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The melatoninergic system comprises the neurohormone melatonin and its molecular
targets. The major source of melatonin is the pineal organ where melatonin is rhythmically
produced during darkness. In mammals, melatonin biosynthesis is controlled by the
central circadian rhythm generator in the suprachiasmatic nucleus (SCN) and
photoreceptors in the retina. Melatonin elicits its function principally through two
specific receptors called MT1 and MT2. MT1 is highly expressed in the SCN and the
hypophysial pars tuberalis (PT), an important interface for control of seasonal functions.
The expression of the MT2 is more widespread. The role of the melatoninergic system in
the control of seasonal functions, such as reproduction, has been known for more than
4 decades, but investigations on its impact on the circadian system under normal
(entrained) conditions started 2 decades later by comparing mouse strains with a fully
functional melatoninergic system with mouse strains which either produce insufficient
amounts of melatonin or lack the melatonin receptors MT1 and MT2. These studies
revealed that an intact melatoninergic system is not required for the generation or
maintenance of rhythmic behavior under physiological entrained conditions. As shown
by jet lag experiments, the melatoninergic system facilitated faster re-entrainment of
locomotor activity accompanied by a more rapid adaptation of the molecular clock
work in the SCN. This action depended on MT2. Further studies indicated that the
endogenous melatoninergic system stabilizes the locomotor activity under entrained
conditions. Notably, these effects of the endogenous melatoninergic system are subtle,
suggesting that other signals such as corticosterone or temperature contribute to the
synchronization of locomotor activity. Outdoor experiments lasting for a whole year
indicate a seasonal plasticity of the chronotype which depends on the melatoninergic
system. The comparison between mice with an intact or a compromised melatoninergic
system also points toward an impact of this system on sleep, memory and metabolism.
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INTRODUCTION

Since the origin of life, organisms are influenced by the cyclic
lighting conditions of their environment which generate daily/
diurnal and seasonal rhythms. In vertebrates the melatoninergic
system plays an important role for transmission of light/dark
signals and thereby modulates rhythmic behavior. The
melatoninergic system comprises the neurohormone
melatonin, an indoleamine, and its molecular targets
(Figure 1). The main source of melatonin is the pineal organ
which produces melatonin during the nighttime and secretes it
into the general circulation or into the cerebrospinal fluid. This
rhythm is a common feature of all vertebrates, irrespective of
whether they are active during the day or the night. Melatonin
was isolated by Lerner and colleagues (Lerner et al., 1958, 1960)
and identified as the agent responsible for pigment aggregation in
amphibian melanophores (see Rollag, 1988). The main steps of

melatonin biosynthesis were discovered soon after the isolation of
melatonin. According to current concepts the highly lipophilic
melatonin is not stored within the pineal organ but released into
the bloodstream or the cerebrospinal fluid immediately after its
formation. Therefore, the amount of circulating melatonin solely
depends on the activity of its biosynthetic pathway. Notably, the
penultimate enzyme of the melatonin bioynthesis, the
arylalkylamine N-acetyltransferase (AA-NAT) controls daily
changes in melatonin production by the pineal gland and
thereby plays a unique role in biological timing in vertebrates
(Klein, 2007).

In mammals, the rhythmic secretion of melatonin from the
pineal gland is driven by the suprachiasmatic nucleus (SCN) of
the hypothalamus, the core of the circadian system that generates
a circadian rhythm with a period of approximately, but not
precisely 24 h and controls many behavioral and physiological
functions like rest/sleep, body temperature and hormone

FIGURE 1 | Relationships between the melatoninergic system and the circadian system. The melatoninergic system comprises the neurohormone melatonin and
its molecular targets and is closely connected to the circadian system. The core of the circadian system is located in the hypothalamic SCN (red sinus curve) producing a
self-sustained endogenous rhythm with a period length of approximately 24 h. This circadian rhythm generated in the SCN is entrained to the ambient light/dark cycle-
which varies with time of day or season (see diagrams). Light/dark signals are received by melanopsinergic ganglion cells of the retina and transmitted to the SCN
via the retino-hypothalamic tract (blue). The SCN sends efferent projections to the adjoining paraventricular nucleus (shown in orange), which is the main source of
descending autonomic projections to the spinal cord. The pineal gland, the major source of the neurohormone melatonin, is controlled by the sympathetic innervation
comprising the intermediolateral column of the thoracic spinal cord (dark green) and the superior cervical ganglion (light green). The pineal gland synthesizes and secrets
melatonin at night under the control of the SCN. Thus, melatonin represents an output signal of the circadian system. The length of the melatonin signal corresponds with
the length of the dark phase (see light/dark diagrams). Via the blood stream, melatonin provides a humoral signal synchronizing various peripheral oscillators (black and
white sinus curves) with the day/night rhythm. The main molecular targets of melatonin are the twomelatonin receptors: MT1 andMT2, which are located throughout the
body and brain. Within the brain, the highest MT-receptor densities are found in the SCN. Thus, melatonin is not only an output signal, but also an input signal to the SCN.
The pars tuberalis of the hypophysis (PT, yellow) is another region with high MT-receptor densities. The oscillatory processes in the PT critically depend on the melatonin
signal. These oscillations are of importance with respect to the maintenance of seasonal rhythms (after Pfeffer et al., 2018; MT1 structure: Stauch et al., 2019; MT2
structure: Johansson et al., 2019).

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8836372

Pfeffer et al. The Melatoninergic System

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


secretion. The SCN controls not only the melatonin biosynthesis
in the pineal but also many other organs, such as the adrenal and
the liver (Korf and von Gall, 2012, 2016; Hastings et al., 2014).
The generation of circadian rhythms depends on a molecular
clockwork that runs in all nucleated cells and consists of an
autoregulatory transcriptional/translational feedback loops of
clock genes, particularly Per1–2, Clock, Bmal1, Cry1–2
(Reppert and Weaver, 2002).

Under natural conditions, the phase and the period length of
the rhythm is influenced by environmental stimuli, so called
zeitgebers (Aschoff and Wever, 1962) in order to adjust
(“entrain”) the endogenous clock to the rhythmic events in the
outside world (Korf and von Gall, 2012). Light—which varies
with time of day or season—is the most potent entraining signal.
In non-mammalian vertebrates, light stimuli are perceived by
multiple photoreceptors located outside the retina, e.g., in the
pineal organ and so-called deep brain (encephalic)
photoreceptors (Korf et al., 1998; Nakane and Yoshimura, 2019).

In mammals, the pineal organ has lost its photoreceptive
function and the light signals entraining the circadian system
are exclusively perceived in the retina by classic and specific
nonvisual photoreceptors (Peirson et al., 2018) and are
transmitted via the retinohypothalamic tract to SCN in order
to synchronize the endogenous clock in the SCN with the light/
dark phase. The SCN conveys its output signals to the periphery
via endocrine and multisynaptic neural pathways involving the
sympathetic and parasympathetic nervous system (Buijs and
Kalsbeek, 2001). The sympathetic nervous system is essential
for the control of melatonin biosynthesis in the mammalian
pineal organ. Postganglionic nerve fibers originating from the
superior cervical ganglion (Kappers, 1964; Korf al. al., 1998)
release norepinephrine (NE) at night which stimulates
melatonin synthesis (Klein and Weller, 1970). The signal
transduction cascades activated by NE involve cyclic AMP and
transcriptional and posttranscriptional mechanisms, they vary
from one mammalian species to the other (Schomerus and Korf,
2005). The robust nightly peak of melatonin secretion is an
important neuroendocrine output signal of the circadian
system, which reflects the length of the dark period and
transduces photoperiodic information (Pevet, 2002; Korf,
2018). Melatonin in turn modulates the rhythm of the SCN
and exogenously administered melatonin and its agonists are
used as chronobiotics to treat rhythm disturbances/
misalignments occurring in blind people, shift workers and
after jet lag (Arendt et al., 1997; Arendt, 2009; Arendt, 2010;
Liu et al., 2016).

In addition to the pineal organmelatonin can also be produced
in the retina (rhythmic; for review see Tosini et al., 2012) and in
various cells of the gastrointestinal tract and the immune system
(non-rhythmic; for review see Bubenik, 2002; Markus et al.,
2018). However, in these structures melatonin rather act as a
local modulator and do not contribute to melatonin levels in the
blood or cerebrospinal fluid.

Melatonin Receptors
Targets of melatonin have been first identified as
iodomelatonin binding sites by (Vanĕcek et al., 1987) and later

on by Williams (1989). It is now well established that melatonin
exerts its physiological effects principally through two membrane
bound high affinity G-protein coupled receptors which have been
cloned by Reppert and colleagues, initially termed as Mel1a and
Mel1b (Reppert et al., 1994; Reppert et al., 1995) and now called
MT1 and MT2. While the MT1 receptor is concentrated in the
SCN and the pars tuberalis of the hypophysis (PT), the MT2
receptor is more widespread and found in several brain areas and
throughout the body (Dubocovich, 2007; Slominski et al., 2012;
Jockers et al., 2016; Cecon et al., 2018). This has been confirmed
by a recent study in mice by means of a “knock-in” strategy
replacing MT1 or MT2 coding sequences with a LacZ reporter
(Klosen et al., 2019). Expression of MT1 was shown in very few
structures such as the SCN and the PT, while expression of MT2
was not only found in the SCN and the PT, but also in numerous
other brain regions including the olfactory bulb, forebrain,
hippocampus, amygdala and superior colliculus. However, a
study using a MT1 transgenic reporter mouse, suggests that
MT1 is also expressed in many parts of the brain including
the cerebellum, the hippocampus, and the habenula (Adamah-
Biassi et al., 2014). Even in those regions where co-expression of
the two subtypes was observed MT1 and MT2 were expressed by
different cell types. The two receptor subtypes also differ in terms
of affinity and the second messenger pathways involved (Jockers
et al., 2016; Cecon et al., 2018). Both receptors may dimerize to
form homo- or heterodimers among themselves (Ayoub et al.,
2002; Baba et al., 2013; Ferré et al., 2014; Cecon et al., 2018). In
addition, the orphan receptor, GPR 50, which does not bind
melatonin is a dimerization partner for MT1, and this
heterodimerization appears to inhibit the MT1 activity (Levoye
et al., 2006; Levoye et al., 2006).

In vitro studies revealed that both receptors serve different
functions in the SCN. The MT1 receptor mediates the acute
inhibition of the electrical activity of SCN neurons (Liu et al.,
1997) and of PACAP-mediated signal transduction (Jin et al.,
2003; von Gall et al., 1998; von Gall et al., 2000). The MT2
receptor has been shown to mediate the phase-shifting effects of
melatonin on neuronal firing in SCN cultures of rats (McArthur
et al., 1997; Hunt et al., 2001) and mice (Dubocovich et al., 1998;
Dubocovich et al., 2005; Korf and von Gall, 2006).

In addition to MT1 and MT2 melatonin may act on the
quinone reductase QR2 (Nosjean et al., 2000) and might be
involved in mediating the antioxidant effects of melatonin
(Reiter et al., 2000). In addition, due to its lipophilic nature,
melatonin passes the cell membrane and might interact directly
with intracellular proteins (Benítez-King, 2006). Thus, melatonin
receptor-independent responses might also play a role in
melatonin-dependent mechanisms (Reiter et al., 2014).
However, the role of these melatonin targets is still unclear.

Mouse Models for Investigations of the
Impact of the Melatoninergic System Under
Physiological Conditions
Externally applied melatonin is successfully used as a
chronobiotic drug to treat desynchronization and circadian
disorders, and the success of these treatments suggest a pivotal
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role of melatonin in the synchronization of the circadian system.
Investigations with various mouse strains with an intact or a
compromised melatoninergic system have contributed to
decipher its role of under physiological, i.e., entrained
conditions. The first experiments compared two mouse strains,
C57BL/6J (C57Bl) and C3H/HeN (C3H) (Korf and von Gall,
2006; Figure 2). C57Bl is the classical strain to generate
transgenic mice and is widely used in several research fields.
Like many inbred mouse strains, the C57Bl are melatonin-
deficient due to a spontaneous mutation in a gene encoding
for the AA-NAT, the key enzyme of melatonin biosynthesis
(Roseboom et al., 1998). C57Bl mice produce only very low
amounts of melatonin in the pineal gland and have barely
detectable melatonin levels in the circulation which do not
show a day/night rhythm (Ebihara et al., 1986; Goto et al.,
1989; von Gall et al., 2000). C57Bl mice express both
melatonin receptors in different areas of the brain and the
retina (Siuciak et al., 1990; Sengupta et al., 2011). Importantly,
the signal transduction pathways downstream of these receptors
are intact within the SCN and pineal organ of these mice (von
Gall et al., 1998; von Gall et al., 2000).

C3H mice are melatonin-proficient and produce high levels of
melatonin in the pineal gland at night (Vivien-Roels et al., 1998;
von Gall et al., 2000). However, this strain carries a mutation in
the retinal degeneration (rd) gene which makes them visually
blind 6 weeks after birth (Kim et al., 2008), but they still own the
melanopsin containing ganglion cells which are sufficient to

mediate the entrainment of the circadian system to light
(Peirson et al., 2018).

Of course, the C57Bl mice differ from C3Hmice not only with
regard to the melatoninergic system, but in many more respects
(Kaku et al., 1988; Brednow and Korf, 1998; Veasey et al., 2000).
Thus, not every difference between these two strains can be
attributed to the melatoninergic system. Therefore, C57Bl mice
with targeted deletions of either the MT1 or MT2 or both
receptors (Liu et al., 1997; Jin et al., 2003) were back-crossed
on a melatonin-proficient C3H background. These melatonin
receptor KO, but melatonin-proficient mice were used to study
the role of the receptors in melatoninergic signaling (Figure 2).
These melatonin receptor KO mice do show some peculiarities
that resemble melatonin-deficient C57Bl mice—and in these
cases it is likely that the melatoninergic system is responsible
(see below).

Recently two “congenic C57BL/6 strains” with a functional
melatonin synthesis were developed (Zhang et al., 2018; Zhang
et al., 2021), which can be used to investigate the role of
endogenous melatonin within one strain.

Locomotor Output and Entrainment
The locomotor activity is an excellent marker for the state of the
circadian system (Shimomura et al., 2001; Refinetti, 2010; van
Oosterhout et al., 2012). To study the impact of the
melatoninergic system on circadian rhythm generation several
investigations compared the locomotor activity rhythms of

FIGURE 2 | Overview of the mouse models used to elucidate the role of melatonin and the melatonin receptors (MT1/2). The C57Black/6J (C57Bl) mice are
melatonin deficient. C57Bl mice with a targeted deletion of the MT1 gene (C57Bl MT1 KO; Liu et al., 1997) were initially used for experiments elucidating the role of
externally applied melatonin. C3H/HeN (C3H) mice are melatonin-proficient, but visually blind. C3H mice with a targeted deletion of the MT1 receptor (C3H MT1 KO) or
the MT2 receptor (C3H MT2 KO) were obtained by breeding the initial melatonin receptor KOmice (Liu et al., 1997; Jin et al., 2003) on a melatonin-proficient C3H/
HeN background for at least 10 generations. C3H double melatonin receptor deficient mice (C3HMT1/2 KO) were obtained by crossing C3HMT1 KO and C3HMT2 KO
mice and breeding the MT1/2 KO offspring for at least 10 generations. These animals are used to investigate the role of endogenous melatonin and the role of the
melatonin receptors (C3H and C57Bl mouse: Jax.org).
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melatonin-proficient C3H mice with that of melatonin-deficient
C57Bl mice (Shimomura et al., 2001; von Gall et al., 1998; von
Gall et al., 2000; Pfeffer et al., 2012; Adamah-Biassi et al., 2013;
Wicht et al., 2014; Pfeffer et al., 2017).

Both melatonin-proficient C3H and melatonin-deficient
C57Bl mice entrain their locomotor activity rhythm to a light/
dark cycle and show a rhythmic behavior under free-running
conditions; i.e., constant darkness (Kasahara et al., 2010; von Gall
et al., 1998; Pfeffer et al., 2012; Wicht et al., 2014). Endogenous
melatonin also had no effect on free-running wheel behavior in
constant darkness and spontaneous homecage behaviors in
melatonin-proficient congenic C57BL/6 line as compared to
their melatonin-deficient littermates (Zhang et al., 2021).
Therefore, an intact melatonin biosynthesis is not required for
the generation or maintenance of rhythmic behavior.

However, detailed and refined analyses have allowed to
determine strain-specific differences in the rhythm
characteristics of locomotor activity. In melatonin-proficient
C3H mice the spontaneous locomotor activity occurs
predominantly in the first half of the dark phase (Pfeffer et al.,
2012; Adamah-Biassi et al., 2013; Wicht et al., 2014) and declines
thereafter. This decline coincides with the nightly peak levels of
endogenous melatonin (Maronde et al., 1999; von Gall et al.,
2000; Christ et al., 2010). In melatonin-deficient C57Bl mice, the
locomotor activity is distributed across the entire dark phase or
displays a bi-phasic profile (Pfeffer et al., 2012; Adamah-Biassi
et al., 2013; Wicht et al., 2014; Pfeffer et al., 2017). Notably,
melatonin receptor KO mice kept a monophasic activity pattern,
characteristic for C3H animals (Pfeffer et al., 2017), suggesting
that the melatoninergic system is not involved in the constitution
of this particular pattern. This assumption is confirmed by the
observation that the congenic melatonin-proficient C57BL/6
mouse line keeps the biphasic activity pattern (Zhang et al.,
2021), characteristic for C57Bl mice.

C3H and C57Bl differ in terms of the light-induced phase shift
in locomotor activity: When a light pulse is given during the
second half of the subjective night (when melatonin levels are
elevated in C3H, but not in melatonin-deficient C57Bl mice), the
phase shifts are smaller in C3H as compared to C57Bl (von Gall
et al., 1998). In addition, jet lag experiments (phase delay and
phase advance by 6 h respectively) have shown that the
melatonin-proficient C3H re-entrain almost twice as fast as
the melatonin-deficient C57Bl after a 6 h phase advance
(Pfeffer et al., 2012). In an independent study exogenous
melatonin has been shown to decrease the number of days
necessary for re-entrainment of the spontaneous behaviors in
C57Bl mice (Adamah-Biassi et al., 2013) indicating a role of the
melatoninergic system in re-entrainment. Indeed, the faster re-
entrainment can be directly attributed to the melatoninergic
system since in the recently developed melatonin-proficient
C57BL/6J congenic mice, re-entrainment of wheel-running
activity was accelerated following a 6-h phase advance when
compared with their melatonin-deficient littermates (Zhang et al.,
2021).

Furthermore, jet lag experiments (phase delay and phase
advance by 6 h respectively) with melatonin-proficient C3H
mice that either lack the MT1, MT2 or both receptors, have

confirmed that melatonin facilitates re-entrainment of the
locomotor activity. In C3H, this action depends on the MT2
receptor. The faster re-entrainment to the abrupt advance of dark
onset persisted in the MT1 KO animals, but was lost in MT2 KO
and double KO animals. However, in an experiment that
administered exogenous melatonin to melatonin deficient-
C57Bl mice (Dubocovich et al., 2005), an involvement of the
MT1 receptor in melatonin-mediated phase shifts of wheel
running activity rhythms was observed. These inconsistent
results might be explained by different effects of endogenous
and exogenous melatonin and/or different periods of sensitivity,
desensitization and/or internalization of melatonin receptors. On
the other hand, phase shifts may be modulated by the MT1
receptor in C57Bl mice. Therefore, an MT1 receptor mediated
effect on phase shifting under certain circumstances cannot be
excluded.

The re-entrainment of locomotor activity rhythms is
associated with readjustment of the molecular clockwork
within the SCN (Reddy et al., 2002; Yamazaki et al., 2000).
The above-mentioned jet lag experiments revealed that
melatonin-proficient C3H mice with a functional MT2
receptor showed not only faster re-entrainment of the
locomotor activity rhythm to the new light/dark cycle, but also
a more rapid adaptation of PER1 and CRY1 proteins in the SCN
(Pfeffer et al., 2012). These findings provide evidence that
melatonin can influence the clock gene expression in the SCN.

Chronotype/Entrainability/Rhythm Stability
Humans and animals have preferred phase angles of entrainment
with regard to external time (Aschoff and Wever, 1962; Ehret,
1974; Roenneberg et al., 2003; Wicht et al., 2014). These are
referred as early and late chronotypes (Ehret, 1974). In humans
the chronotype is usually defined by the sleep-wake cycle and
makes reference to the middle of the sleep and to the timing of the
nightly melatonin secretion (Kantermann et al., 2015), and
therefore it is tempting to speculate that the melatoninergic
system might also play a role in the constitution of the
chronotype. At variance with humans, mice as nocturnal
animals have the peak of their locomotor activity during night
when melatonin levels are high. To identify the chronotype in
mice we have introduced as parameter the locomotor activity
rather than the sleep-wake cycle (Wicht et al., 2014). Locomotor
activity was recorded by means of an infrared camera for at least
10 days and the chronotypes of mice were identified as the
timepoint when the animals have performed half of their
locomotor activity during a period of 24 h. These
measurements indeed showed that the melatonin-deficient
C57Bl mice do have a later chronotype in comparison to
melatonin-proficient mice C3H (Wicht et al., 2014; Pfeffer
et al., 2015; Metzger et al., 2020). But further experiments
showed that the chronotype of melatonin-proficient C3H mice
was not affected by deletion of the MT-receptors. The MT1-,
MT2-, and MT1,2 KO mice maintained the same chronotype as
their parent strains (Pfeffer et al., 2017). Therefore, these
differences in the chronotype cannot be attributed to MT1- or
MT2-dependent signaling. Furthermore, interbreeding
experiments with melatonin pro- and deficient mice showed
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that the chronotype may depend on the genetic background, since
the chronotypes of the offspring were “intermediate” between the
parent strains (Wicht et al., 2014). Several genetic loci have been
identified in mice that affect the period and the phase angle of
locomotor behavior (Hofstetter et al., 2003;Wisor et al., 2007) but
none of these loci is related to the melatoninergic system.
Therefore, it is unlikely that the melatoninergic system plays a
pivotal role for determination of the chronotype.

Notably the chronotype in humans changes with the seasons.
Short days (in winter) shift the average chronotype of a
population to a later chronotype, while long days (in summer)
shift it to an earlier one (Allebrandt et al., 2014; Shawa et al.,
2018). This seasonal plasticity of the chronotype might be
influenced by the melatoninergic system since melatonin
secretion is prolonged in winter, when nights are longer as
compared to summer, when the nights are shorter (Illnerova
et al., 1985; Pevet, 2003).

Experiments with C3H and C57Bl mice under seminatural
conditions support the assumption that the seasonal plasticity of
the chronotypemight depend on an intact melatoninergic system.
The C3H had a later chronotype in summer and an earlier
chronotype in winter. These seasonal changes of the
chronotype are far less pronounced in C57Bl mice (Metzger
et al., 2020; Figure 3). The timing of the behavior of the
melatonin-proficient C3H mice is linked more tightly to the

entraining factors (light and night-time temperature) than that
of the melatonin-deficient C57Bl strain. It seems that these two
mouse strains differ in terms of their capacity to entrain to these
stimuli. These differences in the “entrainability” of the two strains
were also evident in the jet lag experiments mentioned above as
well as in terms of the light-induced phase shift in locomotor
activity (von Gall et al., 1998; Pfeffer et al., 2012) indicating a
modulating role of melatonin.

One function of the endogenous melatoninergic system might
be to stabilize behavioral rhythms under entrained conditions.
Indeed, melatonin deficiency or the deletion of both melatonin
receptors has been shown to decrease the stability of activity
rhythms in mice as compared to mice with an intact
melatoninergic system (Pfeffer et al., 2017). Also, the daytime
activity has been shown to be slightly higher in melatonin-
deficient C57Bl mice as compared to melatonin-proficient
C3H mice and melatonin-proficient C3H mice that lack both
MT receptor subtypes (Fischer et al., 2017; Homola et al., 2016).
However, under semi-natural conditions the activity rhythms of
the melatonin-deficient C57Bl mice appeared more stable as
compared to the melatonin-proficient C3H animals (Metzger
et al., 2020; Figure 3). The C3Hmice changed the stability of their
activity rhythms with the seasons and, again, C57Bl animals did
not show the seasonal changes of the stability (Figure 3).
Actually, they appeared more stable as compared to C3H mice

FIGURE 3 | Seasonal fluctuation of the chronotype and the rhythm stability. Analyses of seasonal fluctuations of the daily chronotype and the rhythm stability of a
C3H (upper graphs) and a C57Bl mouse (lower graphs) under semi-natural conditions for 1 year. The daily measurements are shown as grey lines, the blue lines indicate
the rolling average over 30 days. The data are blotted against the yearly mean. The melatonin-proficient C3H mouse show a clear seasonal difference in the chronotype
with a later, more stable chronotype in summer and an earlier, less stable chronotype in winter. The melatonin-deficient C57Bl mice did not show pronounced
seasonal changes in the chronotype and has variable stable and unstable periods.
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(Metzger et al., 2020). But this greater stability may be due to the
lesser entrainment to the ambient light/dark cycle and nighttime
temperature (Metzger et al., 2020).

Furthermore, the above-mentioned experiments under semi-
natural conditions revealed that melatonin-deficient C57BL mice
are more vulnerable to changing variables under more natural
conditions, which might overexcite the entrainability of these
mice. The stabilizing factor may be melatonin, since these
destabilized activity rhythms did not occur in the melatonin-
proficient C3H animals (Metzger et al., 2020). This assumption is
supported by a study by Adamah-Biassi et al. (2014) which shows
that melatonin signaling via the MT1 receptor plays a role in
maintaining the integrity of spontaneous behavioral rhythms.

Seasonal Effects
The importance of the melatonin signal was first described in
studies of seasonal breeding animals which showed that the
duration of the melatonin signal controls the reproductive
activity (Reiter, 1991). It is now well established that the
seasonally changing melatonin signal is decoded in the
hypophysial pars tuberalis (PT) which acts upon an intrinsic
thyroid hormone system in the hypothalamus via a retrograde
pathway involving PT-specific TSH as a signal (Ono et al., 2008;
Yasuo and Korf, 2011; Korf, 2018). Although reproduction is not
seasonally regulated in most mouse strains, a strong
photoperiodic response was induced in the PT and the
intrinsic thyroid hormone in the hypothalamus of melatonin-
proficient mice, while this was lacking in melatonin-deficient
mice (Ono et al., 2008). These data provided clear evidence that
the comparison between melatonin-proficient and -deficient
mice is useful to dissect mechanisms through which the
melatoninergic system has an effect on seasonal rhythms.

The MT1 receptor has been shown to control the rhythmic
expression of the clock gene Per1 (von Gall et al., 2002) as well as
the rhythmic expression of several other clock genes (Per2,
Bmal1, and Cry1) in the mouse PT (Jilg et al., 2005). MT1
signaling is crucial for the photoperiodic response in the PT
and hypothalamus (Yasuo et al., 2009).

Retina
Also, vision is a rhythmic function adapted to the changes in the
daily light/dark cycle and it has been shown that melatonin can
modulate a wide variety of retinal functions (for review see Tosini
et al., 2012; Felder-Schmittbuhl et al., 2018).

As mentioned above, the retina is capable of rhythmically
synthesizing melatonin and contains a molecular clockwork
(Tosini and Menaker, 1998; Iuvone et al., 2005; Tosini et al.,
2007). Also both melatonin receptors, the MT1 and MT2, have
been identified in the layers of the neural retina and in the retinal
pigmented epithelium (Bouvier et al., 2009; Baba et al., 2013). A
comparison between C57BL and C3H mice showed that in C3H
animals, protein levels of PER1 and CRY2 followed a clear day/
night rhythm in the inner nuclear layer and the ganglion cell layer
with a peak at the end of the day (ZT14) whereas in C57Bl mice
protein levels of PER1 and CRY2 did not show significant
changes over a 16L/8D cycle (Dinet et al., 2007). Already these
data suggest that melatonin may influence PER1 and CRY2

protein levels. Follow-up experiments with C3H and MT1-
and MT1,2 KO mice showed that the rhythm in PER1 and
CRY2 persisted in the KO mice but the maxima and minima
of PER1 were 180° out of phase as compared to C3H animals.
These data suggest that the melatoninergic system is not
necessary to maintain rhythmic changes in clock-gene protein
levels in the murine retina, but appears to be involved in internal
synchronization (Dinet and Korf, 2007).

Melatonin is involved in many important retinal functions: it
can modulate visual functions and the removal of either MT
receptor abolishes the daily rhythms in the scotopic and photopic
electroretinograms (Bouvier et al., 2009; Alcantara-Contreras
et al., 2011; Sengupta et al., 2011). Melatonin may also have
protective effects on retinal cells, since the removal of melatonin
receptors affects the viability of the photoreceptors and retinal
ganglion cells (Bouvier et al., 2009; Alcantara-Contreras et al.,
2011; Gianesini et al., 2016). This suggest that melatonin might be
involved in the pathogenesis of age-related macular degeneration
and glaucoma.

Effects on Sleep
The melatonin rhythm is closely associated with the timing of
sleep and sleep propensity in humans (Arendt and Skene, 2005).
Melatonin has a sleep promoting effect in both (diurnal) humans
and (nocturnal) rodents (Holmes and Sugden, 1982; Arendt et al.,
1984), and also sleep quality improves when the circadian system
is in phase with melatonin rhythm (Morris et al., 2012). However,
the sleep-wake cycles of mice differ from those of humans. In
contrast to the long sleep period in humans, mice have numerous,
short periods of sleep throughout the 24-h cycle (Mitler et al.,
1977; Daszuta et al., 1983; Veasey et al., 2000). Nevertheless, mice
with an intact or compromised melatoninergic system have been
used to investigate the role of melatonin and its receptors in the
regulation of the sleep/wake cycle. Unsurprisingly, the typical
strain specific daily locomotor activity patterns of C57Bl and
C3H, as seen in their actograms, are, so to say, the inverted
“mirror images” of their daily sleep profiles, as seen in their
somnograms (Veasey et al., 2000).

In mice the decline of nighttime activity marks the onset of
increased REM and NREM sleep episodes (Comai et al., 2013)
and there are differences between the melatonin receptor KO
animals. The MT1 signaling is involved in the modulation of
the daily rhythm of REM sleep (Ochoa-Sanchez et al., 2011).
EEG/EMG studies in MT1 KO mice showed a decrease in REM
sleep during the light phase (when mice are mainly inactive)
accompanied by an increase in the amount of NREM sleep
(Comai et al., 2013). Melatonin promotes NREM sleep
probably by binding to the MT2 receptors located reticular
thalamic nucleus (Ochoa-Sanchez et al., 2011). Indeed, the
above-mentioned EEG/EMG studies showed that in MT2 KOs
NREM sleep is decreased during the light phase (when mice
are inactive) paralleled by an increase in wakefulness (Comai
et al., 2013). Interestingly in mice lacking both melatonin
receptors an increase in wakefulness and a reduction in
REM sleep occurred (Comai et al., 2013) suggesting that the
melatoninergic system modulates wakefulness rather
than sleep.
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The time of sleep onset depends on the homeostatic sleep
pressure which progressively accumulates during wakefulness
and the circadian system (Borbély and Achermann, 1992; Dijk
and Lockley, 2002). Adenosine plays an important role in the
regulation of sleep homeostasis: adenosine levels accumulated
during wakefulness increase throughout the brain and thereby
increase sleepiness (Brown et al., 2012; Huang et al., 2014). The
melatoninergic system might be involved in the increase of
adenosine by acting on the ecto-5-nucleotidase, an enzyme
which converts AMP to adenosine. Differences in the
rhythmic ectonucleotidase mRNA expression between
melatonin-proficient C3H and melatonin-deficient C57Bl mice
are present in several brain structures (Homola et al., 2015).
These differences in the rhythmic ectonucleotidase mRNA
expression appeared to depend on the MT2 receptor subtype
(Homola et al., 2016). The impact of the MT2 receptor on the
elevation of ectonucleotidase RNA levels at night-time might be
of relevance since this receptor is suggested to play an important
role of in sleep regulation (Ochoa-Sanchez et al., 2011; Comai and
Gobbi, 2014).

Hippocampal Neuronal Plasticity and
Behavior
The hippocampus plays an important role in the consolidation of
information from short-term memory to long-term memory, as
well as in spatial and temporal orientation that enable navigation.
Here melatonin, by acting on melatonin receptors, modulates
functional and structural neuronal plasticity, the basis for
memory formation and learning. Functional hippocampal
neuronal plasticity such as long-term potentiation, the
persistent strengthening of synapses, has been shown to be
inhibited by melatonin via the cAMP signaling pathway. This
inhibitory effect of melatonin seems be mediated via the MT2
receptor, as the inhibitory effect on long-term potentiation was
absent in both MT2 and MT1/MT2 double KO mice, but was
present in MT1 receptor KO mice (Wang et al., 2005).
Accordingly, MT1/MT2 double KO mice showed enhanced
long-term potentiation responses and better memory test
performances as compared to the melatonin-proficient C3H
animals (O’Neal-Moffitt et al., 2014).

Moreover, structural hippocampal neuronal plasticity such as
adult neurogenesis, is also modulated by melatonin. Specifically,
C3H mice with functional MT1/MT2 receptors show a time-of-
day-dependent fluctuation in the number of proliferation
neuronal stem/progenitor cells in contrast to the MT1/MT2
double KO mice (Fredrich et al., 2017). Additional promoting
effects of melatonin on adult neurogenesis such as antioxidative
activity and enhanced expression of neurotrophic factors are
suggested (reviewed in Ali and von Gall, 2022).

At the behavioral level, the MT2 receptor plays an important
role for the beneficial action of chronic melatonin treatment on
long- term object recognition memory, while the MT1 may
mediate the effects of melatonin on object location memory
(Pistono et al., 2021). Indeed, C3H mice showed better spatial
learning efficiency than C3H mice lacking the MT1 and MT2
receptors (Jilg et al., 2019). Thus, the melatoninergic system

shapes time-of-day-dependent learning efficiency and provides
a time cue for hippocampal functions (Jilg et al., 2019). These data
show the relevance of the melatoninergic system for cognitive
performance, although the mechanisms still need to be unraveled.

Furthermore, the melatoninergic system seem to modulate
emotion related behavior such as depressive- and anxiety-like
behaviors. Melatonin-deficient C57Bl mice show a more
pronounced depression-like behavior as compared to
melatonin-proficient C3H mice in the force swim tests
(Kurtuncu et al., 2005) while C3H mice expressed more
anxiety-like behaviors than C57Bl animals in an open field
experiment (Ennaceur et al., 2006), but not in a light/dark box
or under a free exploratory paradigm (Kopp et al., 1999). This has
been confirmed by investigations of MT receptor KO mice. MT1
KOmice showed an increased immobility in the forced swim and
tail suspension test indicating depressive-like activity (Weil et al.,
2006; Adamah-Biassi et al., 2014; Comai et al., 2015).

Furthermore, MT1 KO mice show changes in anxiety-related
parameters (Adamah-Biassi et al., 2014; Comai et al., 2015) and
decreased sucrose consumption, indicating anhedonia (Comai
et al., 2015). Taken together, MT1 KOmice display many features
that are core symptoms of human melancholic depression
(Comai et al., 2015). Remarkably, the depressive-like
symptoms could be reversed by chronic treatment with
desipramine, a serotonin-reuptake inhibitor used to treat
patients with depression (Comai et al., 2015). Overall the data
suggest a modulatory role especially of the MT1 receptor in the
neuronal networks for emotion-related behavior, although there
is little evidence for an expression of this receptors in the
respective brain regions. Importantly, (Comai et al., 2015),
showed that MT1 KO mice have reduced time-of-day-
dependent variations in serum levels of corticosterone and in
the electrical activity of norepinephrine- and serotonin-neurons
in the brain stem, which are involved in the pathophysiology of
depression. This indicates that the changes in emotional behavior
of MT1 KO mice are due to a disruption in the circadian system
rather than to a change in the activity of isolated neuronal
networks.

Energy Metabolism and Glucose
Homeostasis
Several metabolic diseases (i.e., diabetes type 2; obesity) are linked
to the circadian system and in some of them the melatoninergic
system seems to be involved (Stenvers et al., 2019). A close
relationship between circadian rhythms with type 2 diabetes
appears likely, since glucose metabolism displays circadian
cycles (Jarett et al., 1972; Aparicio et al., 1974). Furthermore,
circadian disruption leads to the development of type 2 diabetes
(Coomans et al., 2013; Morris et al., 2016; Stenvers et al., 2019). A
possible link between the melatoninergic system and glucose
metabolism became evident relatively early, since melatonin-
deficient C57Bl mice have a glucose-intolerant phenotype,
probably due to an impaired glucose-stimulated insulin
secretion, which is not found in melatonin-proficient C3H
animals (Kaku et al., 1988). By now, it is known that both
melatonin receptors are expressed in pancreatic islets in

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8836378

Pfeffer et al. The Melatoninergic System

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


humans and rodents (Dubocovich et al., 2010; Nagorny et al.,
2011). Studies in mice located the MT1 receptor in the pancreatic
α-cells, while MT2 receptors were located in β-cells (Nagorny
et al., 2011). These data indicate that the melatoninergic system is
involved in insulin and glucagon secretion.

Furthermore, these melatonin receptor KO animals were used
to determine the mechanisms by which these receptors contribute
to regulation of glucose homeostasis and insulin sensitivity. The
removal of both melatonin receptors abolishes the daily rhythm
in blood glucose levels (Owino et al., 2016). Mice lacking the MT1
receptor exhibit higher mean blood glucose levels (Mühlbauer
et al., 2009) and are more glucose intolerant and insulin resistant
as compared to WT and MT2 KO male mice (Contreras-
Alcantara et al., 2010). This systemic insulin resistance of MT1
KO mice is accompanied by an impaired skeletal muscle glucose
uptake, adipose tissue glucose uptake and a significantly reduced
liver insulin sensitivity (Owino et al., 2018). In line with these data
several MT1 receptor variants were found that are associated with
increased fasting plasma glucose levels and type 2 diabetes risk in
humans (Bouatia-Naji et al., 2009; Prokopenko et al., 2009; for
review see; Karamitri et al., 2013).

In pancreatic islets of MT1-; MT2- and double KO mice the
insulin secretion was reduced (Mühlbauer et al., 2009) indicating
an inhibitory role of the melatoninergic system on insulin
secretion and/or synthesis. Also, the basal glucagon secretion
was reduced in the pancreatic islets of mice lacking the MT2
receptor (Stumpf et al., 2008).

Inconsistent data on glucose metabolism were obtained in
MT2 KO animals: one study reported that MT2 KOmice showed
no specific phenotype as compared to the WT and are neither
insulin resistant nor glucose intolerant (Contreras-Alcantara
et al., 2010). Another more recent study reported a decreased
hepatic insulin sensitivity and an increased insulin secretion in
MT2 KOmice (Tuomi et al., 2016). However, these discrepancies
might result from the different sexes used in these studies and/or
strain differences. The earlier metabolic characterization of MT2
KO mice was conducted in male mice backcrossed with C3H/f+/+

to remove the rd mutation, whereas the more recent study was
performed in female mice. Notably, variants of the MT2 receptor
in humans have been linked to impairments in insulin secretion
as well as increased fasting glucose levels (Bouatia-Naji et al.,
2009; Lyssenko et al., 2009; Bonnefond et al., 2012; for review see;
Karamitri et al., 2013).

There are further important metabolic effects of melatonin on
other tissues, as well as effects on food uptake and timing. Leptin
is an adipose tissue-derived hormone that is, released in a
circadian manner from adipocytes. Leptin is involved in the
regulation of energy balance by inhibiting hunger, which in
turn diminishes fat storage in adipocytes.

MT1 KO mice have been shown to be leptin-resistant since the
administration of exogenous leptin failed to induce the
phosphorylation of signal transducers and activators of
transcription 3 (STAT3) in the arcuate nucleus of these animals
(Buonfiglio et al., 2019). Furthermore, the leptin receptor mRNA
levels in the hypothalamus of MT1 KOwere reduced as compared to
controls (Buonfiglio et al., 2019). Therefore, the lack ofMT1 signaling
induces leptin resistance probably by down-regulation of the leptin

receptor expression. Since leptin resistance results in an increased
food intake and weight gain, the melatoninergic system might be
associated with body weight control and diet induced obesity. Indeed,
in a recent study which examined the effect of high fat diet, MT1
receptor KO mice displayed a higher cumulative weight gain and
hyperglycemia as compared to their WT mice (Owino et al., 2019).

In addition, melatonin receptors seem to be involved in food
intake and its timing. MT1 receptor KO mice spent more time
feeding than C3H mice. However, the MT1 receptor deletion did
not alter the amount of food ingested, but the temporal pattern of
feeding compared to WT mice (Fischer et al., 2017).

In an experiment testing the rewarding/reinforcing properties
of food, the MT1 receptor KO mice consumed less snack food as
compared to MT2 receptor KO and C3H mice. In addition, the
melatonin-proficient C3H conditioned to snack food during the
light phase developed a place preference, whereas mice lacking
both melatonin receptors did not develop a place preference for
snack food (Clough et al., 2018). This suggests that the
melatoninergic system may also modulate the reward pathway.

Materno-Fetal Communication
As shown for various species, the melatoninergic system plays an
important role in maternal-fetal communication by providing
rhythmic signals to the fetuses who are not yet able to produce
melatonin. Fetuses get access to maternal melatonin via the
placenta and newborn animals via the milk (Weaver and
Reppert, 1986; Weaver et al., 1987; Mendez et al., 2012; Bates
and Herzog, 2020; Lužná et al., 2021). Mouse models were also
used to investigate maternal-fetal communication (Čečmanová
et al., 2019), however only very few studies in mice relate to the
melatoninergic system (Ansari et al., 2009; Christ et al., 2012).
These data provided evidence that maternal melatonin is an
important synchronizing signal for circadian rhythms in utero
and postnatally. However, as many mouse strains are melatonin-
deficient, melatonin seems to be largely dispensable for the
development of the circadian system.

CONCLUSION

The comparison between mouse strains with an intact and a
compromised melatoninergic system have proven useful to
understand the physiological impact of the melatoninergic
system. These investigations provide a guideline for future
investigations on the impact of the melatoninergic system on
various diseases. The recent development of melatonin-proficient
congenic mice on a C57Bl-background offers opportunities for
background-independent comparisons, yet a melatonin-deficient
C3H-mouse is a another desiderate that would—in the interplay
with the MT receptor KOs that are available for that strain—help to
further dissect the functional roles of the components of the system.
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