect all libraries to produce
similar read counts at this stage. Nevertheless, a large number
of reads from both CATS and SMARTer-beta kits failed to
pass QC threshold filters (Supplementary Fig 3), which was
not deemed to be due to overloading of the sequencing
flowcell, nor reagent issues, but most likely due to problems

Table 1. Small RNA library preparation methods tested in this study.

Method Name
Commercial
supplier Key points*

Max.
input
volume
tolerated

Reported RNA
input range
(varies with
type of input

tested)

Max.
number

of
indexes
available Method types

Approx. price per
reaction (using
kit with highest
reaction number

available)

CATS Small
RNA-Seq Kit
(CATS)

Diagenode s.a. Single-tube, 4-step process of
polynucleotide tailing, reverse
transcription and PCR amplification.
1 purification step (2 if size selection
required).

8 µl 0.1–100 ng 24 Poly-A based.
2- adapter procedure

$49
(96)

Small RNA-Seq
Library Prep Kit
(srLp)

Lexogen GmbH
[Cat. No. 052,
058]

4-step procedure of 3ʹ adapter
ligation, 5ʹ adapter ligation, reverse
transcription and PCR. 2 purification
steps (3 if size selection required).

6 µl 0.05–1000 ng 96 Ligase based.
2-adapter procedure

$48
(96)

QIAseq miRNA
Library Kit
(QIAseq)

QIAGEN
[Cat. No. 331502
or 331505]

5-step procedure of 3ʹ adapter
ligation, 5ʹ adapter ligation, reverse
transcription and PCR. 2 purification
steps (3 if size selection required).

5 µl 1 – 500 ng 96 Ligase based. UMI
incorporated.
2-adapter procedure

$82
(96)

TailorMix microRNA
Sample
Preparation Kit
Version 3
(TailorMix)

SeqMatic LLC. 4-step procedure of 3ʹ adapter
ligation, 5ʹ adapter ligation, reverse
transcription and PCR. 2 purification
steps, including a final PAGE gel
excision.

6 µl 1 – 1000 ng 96 Ligase based.
2-adapter procedure

$90
(96)

SMARTer® miRNA-seq
Kit (Beta version)
(SMARTer)

Takara Bio USA
Inc.

5-step procedure of 3ʹ mono-adapter
ligation, dephosphorylation, adapter
dimer blocking, circularization,
reverse transcription and PCR. 2
purification steps, including a final
PAGE gel excision.

4 µl 100 – 1000 ng
total RNA or
2–200 ng
enriched
small RNA

48 Ligase based.
Single adapter
procedure

Not available
(beta reagents)

CleanTag™ Small RNA
Library Prep Kit
(CleanTag)

TriLink
BioTechnologies,
LLC.

Single-tube, 4-step procedure of 3ʹ
adapter ligation, 5ʹ adapter ligation,
reverse transcription and PCR. 1
purification step.

10 µl 1 – 1000 ng 48 Ligase based.
2-adapter procedure

$83
(24)

* A step is defined as a labwork period that culminates in an incubation longer than 5 minutes.
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with the library preparations themselves. The number of
sequencing reads passing QC filters ranged from 400,000 to
more than 33 million reads for the individual libraries
(Supplementary Table 4 and Table 2).

For all library preparation kits, the greatest proportion of
reads were discarded during mapping, most likely as a result

of not allowing for any mismatches (Fig 1B and
Supplementary Fig 4). The absolute number of reads excluded
differed between the kits. As anticipated, a higher fraction of
miRNA reads was obtained in the synthetic miRNA samples
compared to the human total RNA samples (Fig 1B), since the
human total RNA samples also contain additional classes of

A

B

Figure 1. Experimental design and sequencing read distribution. (A): Overview of the study material, miRNA library preparation kits used, sequencing, bioinformatics
and data analysis. Steps presented in blue boxes were performed in-house, while the step presented in the yellow box was executed by the indicated library
preparation vendors. Grey boxes represent individual data analysis steps. (B): Percentage of reads that were removed during the bioinformatic analysis and final
miRNA proportion remaining (green). Trimming refers to removal of adapter sequences, mapping to miRNA reference alignment, and counting to filtering of aligned
miRNAs that did not have the same length as the reference sequence. Results presented are the mean of 15 replicates in the synthetic miRNA (left) and the mean of
six replicates in the human total RNA samples (right).
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small RNA. SMARTer-beta and CATS returned the lowest
proportion of miRNA reads both in the synthetic miRNA
and the human total RNA samples compared to the other
library preparation kits while TailorMix, followed by QIAseq
produced the highest proportions of miRNA reads (Fig 1B).

To comprehensively evaluate the sensitivity and reliability
of the library preparation kits, the synthetic miRNA samples
were randomly down-sampled to 2.5 million and human total
RNA samples to 0.75 million mapped miRNA reads. The
libraries of SMARTer-beta and CATS did not reach these
thresholds and were therefore excluded from further analysis.
The results presented hereafter are based on calculations using
the down-sampled data with the exception of the differential
expression and UMI analyses for which raw (not down-
sampled) miRNA reads were used.

Detection rate sensitivity

For the synthetic miRNA samples, consisting of 903 equimolar
and 40 non-equimolar miRNA oligos, a relaxed detection
threshold was applied where miRNAs were defined as detected
if one or more read counts were registered in all three replicates.
The detection rate sensitivity for all kits and mixes ranged from
893 to 934 detected miRNAs out of 943 miRNAs, and all
miRNAs could be detected in at least one kit and replicate.
QIAseq followed by TailorMix detected the highest numbers of
miRNAs in all three replicates in all the mixes (Fig 2A). QIAseq
and TailorMix alsomissed the fewestmiRNAs in either one, two,
or all three triplicates. When comparing the detection rate sen-
sitivity of the 1.0ng synthetic miRNA samples (mix A-D) with
the 0.1ng synthetic miRNA samples (mix E), no striking differ-
ence in the number of detected miRNAs could be observed for
any of the kits (Fig 2A).

Most of the miRNAs that were undetected in QIAseq and
TailorMix were neither detected by the other two kits
(Supplementary Fig 5 and 6). TailorMix was the only reagent
that detected each of the 903 equimolar miRNAs in at least
one sample (Supplementary Fig 6). srLp followed by CleanTag
showed the lowest numbers of kit-specific detectable miRNAs.

Analysis of the 40 non-equimolar miRNAs revealed that
miRNAs undetected in one or more replicates belonged
mostly to miRNAs present at low levels (Supplementary
Fig 7), with QIAseq showing the highest detection rate,
again followed by TailorMix. Notably, CleanTag and srLp
failed to detect some miRNAs present at relatively high

concentrations in all the replicates (mix C and D,
Supplementary Fig 7). However, even though the majority of
the non-equimolar miRNAs could be detected in all replicates,
the analysis indicated that kit-specific differences influence
detection rate sensitivity.

We next compared the performance at different detection
thresholds, i.e. 1, 10, 50, 100, 200 read counts per million
(CPM) for synthetic miRNA samples in all mix triplicates for
each kit (Fig 2B). With the exception of some of the non-
equimolar miRNA oligonucleotides present at the lowest con-
centration, all synthetic miRNAs should in theory obtain
CPM values above 200 with the library size of 2.5 million
mapped miRNA reads. However, a sharp decline in detection
was observed at increasing CPM thresholds. Nonetheless,
QIAseq followed by TailorMix consistently detected the high-
est number of miRNAs across all thresholds.

Intra-rater and inter-rater reliability

Regularized logarithm (rlog) transformed miRNA count
data were used for the for intra- and inter-rater reliability
calculations. Intra-rater reliability calculations (the concor-
dance between miRNA read counts within the replicates of
the library preparation kit) revealed excellent reliability for
the synthetic miRNA and the human total RNA samples
within all tested kits with ICC values above 0.99 and 0.98,
respectively (Supplementary Table 5). Similarly, very strong
correlations were found when Pearson correlation coeffi-
cients were calculated (r > 0.97, p < 0.05) (Supplementary
Fig 8 and 10a). Bland-Altman plots, which describe the
agreement between two replicates by presenting the differ-
ence of them against the mean, also showed good agree-
ment (Supplementary Fig 9 and 10b). For all Bland-Altman
comparisons the bias was close to 0. The line of equality
(not presented in our Bland-Altman plots) was always
within the agreement limits, which indicates a lack of
systematic error in the measurements within the replicates.
All in all, strong intra-rater reliabilities were observed
within the samples prepared by each kit.

For the inter-rater reliability calculations (concordance
of read counts seen between the different kits) the first
replicate of each mix, RA or healthy control sample was
randomly chosen. The synthetic miRNA and the human
total RNA samples revealed good and excellent inter-rater
reliability with ICC values above 0.83 and 0.95 respectively
(Supplementary Table 6). The correlation between the dif-
ferent kits was above 0.76 (p < 0.05) for the synthetic
miRNA and above 0.92 for the human total RNA samples
(Supplementary Fig 11). However, differences in the corre-
lations between the reagents were seen for the synthetic
miRNA samples. The kits with the highest correlations
(r > 0.94, p < 0.05) were, independent of whether mix
A-E was considered, CleanTag and srLp while QIAseq
showed the lowest correlation to the other kits. The Bland-
Altman plots revealed no systematic error when comparing
the different kits to each other (Supplementary Fig 12 and
13). The limits of agreements were smallest for CleanTag
and srLp across all tested mixes in the synthetic miRNA
samples indicating a high agreement between those two

Table 2. Median and standard deviation (SD) of the raw read counts passing
sequencing quality filters for each kit and sample type.

Kit Sample Type Median SD

CATS synthetic miRNA 1,657,065 1,686,647
human total RNA 4,368,917 610,984

srLp synthetic miRNA 21,708,163 3,074,872
human total RNA 9,553,164 3,234,006

QIAseq synthetic miRNA 25,025,406 4,866,588
human total RNA 17,161,083 1,492,933

TailorMix synthetic miRNA 12,904,412 2,208,956
human total RNA 11,875,567 1,275,394

SMARTer synthetic miRNA 4,817,693 2,249,898
human total RNA 714,966 296,656

CleanTag synthetic miRNA 10,044,117 2,055,836
human total RNA 19,647,913 4,898,198
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kits. In summary, a modest-to-good inter-rater reliability
was obtained when comparing the mix-specific replicates of
the four miRNA library preparation kits with each other,
with QIAseq showing the greatest differences from the
other reagents.

The reliability measured against the theoretical miRNA con-
centration was only assessed for the synthetic miRNA samples.
For the 903 equimolar miRNAs, the fold deviation of the first
replicate of mix A from the median count for that sample was
calculated as an rlog ratio (Supplementary Fig 14). When the
absolute value of the rlog fold deviation for a miRNA was less
than or equal to one, the miRNA was counted as equimolar. For

the four kits this was the case for 39.8 to 42.0% of the equimolar
miRNAs. The remaining miRNAs showed a bias towards over-
representation (positive rlog fold change) rather than under-
representation. The coefficient of variation of the rlog counts
across all replicates for the equimolar miRNAs was lowest for
QIAseq, followed by TailorMix, CleanTag and srLp, respectively
(Supplementary Table 7).

For the 40 non-equimolar miRNAs, the correlation
between the rlog counts of each library preparation kit and
their theoretical concentration varied between the mixes for
all kits. Overall, mix A and mix E showed greater correlations
(0.41 < r > 0.61, p < 0.05) than mix B to mix

A

B

Figure 2. Detection rate sensitivity. (A): Bar charts presenting number of miRNAs detected in all replicates (Triple), in 2 out of 3 replicates (Double), in 1 out of 3
replicates (Single) or not detected in any replicate (None) across all synthetic miRNA mixes and all library preparation kits. The maximum number of detectable
miRNAs is 943 (903 equimolar and 40 non-equimolar miRNA). (B): Bar charts for various read count thresholds in the synthetic miRNA samples. A miRNA is defined as
detected when it is (i) expressed in all three replicates of the mix and (ii) the read counts are greater or equal to the count per million (CPM) threshold displayed on
the x-axis. The colours of the bars represent the kits.
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D (0.08 < r > 0.47, p < 0.05) (Supplementary Table 8). QIAseq
showed the highest correlation coefficients across all samples.
All in all, these results suggest that on one hand the reliability
between the reagents is good, but on the other hand that none
of the reagents are ideally suited for accurate miRNA
quantification.

Differential expression

Most miRNA profiling studies aim to identify differentially
expressed (DE) miRNAs between samples of interest. When
comparing mix A and mix B of the synthetic miRNA
samples, ideally all 40 non-equimolar miRNAs should be
detected as DE with a log2 fold change greater than or
equal to one. All kits detected between 32 to 35 DE
miRNAs (Fig 3A). However, some of those miRNAs (2
miRNAs for CleanTag, TailorMix, srLp and 1 miRNA for
QIAseq) were from the pool of equimolar miRNAs. Of the
40 non-equimolar miRNAs, 26 were detected to be DE by
all kits, although they did not always agree on the log fold
changes (Fig 3C). The non-equimolar miRNAs hsa-miR
-1199-5p, hsa-miR-22-5p and hsa-miR-940, which were
three of the ten miRNAs expected to show the lowest fold
differences (fold change of 2) between mix A and mix B,
could not be detected as DE by any of the reagents.

In order to control as best possible that the levels of
miRNA in mix A and mix B were as expected, we per-
formed quantitative reverse-transcriptase PCR assays on 16
selected non-equimolar miRNAs (Supplementary Fig 15),
which confirmed the intended ratios in the starting
material.

Differential expression analysis of the human total RNA
samples revealed different numbers of DE miRNAs detected
by the kits. CleanTag detected 19 DE miRNAs, QIAseq and
TailorMix detected two DE miRNAs each, while srLp did
not detect any (Fig 3B). With the exception of hsa-miR
-486-3p, no overlap between the DE miRNAs was seen
amongst the kits (Fig 3D).

Titration response

Accurate quantification of titrated samples has been used as
a metric of quantitative performance in prior studies
[28,29], and we included mixes C and D for this purpose
in our experimental design. The titration response of the 40
non-equimolar miRNAs in mixes A – D (Fig 1A) was
compared by scoring a miRNA as titrating or non-
titrating based on detection in the expected concentration
order in the four mixes. Since there were five miRNAs at
each chosen concentration, the fraction of titrating miRNAs
(0, 0.2, 0.4, 0.6, 0.8 or 1) was calculated for each reagent kit
for each concentration group (Table 3). The highest frac-
tion of titrating miRNAs was seen for QIAseq, which cor-
rectly scored all miRNA concentrations with greater than
2-fold differences in mix A through mix D, thus demon-
strating the best performance in this assay.

Effectiveness of QIAseq unique molecular identifier
sequence tags

QIAseq was the only kit included in this study that imple-
ments unique molecular identifiers (UMIs) during library
preparation, which are claimed to enable more accurate quan-
tification of miRNAs. For both synthetic miRNA and human
total RNA samples, very strong Pearson correlations were
observed between the rlog transformed raw read and UMI
counts (Supplementary Fig 16). Comparison of the rlog sum
of all UMI and ordinary read counts revealed the sum of UMI
counts to be negligibly smaller than the ordinary read counts
for both synthetic miRNA and human total RNA samples
(Supplementary Fig 17a, b).

To further examine whether UMI read counts might
reduce undesirable over-representation of miRNAs that were
favourably amplified or sequenced, we examined the abun-
dance of the ten miRNAs with the highest ordinary read
counts for each sample and compared this to their respective
UMI counts (Supplementary Fig 17c, d). Amongst those
miRNAs no overestimation of the ordinary read counts was
observed compared to the UMI counts.

Discussion

Several publications have revealed discrepancies between
the frequencies of miRNAs present in the original samples
and those detected by sequencing approaches [18,20]. The
adapter ligation steps in the small library preparation pro-
cedure, in addition to miRNA sequence and structure, have
emerged as being most critical when trying to explain the
discrepancy [18–22,30,31]. As an alternative to the ligase-
dependent ligation step in library preparation, poly-
adenylation based procedures have been developed.
Additional biases might be introduced during reverse tran-
scription and PCR steps, but in this case results have been
contradictory [19–21,25]. The use of UMI tags has there-
fore been suggested to remove this potential bias [25].
Here, we performed a comprehensive comparison of six
low input small RNA sequencing reagents utilizing both
ligase-depend, polyA-based and single-adapter methods,
including one kit that employed UMI tags. Note that we
assessed here only the performance of the kits to identify
miRNAs; other small RNA species that may be captured
were not assessed.

Sequencing yields and miRNA read proportions

Considerably different numbers of raw reads were obtained
from the different kits. The kits from TailorMix and
QIAseq returned the highest miRNA read counts both in
the synthetic miRNA and the human total RNA samples.
However, raw read outputs cannot be used to judge the
performance of a method. Furthermore, since the samples
from SMARTer-beta were sequenced alone in a single lane,
we cannot exclude that technical issues affecting only that
lane were responsible for the low raw read numbers that
passed filters. The input range tested in this study was at or
below the indicated range stated for the SMARTer-beta kit
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(100 ng −1 ug total RNA or 2 ng – 200 ng enriched small
RNA); this may have resulted in the observed poor perfor-
mance. Since this study was performed, the kit has been re-
optimized and released with a new formulation and
improved performance. Nonetheless, the low proportion
of reads mapping to miRNAs from both the CATS and
SMARTer-beta was clearly evident, which could be attribu-
table to inefficient removal of other small RNA species
during library preparation. However, greater numbers of
reads that were not counted as miRNA (due to imperfect
match in length to the database reference sequence) were
noticeable for CATS, which may indicate that polyadenyla-
tion-based methods are trickier to process during data

analysis, due to uncertainties on the length of the poly-A
tail added. To reduce the influence of technical aspects (e.g.
different library size selection and purification methods, as
well as raw read yields) on the comparisons, all miRNA
counts were down-sampled to the same levels. CATS and
SMARTer-beta did not reach the selected thresholds and
were therefore excluded from further analysis.

Detection rate sensitivity

When applying low detection rate sensitivity thresholds, most
synthetic miRNAs could be detected by the four remaining
kits, indicating that all of them may be suited to assess the

A

D

B

C

Figure 3. Differential expression analysis. Kit-specific number of differentially expressed miRNA detected for (A): synthetic miRNA samples (mix A versus mix B) and
(B): human total RNA samples (RA versus healthy control). miRNA-specific log2 fold changes across the different kits for (C): synthetic miRNA samples and (D): human
total RNA samples.
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overall miRNA repertoire. However, when applying more
stringent detection thresholds ranging from 1cpm to
200cpm, greater differences in detection rates between the
kits became evident, and QIAseq and TailorMix emerged as
the most sensitive. It is worth noting that kit specific biases
played a greater role in miRNA detection than input RNA
amounts, at least within the ranges tested here (0.1–1.0 ng
miRNA).

Reliability

Intra-rater reliability showed very high concordance between
miRNA counts within the replicates of a miRNA library
preparation kit, independent of the kit, for both synthetic
miRNA and human total RNA inputs. Similar results have
been reported by Giraldez, et al. [31] and Wright, et al. [25],
although they refer to intra-rater reliability as reproducibility
and consistency respectively. The intra-rater reliability was
strong both for 0.1ng and 1.0ng synthetic miRNA samples
for all kits in our study (data not shown) which is promising
given current interest in using low RNA inputs derived from
small biological specimens.

In concordance with the findings reported by Giraldez,
et al. [31], Coenen-Stass, et al. [32] and Wright, et al. [25],
inter-rater reliability (concordance of read counts seen
between the different kits, also called reproducibility or con-
sistency across replicates) was lower compared to the intra-
rater reliability. In particular, QIAseq deviated from the other
kits, but we stress that this does not indicate poorer perfor-
mance. QIAseq employs a different 3´adapter sequence com-
pared to the other three kits which may underlie the
dissimilar preference observed. These observations underscore
the emerging conclusion that kit-specific differences should
be considered by any researchers comparing miRNA-seq
datasets, as supported by another recent study [33]. Notably,
the concordance between the miRNA counts measured and
the expected concentration for the synthetic miRNA samples
was low, and revealed that none of the library preparation kits
could accurately quantify the majority of miRNAs.

Differential expression

Differential expression analysis of synthetic miRNA mix
A versus mix B revealed that all kits could detect at least 30
out of 40 non-equimolar miRNA correctly as DE (fold change
≥ 2). MiRNAs hsa-miR-1199-5p, hsa-miR-22-5p and hsa-miR
-940 were never detected as DE by any of the kits. These
miRNAs were present at two-fold concentration differences,
the lowest fold change tested, which can be challenging. In
general, all reagents displayed greater problems to detect small
fold-change differences, reminiscent of results seen in the
recent study by Giraldez, et al. [31].

Our study offered the additional possibility to study levels
of false positive DE miRNAs detected from the 903 equimolar
miRNAs. Equimolar miRNAs found to be DE were character-
istically detected as DE with low fold-changes and showed
little agreement between the kits, consistent with their being
false positive calls. Taken together, QIAseq showed slightly
higher sensitivity (true positives) and slightly higher

specificity (fewer false positives) than the other reagents,
although the false-positive calls did fall within the expected
rate set for the analysis (False discovery rate = 0.05).
Reinforcing these conclusions, the titration response analysis
clearly demonstrated the superior performance of the QIAseq
reagents to most faithfully represent the levels of miRNAs in
input material.

It nonetheless appears that the different reagents have
differing preferences for particular miRNAs. The primary
sequence of terminal miRNA nucleotides [18], secondary
structure affecting ligation sites [34] and co-folding of the
miRNA and ligated adapters [21] have all been documented
as sources of bias affecting miRNA detection. Interestingly,
the 3ʹ adapter sequence in the QIAseq kit differs from the
other three kits analysed. However, our attempts to explain
the differences observed between the kits based on primary
sequence or secondary structure analyses were inconclusive
(data not shown).

Greater differences between kits were observed by examin-
ing DE miRNAs detected when comparing the RA patient
pool and healthy control pool of human CD8+ T cell RNA,
where the number of DE miRNA varied between none (srLp)
to 19 (CleanTag). There are few preceding studies of miRNAs
from blood-isolated CD8+ cells in rheumatoid arthritis, but
some of the miRNAs found to be DE in this study have
previously been associated with RA, e.g. miR-221-3p [35],
miR-223-3p [36–38], miR-374b-5p [39] and miR-486-3p
[39], however further confirmation is needed. Worryingly, in
addition to the varying number of DE miRNA detected by the
different kits, there was almost no concordance between the
miRNAs identified. Taken together, it is advisable to interpret
DE miRNA results from studies employing different library
preparation methods with caution.

Re-analysis of QIAseq dataset utilizing UMIs

Reverse transcription and PCR-amplification may be potential
sources of bias during library preparation, and PCR can also
introduce duplicate reads. QIAseq was the only kit tested to
address the issue of duplicate reads by the inclusion of UMIs,
however, under the employed conditions, no appreciable dif-
ference between UMI counts and the ordinary read counts
were detected, mirroring the findings of Wong, et al.[33]. Fu,
et al.[27] observed that higher fractions of PCR duplicates
could be observed when reducing the starting material, but
when comparing the 1.0ng and 0.1ng synthetic miRNA sam-
ples, no difference in the proportion of PCR duplicates was
seen. Nonetheless, it remains possible that at lower concen-
trations than tested here, UMIs may prove useful for the
elimination of duplicates to improve dataset quality.

Conclusion

The QIAseq kit from QIAGEN consistently demonstrated
performance at, or near, the top for all metrics examined. It
should be mentioned that QIAGEN made an error affecting
samples 1–8 in their first attempt at library preparation and
were supplied with replacements. With the exception of per-
formance in the titration response assay, the TailorMix kit

82 F. HEINICKE ET AL.



from SeqMatic closely followed. Lexogen´s srLp and Trilink´s
CleanTag kit also performed well, and the majority of differ-
ences we detected point to kit-specific biases. However, whilst
the experiments conducted here show that sequencing is avery
sensitive method for detecting miRNAs, even at low abun-
dance, it is also clear that none of the kits performed impress-
ively with regard to accurately reflecting the relative input
levels of all miRNAs. There is clearly room for improvements
in this regard for the development of further enhanced
reagents or methods to accurately quantitate miRNA levels.

Material and methods

Study material

The performance of six miRNA library preparation kits was
examined using low-input material consisting of synthetic
miRNA samples or human-derived total RNA samples. To
maximize the possibility that each procedure was performed
under optimum conditions, samples were distributed to the
kit vendors for library construction. Sequencing libraries were
returned to the Norwegian Sequencing Centre for sequencing
and data analysis.

Synthetic miRNA samples

The synthetic miRNA samples consisted of a mixture of
equimolar and non-equimolar miRNAs. The miRXplore
Universal Reference (Miltenyi, California, United States),
comprising 962 HPLC purified, 5ʹ phosphorylated, synthetic
oligonucleotides of human, mouse, rat and viral miRNA
origin, was used as an equimolar miRNA pool. For the non-
equimolar pool, 40 additional HPLC purified, 5ʹphosphory-
lated, synthetic oligonucleotides representing human miRNA
were purchased from Eurofins MWG Synthesis GmbH
(Bavaria, Germany). Altogether five different miRNA mixes
were created (denoted mix A to mix E, Fig 1A). Mix A and
Mix B consisted of the equimolar miRNA pool supplemented
with the non-equimolar pool present at eight different con-
centration ratios between the two mixes spanning a 100-fold
range (Supplementary Table 1). Mix C was a titration of 0.75
mix A and 0.25 mix B, while mix D was a titration of 0.25 mix
A and 0.75 mix B. In the case of mixes A-D, the total miRNA
concentration was 30 nM, with individual equimolar miRNAs
present at 30 pM and other miRNAs ranging from 3–300 pM.
Mix E consisted of the same miRNAs as mix A but at a 10-
fold lower concentration. Due to the low concentrations in

the five synthetic miRNA mixes, the samples were blended
with yeast (Saccharomyces cerevisiae) total RNA, which does
not contain known endogenous miRNAs[40], to minimize
degradation and loss of material due to adhesion to plastic-
ware, and to mimic the more complex total RNA mixtures
encountered under typical usage. In each mix, the final RNA
content was 2 ng/µl, with miRNA representing approx. 10%
(w/w) of the total amount (mixes A-D) or 1% (mix E). The
samples were distributed in triplicates to the participating
vendors. To each of the triplicates in mix A to mix E, one
additional specific miRNA (miR-147a, miR-212-3p or miR-
412-3p) was added to check that the replicates were processed
independently throughout library preparation and were not
combined into a single sample to increase reproducibility.

To verify the intended ratios of the synthetic miRNA
sample starting material, quantitative reverse-transcriptase
PCR was performed using 16 pre-designed TaqMan® Small
RNA assays (Thermo Fisher Scientific, Waltham, MA USA)
according to manufacturer’s instructions. Assay details are
provided in Supplementary Material and Methods. Relative
abundances of miRNAs in mixes A and B were measured by
absolute quantification relative to a standard curve.

Human-derived total RNA samples

Peripheral blood CD8+ T cells were magnetically sorted from
newly diagnosed rheumatoid arthritis (RA) patients (n = 4)
and healthy controls (n = 4) using the EasySep cell isolation
system (Stemcell technologies, Vancouver, Canada). The
RNA/DNA/Protein Purification Kit (Norgen Biotek,
Ontario, Canada) was used to isolate total RNA. Only RNA
samples with RNA integrity values above 8.5 were used for
downstream analysis. To ensure the desired amount of total
RNA input for the miRNA library preparation, the four RA
patients and the four healthy controls were mixed together to
obtain one pooled RA and one pooled healthy control sample
respectively. Triplicates of these different sample types were
distributed to the participants.

MiRNA library preparation

Each participant was asked to prepare miRNA libraries from
the 21 samples described above using their specific miRNA
library preparation kit. For optimization purposes the parti-
cipants received a further 20 ng of synthetic miRNA (blend of
Mix A and Mix B) and 200 ng total human RNA. All parti-
cipants were requested to use the same Illumina i7 index

Table 3. Fraction of titrating miRNAs (n = 5) in each of the eight concentration groups. Average rlog expression values for the 40 non-equimolar miRNAs were
calculated across the three replicates each of mixes A to D. Each miRNA was scored as titrating if the average values followed the expected trend in concentrations
from high to low or vice versa across mixes A to D.

Conc. Ratio CleanTag QIAseq srLp Tailor Mix

0.01 1 1 1 1
0.1 0.8 1 1 1
0.2 1 1 0.8 0.8
0.5 0.8 0.6 0.4 0.6
2 0.6 0.8 0.8 0.2
5 0.4 1 1 0.8
10 0.6 1 1 0.6
100 0.8 1 0.8 0.8
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sequence for the same sample to avoid any possible effect of
these sequences on the downstream library preparation and
sequencing process. Detailed sample and index information
can be found in Supplementary Table 2.

At the time of writing, four of the six kits were commer-
cially available in the formats used for this study (CATs,
QIAseq, CleanTag and TailorMix). A fifth kit, srLp, was also
commercially available, but with different index primer
sequences. For comparison purposes and to avoid possible
bias arising from the use of different indexes, this participant
synthesized custom index primers complying with the index
sequences specified in this article. The SMARTer kit used in
the study had not been released for purchase, but a modified
version is now available. It should be noted that this study is
not exhaustive, since two library preparation suppliers meet-
ing the input amount inclusion criteria (PerkinElmer, for-
merly Bioo Scientific, and NEB) declined to participate.
Detailed descriptions of the library preparation conditions
employed by the producers of the specific reagents are sup-
plied in the Supplementary Material and Methods.

Sequencing

All libraries were sequenced at the Norwegian Sequencing
Centre on the same single-read flow cell of a HiSeq 2500
(Illumina, San Diego, CA) with 75 bp reads generated using
v4 clustering and SBS reagents according to the manufac-
turer's instructions. To avoid sequencing lane bias, the
libraries of srLp, QIAseq, TailorMix, CATS and CleanTag
were randomly distributed over five lanes of the flow cell,
equivalent to sequencing 21 libraries per lane (Supplementary
Table 4). Due to concerns that the SMARTer beta libraries
contained a large proportion of non-miRNA inserts (higher
molecular weight products than expected, making it challen-
ging to obtain equivalent numbers of reads per sample), these
libraries were sequenced independently from the other parti-
cipants on a single lane (Supplementary Fig 1).

Bioinformatic analysis

Read mapping and reference sequences

Primary base calling and quality scoring was performed using
RTA v1.18.66.4 (Illumina), followed by demultiplexing and
processing with Bcl2fastq v2.18.0.12 (Illumina).

For trimming of the 3ʹ adapter, we followed adapter trim-
ming instructions according to each manufacturer (cutadapt
v1.15[41] with parameter –m 10 was used in all cases).
Detailed information about adapter sequences is provided in
the Supplementary Material and Methods.

Read mapping was performed using bowtie v1.1.2[42] with
parameters –a and –norc. No mismatch was allowed. As
reference, the expected pools of synthetic miRNAs (962 syn-
thetic equimolar miRNAs originating from the miRXplore
universal reference and 40 non-equimolar miRNAs) were
used for the synthetic miRNA samples, and the mature
human miRNA sequences specified in miRBase[43] v21 for
the human total RNA samples. We confirmed that all repli-
cates had been processed separately by verifying the presence/

absence of spiked replicate-specific miRNAs in the datasets
from each sample. Further analysis revealed that 59 of the
miRNA sequences included in the miRXplore Universal
Reference were identical to sequences in the Saccharomyces
cerevisae (sacCer3) genome (Supplementary Table 3). To
avoid potential miscounting of yeast fragments in the down-
stream analysis, these miRNAs were excluded and only the
remaining 903 miRNA of the miRXplore Universal Reference
were analysed further. Mapped reads (restricted to miRNAs
matching exactly to the reference sequence and length) were
counted using a custom python script (available upon
request).

Read count modelling

With the exception of differential expression and UMI analy-
sis, all further downstream analyses were performed on down-
sampled mapped miRNA reads to minimize confounding
factors arising from sources such as read numbers and pro-
portions of adapter dimer reads, which can be influenced by
the purification method chosen and by pipetting errors.
Random down-sampling to 2.5 million reads was performed
for the synthetic miRNA samples and to 0.75 million reads for
the human total RNA samples. The seed number was set
to 123.

In miRNA-seq count data, the average observed variance
across samples increases with higher average expression of the
miRNA. If this heteroscedastic behaviour of the count data is
not taken into account, the results of most downstream ana-
lyses will be dominated by highly expressed and highly vari-
able miRNAs. We therefore transformed count data, where
indicated, with the rlog function of DeSeq2[44] (v1.20.0),
which produces a superior homoscedastic output than log2
transformation for low- and high-expressed genes[44].

Data analysis

Detection rate sensitivity and reliability

Data and statistical analyses were performed using R v3.5.2
[45] and Python v2.7.13. Unless otherwise stated, ggplot2[46]
was used for data visualization. Synthetic miRNA and human
total RNA down-sampled read count data were used in the
detection rate sensitivity analysis. Upset plots were produced
using the R package UpSetR[47] v1.4.0.

Rlog transformed synthetic miRNA and human total RNA
count data were used for assessing the reliability of the library
preparation kits, on which intra-class correlation (ICC),
Pearson correlation and Bland-Altman agreements calcula-
tions were performed. For ICC, the two-way mixed effects
model, absolute agreement and single rater (ICC(3,1)) were
applied using the R package psych[48] v1.8.4. ICC values were
interpreted according to the recommendations of Koo and Li
[49] where ICC values above 0.9, between 0.75 and 0.9,
between 0.5 and 0.75 and below 0.5 indicate excellent, good,
moderate and poor reliability respectively. Thresholds
described by Chan[50] were used for the Pearson correlation
where correlations above 0.8, between 0.6 and 0.8, between 0.3
and 0.6 and below 0.3 are described as very strong,
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moderately strong, fair and poor respectively. The R corrplot
package[51] v0.84 was utilized for correlation plots and the
R BlandAltmanLeh package[52] v0.3.1 for Bland Altman
calculations.

Differential expression and titration response

Original read count data of mix A and mix B were used for
the differential expression analysis using the R package edgeR
[53] v3.22.3. For the synthetic miRNA samples a read count
filtering of 3 counts per million (cpm) in at least two libraries
was applied to the differential expression analysis while a filter
of 20cpm in at least two libraries was used for the human total
RNA samples. miRNAs were defined as significantly differen-
tially expressed after multiple testing adjustment with the
methods of Benjamini and Hochberg controlling for a false
discovery rate of 0.05. In addition, only those miRNA with
|log2 FC| > 1 between the tested conditions were kept.

The titration response of the 40 non-equimolar miRNAs of
the synthetic miRNA samples was examined in mixes A to
D according to the analyses published by Shippy, et al.[28].
Average rlog expression values for each miRNA were calcu-
lated across the three replicates of each of mixes A to D. If the
average expression values for each miRNA followed the
expected concentration trend (across the four possible con-
centrations seen in each mix), it was scored as titrating. Any
deviations from the expected trend were scored as non-
titrating.

UMI analysis

QIAGEN’s analysis tool Geneglobe was used for assessing the
effectiveness of QIAseq’s UMIs. For the synthetic miRNA
samples the option ‘other’ was chosen for mapping while
‘human’ was chosen for the human total RNA samples during
the primary data analysis. The resulting count table included
UMI (after PCR duplicate removal) and raw (before PCR
duplicate removal) read counts for each miRNA in the sam-
ples. Before analysing the correlation between UMI and raw
read counts, the counts were rlog transformed.
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