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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related
death worldwide. This high mortality rate is due to the disease’s lack of symptoms, resulting in a
late diagnosis. Biomarkers and treatment options for pancreatic cancer are also limited. In order
to overcome this, new research models and novel approaches to discovering PDAC biomarkers
are required. In this review, we outline the hereditary and somatic causes of PDAC and provide
an overview of the recent genome wide association studies (GWAS) and pathway analysis studies.
We also provide a summary of some of the systems used to study PDAC, including established
and primary cell lines, patient-derived xenografts (PDX), and newer models such as organoids and
organ-on-chip. These ex vitro laboratory systems allow for critical research into the development and
progression of PDAC.

Keywords: pancreatic cancer; GWAS; genomics; organoids; cancer models

1. Introduction

With a five-year survival rate of 9%, pancreatic cancer has one of the worst outcomes of all cancers.
Due to its rapid progression and fatal outcome, long-term survivors are limited to those with resected
early-stage tumours [1,2]. As 80% of pancreatic cancer patients are diagnosed after the disease has
metastasized, most people diagnosed are ineligible for resection, the only curative treatment. It is the
fourth leading cause of cancer-related death in the Western world, and by 2030 it is estimated that
pancreatic cancer will surpass breast and colorectal cancer to become the second most fatal cancer in
the United States [3]. The most common form of pancreatic cancer is pancreatic ductal adenocarcinoma
(PDAC), which occurs in the exocrine pancreas, with the remaining 5% of cases in the endocrine
pancreas [4]. Epidemiological factors, including smoking, obesity, type II diabetes mellitus and acute
pancreatitis account for approximately 25% of cases of PDAC [5–8].

The mean survival time of patients who receive the surgery and adjuvant treatment is 11 to 23
months. Of the patients who are operated on, 60% relapse within 12 months; this is most likely due to
micro-metastases which were not detected during the diagnostic computed tomography (CT) scan [9].
Approximately 25–30% of patients treated with chemotherapeutic drugs respond, however most
eventually become resistant. Resistance mechanisms include deficiencies in drug uptake, alteration of
drug targets, activation of DNA repair pathways, and resistance to apoptosis [10]. Gemcitabine is the
mainstay of modern chemotherapy for pancreatic cancer [11]. FDA approval has also been granted for
gemcitabine in combination with erlotinib and paclitaxel in 2005 and 2013 respectively [12]. The drug
combination FOLFIRINOX (irinotecan, oxaliplatin, 5-fluorouracil, and leucovorin) was approved by
the FDA in 2011.
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2. Genomic Variants of PDAC

In addition to epidemiological factors which account for 25% of cases, research into the genetic
landscape of the disease, including familial cancer syndromes, inherited predisposition loci and somatic
mutations is vital to identifying those at risk of developing the disease.

2.1. Familial Cancer Syndromes

Familial cancer syndromes including Peutz-Jegher Syndrome (PJS), pancreatitis, familial atypical
multiple mole and melanoma syndrome (FAMMM), Lynch syndrome, Hereditary Breast and Ovarian
Cancer (HBOC) syndrome and Familial adenomatous polyposis (FAP), account for approximately
5–10% of pancreatic cancers. Table 1 contains an outline of the diseases and syndromes associated with
an increased risk of developing PDAC.

Table 1. Familial Cancer Syndromes associated with an increased risk of developing pancreatic ductal
adenocarcinoma (PDAC). The table includes increased risk, genes associated with syndrome/disease,
pathways associated with syndrome/disease and pathway function.

PJS 1 Pancreatitis FAMMM 2 Lynch Syndrome HBOC 3 FAP 4

Increased
Risk 132-fold 69-fold 13–22-fold 8.6-fold 3.5–10-fold 4.5–6-fold

Genes STK11/LKB11
PRSS1

SPINK1
CFTR

CDNK2A

MLH1
MSH2
MSH6
PMS2

BRCA1
BRCA2
PALB2

APC

Pathways AMPK/mTOR Trypsin Retinoblastoma Mismatch repair Homologous
recombination repair Wnt signalling

Pathway
Function

Cell growth
Polarity

Metabolism

Auto-activation of
trypsin

G1 to S-phase
checkpoint

Maintenance of
genomic stability

Repair of double-strand
breaks in DNA

Regulation of
gene transcription

1 Peutz-Jegher Syndrome; 2 Familial atypical multiple mole and melanoma syndrome; 3 Hereditary Breast and
Ovarian Cancer syndrome; 4 Familial adenomatous polyposis.

Peutz-Jegher Syndrome (PJS) is a rare autosomal dominant disease, characterised by
gastrointestinal polyposis, mucocutaneous pigmentation, and cancer predisposition [13]. PJS increases
the risk of several malignancies, including breast, pancreatic and gynaecological cancers [14].
Individuals with PJS have a 132-fold increased risk of developing PDAC [15]. It is caused by a
mutation in STK11, also known as liver kinase B1 (LKB1). STK11/LKB1 is a serine/threonine protein
kinase which drives many cell functions, including cell growth, regulation of metabolism and cell
polarity, mainly through AMP-activated protein kinase/ mammalian target of rapamycin (AMPK/mTOR)
signalling [16]. The most common STK11/LKB1 mutations are deletions or inactivating mutations. In a
genetically engineered mouse model (GEMM) study by Helez et al. [17] STK11/LKB1 deletion resulted
in defective acinar cell polarity, with abnormal cytoskeleton, loss of tight junctions, and progressive
acinar degeneration. Deletion of STK11/LKB1 in the pancreas also resulted in the development of
serous cystadenomas. Morton et al. [18] showed that the STK11/LKB1 deletion resulted in accelerated
KRASG12D tumorigenesis, through decreased TP53 and p21 dependent growth arrest. These studies,
along with others provide strong evidence for a tumour suppressor function for this gene [19].

Pancreatitis is the second most common hereditary cause of PDAC. Pancreatitis is an inflammatory
disorder of the pancreas, caused by the premature activation or lack of inhibition of digestive enzymes.
There are several forms of hereditary pancreatitis, including a gain of function mutation in serine-1
protease gene (PRSS1), which makes trypsinogen [20]. This gain of function mutation results in
increased trypsinogen auto-activation, which triggers pancreatic self-digestion. Other genes associated
with hereditary pancreatitis include SPINK1, a pancreatic secretory trypsin inhibitor and CFTR (cystic
fibrosis transmembrane regulator) [21]. The chronic inflammation of the pancreas which characterises
pancreatitis result in the presence of reactive oxygen species (ROS) in the pancreas [22]. These ROS,
including nitric oxide and free radicals inhibit apoptosis, and can result in direct DNA damage,
resulting in oncogenic mutations in genes such as KRAS, CDKN2A and TP53 [23,24]. Cytokines which
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are released in response to pancreatitis activate pancreatic stellate cell and result in the development of
fibrosis, facilitating the development of PDAC [25–27]. People with chronic or hereditary pancreatitis
have a 69-fold increased risk of pancreatic cancer [28].

An autosomal dominant disorder, familial atypical multiple mole and melanoma syndrome (FAMMM)
is characterised by melanoma in more than one first- or second-degree relative, high total body mole count
(often >50), and moles with certain histopathological features. The melanomas can arise from the atypical
moles or de novo, superficially spreading melanoma and/or nodular melanoma [29]. Three original
descriptions in different kindreds implicated germline mutations or microdeletions in cyclin-dependent
kinase inhibitor 2A (CDNK2A), in particular the p16INK4a isoform, as causative for FAMMM [30].
FAMMM results in a 13 to 22-fold increased risk of PDAC. CDKN2A is also mutated in 90–95% of
sporadic PDACs [31,32]. It inhibits cyclin dependent kinases 4/6 (CDK4/CDK6) and thereby activates the
retinoblastoma (RB) family of proteins, which blocks the transition from G1 to S-phase [33]. It is mainly
associated with the autosomal dominant familial melanoma, but patients also have an increased risk of
PDAC [34]. By identifying individuals with an increased risk of developing PDAC from a family history,
or families with a gene defect which results in PDAC, Vasen et al. [35] detected PDAC in 7.3% of the
CDKN2A mutation carriers, by providing an annual Magnetic Resonance Imaging (MRI) scan, resulting in
a resection rate 75% and an overall 5-year survival rate of 24%.

Lynch syndrome is also associated with an increased risk of colorectal cancer and PDAC [36].
It is caused by mutations in the mismatch repair genes (MMR), mainly MutL homolog 1 (MLH1),
MutS homolog 2/6 (MSH2/MSH6) and PMS1 Homolog 2 (PMS2). The MMR maintains the integrity
of the genome by repairing DNA replication errors [37]. Bi-allelic loss of MMR genes results in
genomic instability, and an increase of unrepaired replication errors, particularly affecting repeats,
such as microsatellites, termed microsatellite instability-high (MSI-H). MSI-high results in genome
hypermutability, with a 100- to 1000- fold increase in mutations [38,39]. Individuals with Lynch
Syndrome have 8.6-fold increased risk of PDAC [40].

Hereditary Breast and Ovarian Cancer syndrome is caused by mutations in the tumour suppressor
genes BRCA1 and BRCA2. People with this syndrome have a 3.5–10-fold increased risk of developing
PDAC [41]. Mutated variants of the Partner and Localiser of BRCA2 (PALB2) gene are also associated
with a familial risk of PDAC [42]. PALB2 has a critical role in homologous recombination repair (HRR)
and recruits BRCA2 and RAD51 to DNA breaks. Jones et al. [43] found that in 96 patients with PDAC,
three had truncating mutations in the PALB2 gene, producing a stop codon, which was not present in
1084 healthy controls. Slater et al. [44] observed a similar prevalence of PALB2 mutations (3.7%) in a
panel of 81 European patients with familial pancreatic cancer. A study in a 61-year-old patient with
advanced localised PDAC, with a bi-allelic inactivation of PALB2, found treatment with Mitomycin C
resulted in disease regression, and at the 3-year follow up, the patient remained asymptomatic. Studies
also showed that patients with wild type PALB2 are Mitomycin C resistant [45].

Familial adenomatous polyposis (FAP), is a familial cancer syndrome which results in an increased
risk of colorectal cancer [46,47]. It is characterised by colorectal polyps, due to a mutation in the
adenomatous polyposis coli (APC) gene. APC acts to negatively regulate the Wnt signalling pathway [48].
The Wnt proteins stabilise cytosolic β-catenin, which associates with the transcriptional regulators T
cell factor/lymphoid enhancer factor-1 family (TCF), thereby allowing the expression of Wnt-regulated
genes [49]. Murine studies of colorectal cancer have found that mutations in the APC gene result in
hyperproliferation of cells [50]. Individuals with FAP have 4.5 to 6-fold increased risk of PDAC [47].

2.2. Inherited Predisposition Loci

Recently, the landscape of pancreatic cancer has been redefined through gene expression and
genetic diversity signatures identified using next generation sequencing (NGS) and genome wide
association studies (GWAS). GWAS examines hundreds of thousands of variants, in thousands
of individuals, to identify genotype-phenotype associations, and helps to identify risk factors for
multifactorial diseases [51]. Through this, GWAS can enable the identification of people at risk of
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developing a disease, and also can be used for the examination of the biological underpinnings of
a disease. GWAS enables the use of potential preventative measures for those who are identified
as at risk, and also for the development of treatments for the disease. GWAS use single nucleotide
polymorphisms (SNPs) which are single base pair changes in the genome. SNPs can occur in the gene,
in both introns and exons which result in amino acid changes, different mRNA splicing and reduce the
mRNA transcript stability [52]. SNPs can also occur in the transcriptional regulatory elements such as
transcription factor binding sites, enhancers and promoters, resulting in altered mRNA expression [53].

Several PDAC GWAS studies have been performed over the past decade [54–59] and have identified
common variants associated with risk of pancreatic cancer in European populations (Figure 1). Obazee
et al. [60] used the PANDoRA dataset to validate a truncating BRCA2k336X (rs11571833) and pathogenic
CHEK2I157T (rs17879961) variants. Both genes are critical in DNA repair and the maintenance of genomic
stability. While the results of the GWAS have informed the genetic component of predisposition loci,
it does not give a clear indication of the cause of PDAC. The use of complementary GWAS pathway
analysis—a method of analysing this genomic data through sets defined by functional pathways—offers
the potential of greater power for discovery and natural connections to biological mechanisms. Pathway
analysis allows for the identification of causative SNPs whose individual effects may not be significant
enough to be detected in GWAS [61]. Pathway analysis of PDAC GWAS SNP data has been previously
performed [62,63]. Walsh et al. [63] performed a pathway-analysis based on meta-analysis of PDAC
GWAS. Pathways associated with the development of the pancreas, including pancreas development and
the regulation of beta cell development were among the pathways identified in these studies (Table 2).
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Figure 1. GWAS significant single nucleotide polymorphisms (SNPs) identified in pancreatic cancer 
cases of European ancestry. Highlighted GWAS SNP, closest gene, chromosome and odds ratio (95% 
confidence interval) [54–59]. This figure was created using Servier Medical Art templates, which have 
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Table 2. Gene sets/pathways identified for risk of developing PDAC from pathway analysis studies [62,63].

Pathway/Gene Set Pathway Reference Study Pathway p-Value

Maturity onset diabetes of the young KEGG [63] 5.10 × 10−7

Regulation of Beta cell development REACTOME [63] 1.92 × 10−6

Breast Cancer 17Q11 Q21 amplicon 1 NIKOLSKY [63] 2.00 × 10−6

Role of EGF Receptor Transactivation by GPCRs in
Cardiac Hypertrophy BIOCARTA [63] 3.79 × 10−6

ATM Pearson Correlation Coefficient (PCC) Network 2 PUJANA [63] 1.25 × 10−5

Pancreas development [62] 2.0 × 10−6

Heliobacter pylori lacto/neolacto [62] 1.6 × 10−5

Hedgehog [62] 0.0019
Th1/Th2 immune response [62] 0.019

Apoptosis [62] 0.023
1. Genes within amplicon 17q11-q21 identified in a copy number alterations study of 191 breast tumour samples.
2. Gene network transcripts whose expression positively correlated with ATM gene in normal tissues.

A recent study by Campa et al. [64] looked at the genetics of early onset pancreatic cancer
(EOPC)—disease which occurs in those sixty-years or younger, and represents 20% of cases of PDAC.
Four SNPs (rs7155613, rs2328991, rs4891017 and rs12610094) were found to be associated with EOPC (p
< 1 × 10−4). Of the SNPs identified, rs2328991 at 13q22.3 was found to be significant in the replication
dataset. The SNP is 57 kb from the 3′ UTR of the potassium channel tetramerization containing 12 gene
(KCTD12) which has previously been implicated in gastrointestinal stromal tumours.

2.3. Somatic Mutations

Studies into the PDAC genome have shown that there are approximately 60 alterations per tumour;
most of which are point mutations [65]. Activating mutations of KRAS are nearly universal, and
inactivation of TP53, SMAD4 and CDKN2A occur at rates of >50% (Figure 2) [66].
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Figure 2. Most common somatic common gene mutations in PDAC [67,68].

KRAS is a molecular switch, when bound to GTP regulates cell proliferation, differentiation,
apoptosis and cell signalling. The KRAS mutation is near universal in PDAC, with 94% of tumours
possessing the mutation [68]. Activating point mutations in codon 12, 13, or 16, (most commonly
G12D), result in reduced GTP hydrolysis. Cases with KRAS mutations at codon 61 give a favourable
prognosis, as there is less ERK activation [69]. KRAS mutations in pancreatic cancer are believed to
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be the early events in neoplastic transformation [70]. Oncogenic KRAS is not sufficient to initiate
the carcinogenesis process, this relies on the downstream activation of Raf-1, Rac, Rho or PI3K [71].
RAS proteins are modified by farnesyl transferase, an enzyme which adds 15-carbon farnesyl lipid to
the carboxyl-terminal cysteine of RAS. This modification is shown to be essential for RAS membrane
association and transformation [72]. A Phase III clinical trial of R115777, a selective inhibitor of farnesyl
transferase combined with gemcitabine failed to show increased life expectancy in comparison to
gemcitabine plus placebo [73]. Patients with KRAS mutations were associated with a median survival
time of 17 months compared to 30 months for those without mutations [70]. Approximately 3% of
PDAC cases are due to microsatellite instability or altered chromosome ploidy [74]. This is usually
due to mutations in the MMR genes MSH2 and MSH6. Typically, KRAS is wild-type in cancers with
these mutations.

CDKN2A, previously discussed as the causative gene of FAMMM, is inactivated in 95% of PDAC
cases, by homozygous deletion, mutation of alleles or promoter hypermethylation resulting in gene
silencing [75].

TP53 is the most frequently mutated gene in cancer [76]. It acts as a tumour suppressor, and has
roles in apoptosis, genomic stability, inhibition of angiogenesis and arrest of cell growth [77]. It is
mutated in 75% of PDAC tumours, mainly by point mutations [78]. TP53 controls cell cycle at the
G1/S interface and plays a vital role in inducing programmed death in response to DNA damage [1].
Weissmueller et al. [79] found mutant TP53 induced platelet-derived growth factor receptor b (PDGFRb).
Knockdown of PDGFRb in PDAC cell lines resulted in reduced invasion of the cells. Mutant TP53
inhibits p73, which represses PDGFRb. The study found that increased expression of PDGFRb in PDAC
patient samples correlates with a worse outcome for patients.

SMAD4 is a transcription factor in TGFβ signalling pathway and is inactivated in 50% of advanced
pancreatic cancers. It acts with TGFβ1 as a tumour suppressor to regulate pancreatic cell cycle arrest,
and apoptosis, mediated by targets such as p21, which causes G1 cell cycle arrest [80]. Patients with
biallelic deletion of SMAD4 more frequently had metastasis than those with wild type SMAD4 [81].

Whole genome sequencing of PDAC identified other genes which are frequently mutated in
PDAC, such as ataxia telangiectasia mutated (ATM), a serine/threonine kinase with a role in DNA
double strand break repair; and pathways including the TGFβ, the β-catenin and Notch pathways [58].
Recent data based on large-scale sequencing studies reported up to 18% of ATM mutations in PDAC
cohorts [65,67,68,82,83].

3. Models of PDAC Research

3.1. Established PDAC Cell Line Cultures

Two-dimensional, cell-based assays are an important tool, and have been the mainstay of cancer
research for over 50 years. The first cell line (HeLa) was developed in 1950 from cervical carcinoma [84].
Cell lines are able to grow indefinitely, making them an easy to use, low cost, repeatable model, and
thus important for both drug discovery, and proof-of-concept studies. While the usefulness of cell lines
in cancer research is certain, their use as a clinical model is debatable [85]. Cell lines often undergo
genetic modifications, including copy number variation and point mutations during passaging [86].
Cell lines tend to be homogeneous which does not represent the heterogeneous nature of PDAC
tumours. Cell lines are often developed from late stage, aggressive tumours, so they cannot be used to
model tumour progression [87].

PDAC cell lines recapitulate the genomic changes which lead to the development of the disease.
The four most common mutations (KRAS, TP53, CDKN2A SMAD4) occurring in PDAC tumours are
found in cell lines at similar percentages and PDAC cell lines also demonstrate the different phenotypes
and genotypes which are found in PDAC subclasses. A commonly used PDAC cell line is BxPC3,
developed from pancreatic adenocarcinoma of a 61-year old female. BxPC3 has TP53 mutations, a
homozygous deletion in SMAD4, but is CDKN2A wild type and is the only KRAS wild type PDAC cell
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line. Other common PDAC cell lines include, PANC-1, developed from PDAC of a 56-year old male
and MIAPaCa-2, developed from a PDAC of a 65-year old male, harbour mutations in KRAS and TP53,
with homozygous deletion in CDKN2A and wild type SMAD4. Capan-1 was developed from a liver
metastasis of a 40-year-old male with PDAC, and harbours mutations in KRAS, TP53, CDKN2A and
SMAD4, and is the only PDAC cell line with a BRCA2 mutation. A detailed review from Deer et al. [88]
provides an overview of the available information on the most commonly used PDAC cell lines.

Due to genomic drift, differences in cell culture procedures and media, in different labs may result
in genotypic and phenotypic differences in the same cell line. Recently, Ben-David et al. [89] performed
a full genomic characterisation of 27 different strains of the ER-negative breast cancer cell line MCF7.
Changes were observed including differential activation of gene expression programs, morphology
and proliferation. Drug sensitivity was shown to vary in the cell lines, with 75% of the drugs that were
tested which strongly inhibited some of the MCF7 cell lines, were completely inactive in others.

Another issue with the use of established cell lines include cross contamination. Boonsta et
al. [90] have identified two oesophageal adenocarcinoma cell lines which were contaminated, and
have been used in 11 patents, and more than 100 published studies, leading to clinical trials. Horbach
and Halffman [91] identified 32,755 articles reporting on research with misidentified cells, which in
turn have been cited by over half a million papers. To overcome these issues, a number of journals
require cell lines to verify before publishing a research paper. The method used to validate the cell
lines are short tandem repeat (STR) profiling. These techniques were initially developed for forensic
applications [92]. STR profiling compares microsatellite (2 to 7 base pairs) repeats at specific loci which
are unique to each individual [93]. It is carried out by using commercially available PCR primers
which are compared to size markers, allowing for a comparison of the lengths of the PCR products at
each locus to the STR profile made from the original donor material [94].

Two-dimensional (2D) established cell line models have been standard method for cancer drug
testing for many years, however, of late, the limitations of using established cell lines in 2D are being
increasingly recognised. In actuality, 2D cell culture platforms often fail to recapitulate the physiology of
tumours in vivo due to different cellular architecture, adherence structures and biochemical gradients.

3.2. Primary Cell Lines

Primary cell lines are an emerging tool for cancer research. These cell lines are derived from a
patient tumour or biopsy, dissociated, and grown in vitro [95]. Primary cell lines are heterogeneous,
and are at an early passage number, so are more representative of the original tumour [96]. Primary
cell lines may allow for the development of personalised cancer therapy through the development
of primary cell lines from patient tumour, and the function testing of chemotherapeutic drugs on
the living cancer cells [97]. While primary cultures are more representative of the original patient
tumour, there are several issues with PDAC primary cell lines—they are often difficult to establish,
only grow for a limited number of passages, and often tumour cells are overgrown by stromal cells
such as fibroblasts [96,97].

3.3. Organ-on-Chip

“Organ-on-chip” is a microfluidic chip containing multiple cell types which are joined by
microchannels and can simulate the activities of entire organ-systems. These cancer models can be
used to represent the tumour microenvironment, and can show cancer initiation and progression,
observations of the interactions and signalling pathways of different cell types [98]. This model can
be used to identify potential metastasis sites of the tumour, observed the impact of immune cells in
cancer, and to determine the effects of cancer treatment on other organs [99,100].

Beer et al. [101] used HepaChip organ specific 3D cell culture chambers to culture PDAC cell lines
PANC-1, BcPC3 and MIAPaCa-2 with the extracellular matrix protein collagen. The cells maintained
the viability, morphological appearance, and growth characteristics of 3D spheroids when grown on
a chip.
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Using an organ-on-chip model, Nguyen et al. [102] studied tumour-endothelium in PDAC, which
is a poorly vascularised cancer. PDAC 3D organotypic models were placed in a chamber next to
endothelialised, perfused lumen. The study found that through the TGF-β receptor signalling pathway,
activin-ALK7 allowed for endothelial ablation, where the PDAC cells invaded and removed the
vascular endothelium, leaving tumour filled structures. These results were then validated in vivo.

3.4. Patient Derived Xenografts (PDX)

Patient derived xenografts (PDX) are another commonly used model of PDAC. Patient tumour
is implanted subcutaneously or orthotopically in severe combined immune deficiency (SCID) mice
until the tumour has grown to a sufficient size to be sub-cultured in new mice. These models allow for
tumours to have the original cell-to-cell interactions [103]. The original tumour microenvironment can
also be recapitulated using orthotopic implants. A study by Garrido-Laguna et al. [104] showed that
orthotopic implantation closely mirrors the results from the clinic. Orthotopically implanted tumours
treated with gemcitabine had a similar response to that in patients, which was not observed in the
subcutaneous implanted tumours.

PDX studies have been used for the identification of biomarkers of PDAC. Jimeno et al. [105] used
11 PDX tumour samples, with known gemcitabine sensitivity to identify biomarkers for gemcitabine
response in patients. This group exposed fine-needle biopsy of the PDX tumour to gemcitabine or
vehicle control for 6 h and compared gene expression of the treated and untreated samples using
qRT-PCR 45-gene array. This assay identified that Polo-Like Kinase 1 (Plk1), a serine/threonine-protein
kinase had differential expression of >50% in the sensitive samples compared to resistant tumours.
To further validate this biomarker, the group performed siRNA knockdown and inhibition of the
Plk1 pathway using a pathway modulator which resulted in a synergistic effect with gemcitabine in
gemcitabine-resistant in vitro models. The study illustrates the ability to use PDX models to identify
and validate a biomarker of PDAC.

There are many advantages to using PDX tumours for the study of pancreatic cancer. Tumours
can be established in mice using a small amount of tumour; tumours retain the heterogeneity, as well
as the genetics, and histological characteristics of the original tumour during passaging. PDX tumours
also provide an unlimited source of tumour, which can be used for in vivo and ex vivo drug testing.
Nevertheless, there are several disadvantages to the use of PDX models—they are expensive, time
consuming, require the use of animals, and their use is subject to strict regulations [106]. PDX models
take up to four months to develop tumours. Subcutaneously implanted tumours are not grown in the
same microenvironment as PDAC tumours, and rarely form metastases [107]. As the tumour is grown,
and sub-cultured in mice, the human stromal cells, such as fibroblasts and blood vessels are replaced
by murine cells [108]. Finally, as SCID mice do not have an immune system, the PDX tumours cannot
recapitulate the complex interactions between the PDAC tumour and the immune system, which is
critical in resistance mechanisms of PDAC, and it also prevents the use of PDX models in testing of
immune modulating drugs, which are increasingly being used in cancer treatment.

3.5. Genetically Engineered Mouse Models (GEMM)

Genetically engineered mouse models of PDAC can be used for both basic and translational
cancer research. GEMM develop de novo tumours in an immune proficient environment, mimic the
histopathological and molecular features of human tumours [109]. They also spontaneously develop
metastatic disease [109]. With the use of CRISPR genome editing technology allowing for site directed
double strand breaks resulting in gene knockouts and the introduction of defined mutations, the
development of GEMM has become easier [110]. The KRASLSL.G12D/+; Pdx-1-Cre (KC) inducible
knock-in GEMM, presents with slow disease progression, results in the development of Pancreatic
Intraepithelial Neoplasia (PanIN). At a low frequency, these PanINs can also develop into locally
invasive, and metastatic adenocarcinoma, allowing for the use of the KC model to study PanIN
development and strategies to delay PDAC [111].
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In order to overcome the challenges in studying immune-related drugs, GEMM contribute to
immune research in PDAC. These models most include the most commonly mutated genes in PDAC,
such as KRAS, TP53, SMAD4 and CDKN2A. The LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC)
model is one of the most commonly used models for studying immunotherapy in PDAC. This model
has the same features of the immune microenvironment as human PDAC, including the exclusion of
effector T-cells [112]. The KPC model utilises a Cre-Lox technology, with the KRASG12D and TP53R172H

mutations, with the Cre-recombinase activated by pancreas specific transcription factor PDX1. In this
model, the new-born mouse has a normal pancreas, with PanIN development beginning at 8–10 weeks,
with epithelial to mesenchymal markers such as decreased expression of E-cadherin, and increased
expression of Zeb1 and Fsp1. At 16 weeks, the mice have developed locally invasive PDAC and
the mice display cachexia, jaundice, weight loss malignant ascites and metastases. The KPC PDAC
mouse model has been used in many pre-clinical studies, including Olive et al. [113] who studied the
co-administration of gemcitabine and IPI-926, a drug which inhibits the Hedgehog signalling pathway
to deplete tumour associated stroma, which resulted in an increased intertumoral concentration of
gemcitabine. Frese et al. [114] used the model to study the effect of paclitaxel in combination with
gemcitabine, and found increased intertumoral levels of gemcitabine due to the decreased levels of
cytidine deaminase, which metabolises gemcitabine.

4. Organoids

The use of three-dimensional (3D) in vitro PDAC models can overcome many of the limitations
of traditional cancer research models. As they are not attached to plastic, 3D models have more
appropriate physiological morphology and signalling pathways compared to cells grown in 2D [115].
Similar to in vivo conditions, 3D cultures are exposed to complex environments, with varied exposure
to oxygen, nutrients, stress and waste. The use of 3D cultures also allows for the study of cell-to-cell
interaction; drug penetration, response and resistance [116,117]. Another advantage of using 3D
models, is the cultures contain cells in multiple growth phases, with cells which are proliferating,
quiescent, hypoxic and necrotic cells, whereas cells grown in 2D tend to be in the same growth
phase [118]. Thus, 3D models have the same gene and protein expression profiles as the original
tumour whereas differential expression is present in 2D cell models [119–121]. Cells which are grown
in 3D can also be cultured and tested for longer, as 2D cells require regular trypsinisation as cells reach
confluency faster [122]. Previous studies have shown that cells grown in 2D and cells grown in 3D
have different sensitivity levels to chemotherapeutic drugs, with 3D models showing increased levels
of drug resistance, which is more representative of the in vivo drug response [123,124].

The first publication describing intestinal organoids was published in 2009 [125], and since then,
the methods have been used to create organoids in a large range of tissues and to study a wide range
of diseases. Organoids are 3D spheroid cultures which represent the in vivo architecture of the organ
or tumour. Organoids are developed from stem cells, which self-organise to resemble tissues from
within the organ. They can be derived from multiple types of stem cells, including embryonic, induced
pluripotent, tumour and normal adult stem cells [126]. Organoids produce a relevant and highly
adaptable model cancer system [127]. They are grown within a 3D matrix system, such as hydrogels,
basement membrane extract and Matrigel which have been supplemented with growth factors allowing
them to mimic the pancreatic microenvironment [128]. A specialised media is required, with multiple
growth factors which mirror the niche organ microenvironments. As organoids are derived from stem
cells, they display cell heterogeneity after several passages [127]. Like cell lines, organoids can grow
indefinitely and can be cryopreserved, so are a useful PDAC model. Growing organoids in vitro also
allows for the observation of disease progression, which requires complex imaging systems in PDX
models, or in established cell lines, as these are usually produced from late stage tumours [129–131].
Organoids can also be developed from tiny volumes of patient tumour, such as fine needle biopsy, and
grown to allow the high throughput screening of drugs and drug combinations [132]. The Tuveson
group developed a method which allows for the development of organoids from fine-needle biopsies
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guided by endoscopic ultrasounds [132]. Organoids can also be developed using tissue biobanks.
Walsh et al. [133] investigated the morphology, viability and drug response of frozen organoids with
both flash freezing, and DMSO frozen organoids. Expression Ki67 and cleaved caspase3 were assessed
to determine viability. Both samples that were flash-frozen and frozen slowly with DMSO were
viable, indicating that biobanks of tumour samples could potentially be used for the establishment of
organoid cultures.

Organoids can also be orthotopically transplanted into mice, this results in the organoid progressing
through all stages of tumour development from PanIN to a PDAC tumour, which represents the
tumour of origin [134]. In comparison, when a monolayer of cells is transplanted, the cells rapidly
become an aggressive carcinoma [113].

4.1. Development of PDAC Organoids

Studies outlining the methods for the production of human and mouse pancreatic organoids have
been published by multiple groups [135–137]. Both Grapin-Botton and Clevers groups developed
methods for the production of murine pancreatic organoids in Matrigel. Grapin-Botton [135] developed
pancreatic organoids for use as a model for diabetes. This group used dissociated mouse embryonic
pancreatic progenitor cells for the development of organoids. These organoids showed both pancreas
morphology and differentiation, and the in vitro maintenance of these pancreatic organoids required the
activation of both Notch and fibroblast growth factor (FGF) signalling pathways, which recapitulated
the in vivo niche signalling pathway within the pancreas. Clevers [136] developed a method which
allowed for the propagation of adult murine pancreatic duct cells as organoids. These organoids
were embedded in Matrigel, and a cocktail of growth factors, including Rspondin1 and Wnt3a which
stimulate the Wnt signalling pathway.

Clevers, in collaboration with the Tuveson lab, developed a method for the establishment, and
growth of normal and cancerous pancreatic organoids from human and mouse tissues [134]. This study
showed that both tissues could be established using the same conditions, however, human organoids
required additional growth factors, such as Wnt3a. Orthotopic implantation of the tumour and normal
organoids resulted in full tumour and ductal development. The methods have been used to further
PDAC research, by researching the tumour microenvironment, personalised treatment, genetics and
testing of novel therapeutics for PDAC.

To prevent differences in drug response due to batch-to-batch variation of media and extracellular
matrix (ECM), Georgakopoulos et al. [138] developed a chemically defined, serum free media, and a
chemically defined hydrogel, which allows for the development and propagation of human pancreas
tissue. Their study found that the organoids retained their ductal morphology, biomarker expression,
and genomic integrity after growth for several months.

In previous work in our lab, we have developed and validated a novel method which allows
for the simultaneous development of organoids and primary cell lines from a PDX tumour sample.
We developed a method for the establishment of organoids from primary cell lines, termed cell
line organoids (CLOs). The usefulness of CLOs as PDAC organoid models is highlighted, as they
maintain the same stem cell expression, morphological properties, and RNA-sequencing transcriptomic
signatures as their matched patient-derived organoids and PDXs. These models provide a manageable,
expandable in vitro resource for downstream applications such as high throughput screening, functional
genomics, and tumour microenvironment studies [139].

4.2. Organoids as PDAC Tumour-Drug Response Predictors

Using organoids as predictors of drug response can facilitate advanced pre-clinical drug discovery
and the personalised treatment of PDAC. Hou et al. [140] used four patient-derived organoid lines
including two PDAC derived organoids and two cancer associated fibroblast (CAF) organoids for high
throughput screening (HTS) of the National Cancer Institute (NCI) approved oncology set, and 3300
clinically approved drugs.
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Huang et al. [141] identified a genotype-phenotype relationship where TP53R175H induces cytosolic
SOX9 localisation, whereas in normal pancreas SOX9 is localised in the nucleus. This finding was
verified in two independent PDAC cohorts, and cytoplasmic SOX9 was associated with a higher tumour
grade, poor-disease free survival, and poor overall survival. In this study, organoids also showed a
poor response to gemcitabine, the mainstay for PDAC treatment with only 30% growth inhibition.

Studies by Romero-Calvo et al. [142] compared the structural and genetic features of organoids
with the primary PDAC tumours, and found the organoids had similar morphologic features with
the same glandular architecture. The organoids and primary tumours also had the same protein
expression, molecular, genomic and transcriptomic profiles. Response to FOLFIRINOX treatment in
organoids recapitulated the matched PDX models. Frappart et al. [143] also found that organoids
derived from PDX tumours faithfully recapitulated the PDX morphology and protein expression, and
predicted PDX drug response.

A number of proof-of-concept clinical trials using PDAC organoids are underway using fine
needle biopsies for the development of organoids (ClinicalTrials.gov: NCT03896958, NCT03544255,
NCT03990675 and NCT03140592). Tiriac et al. [144] created a patient derived organoid library from
primary PDAC tumours, and metastases, with 75% success. This organoid library was screened
using gemcitabine, paclitaxel, SN38, 5-FU and oxaliplatin at clinically relevant concentrations, and the
organoid library showed a heterogeneous response to chemotherapies. The outcomes of these assays
paralleled the patient outcomes in the clinic. On publishing, Tiriac et al. had also performed whole
exome sequencing and RNA-seq and developed gene expression signatures to determine improved
response to therapies. In addition to establishing organoid cultures from patient biopsies in these
clinical trials, the organoids will be used for drug screening as an indicator of response to therapies.
These clinical trials are setting the foundation for the use of organoids in the personalised treatment of
pancreatic cancer.

4.3. Organoids as Models of Tumour Microenvironment

The tumour microenvironment is known to play an important role in PDAC. By nature, PDAC
tumours are dense, fibrotic and hypoxic, and combined with the suppression of tumour infiltrating
lymphocytes (TILs) by cytokines such as TGFβ and interleukin-10 (IL-10), PDAC is an non-immunogenic
tumour [145].

To identify the role of the tumour microenvironment in PDAC, Tsai et al. [146] produced a
new, patient matched organoid model containing, primary PDAC organoids, stromal and immune
components. The co-culture of the organoids with cancer-associated fibroblasts resulted in an increased
IC50 of 3.8 µM compared to 1.8 µM for organoids alone in response to treatment with gemcitabine.
This group also described a method for the introduction of lymphocytes into the organoid culture
by adding 500,000 CD3+ T lymphocytes per well suspended in 500 µL organoid growth medium.
They demonstrated that lymphocytes only infiltrated into the Matrigel containing organoids. The
incorporation of lymphocytes into an organoid co-culture would allow for the use of these models
in the study of immunotherapies. The development of methods to study the immune system in
PDAC may help overcome the disappointing attempts to use immunotherapy in the treatment of
this devastating disease. The use of immunotherapy has resulted in increased survival rates in solid
tumour cancers such as melanoma, non-small cell lung cancer, and gastric cancers [147]. However, a
successful immunotherapy for PDAC has yet to be developed.

A study by Öhlund et al. [148] used organoids to identify the role of pancreatic stellate cells and
cancer associated fibroblasts (CAFs) in PDAC tumour microenvironment and tumour progression.
CAFs are derived from activated stellate cells and produce desmoplastic stroma, resulting in differences
in disease progression and response to therapies. Co-cultures of organoids and CAFs were established,
which resulted in activation of the CAFs to make desmoplastic stroma. These findings were also
validated in human and mouse tissues.

ClinicalTrials.gov
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4.4. Organoids for Biomarker Discovery

As well as using PDAC organoids for modelling in vivo drug response, they have also been used
for discovering clinically-actionable biomarkers. Huang et al. [149] demonstrated that organoid models
recapitulate the glycomics and drug responses observed in PDX models. The basis of this study was
for the identification of N-glycans enriched in the glycome of PDAC using organoids. They identified
a set of 57 N-glycans represent 50–94% of the relative abundance of all N-glycans detected. They have
also developed a method to use organoids as a discovery platform for blood-based biomarkers in
PDAC patients, which can be used for the identification of secreted extracellular vesicles in the blood
of patients. This method used 4.0 mL of organoid media supernatant and subjected to LC-MS/MS and
identified 241 proteins that were at least two-fold higher in tumour organoid extracellular vesicles
compared to exocrine organoids and expressed in at least 4 out of the 6 tumour organoid lines.

4.5. Modelling Human Diseases with CRISPR-Cas9-Modified Organoids

The discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and
CRISPR-associated (Cas) proteins have revolutionised gene editing. These techniques are readily used
in germline gene editing for research in vitro in cell lines, and in vivo in zebrafish, mice, pigs and
primates, and recently have been used in organoid technology [150–153]. For a more detailed review
of CRISPR/Cas9 genome editing in organoids, refer to the review by Driehuis and Clevers [154].

Lee et al. [155] edited KRASG12V and ERBB2, and inactivated TP53, CDKN2A, and SMAD4
by lentiviral delivery of CRISPR-Cas9 into pancreatic ductal organoids. Non-transformed or
KRAS-mutated ductal organoids ceased proliferation after several passages. KRAS, TP53, CDKN2A and
SMAD4; and KRAS, TP53, CDKN2A, SMAD4, and ERBB2 CRISPR edited ductal organoids propagated
exponentially at least for 4 months. Upon orthotopic xenotransplantation to immunodeficient mice,
these ductal organoids developed lesions resembling PanINs, but not PDAC. Seino et al. [156] used a
similar CRISPR-Cas9 based method to show the stepwise tumorigenesis of PDAC, and a loss of niche
stem cell factor dependence during tumour progression.

4.6. Advantages/Limitations of Organoids

The future of organoids in the treatment of PDAC includes their use in personalised medicine
including next generation sequencing of the tumour and using organoids for the screening of
therapeutics for the identification of the best therapy for patients [157]. Organoids produce an
unlimited supply of material for study, therefore reducing the need for animal studies, helping with the
implementation of Article 4 of EU Directive 2010/63/EU, which describes the requirements of the 3Rs
(Replacement, Reduction and Refinement) that aims to improve the welfare of animals in research [158].
Organoids are derived from stem cells and can form many different cell types and contain a much
more realistic mixture of cells for in vitro testing. However, there are several limitations to organoids,
including the difficulty in obtaining patient samples. Culturing organoids is laborious, with the
need for specialist training and expensive. The use of a 3D matrix environment requires specialist
approaches for sample handling, manipulation and functional assays. Finally, in order to analyse
in organoid structures, novel imaging and quantitative analysis techniques must be implemented.
A comparison of the advantages and disadvantages of organoids, and other PDAC models are outlined
in Table 3.
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Table 3. An overview of the advantages and disadvantages of currently available PDAC models.

Model Representativeness of Patient Sample? Usage Maintenance Success Rates
Growth Rate Cost

Established Cell Lines

Homogenic [88]
Undergo genetic modifications [86]
Fail to recapitulate the physiology

of tumours

High throughput testing Low maintenance
Fast growing

Fast growing
Commercially available Low cost

Primary Cell Cultures
Heterogenous [96]

Early passage number [96]
Representative of original tumour [96]

High throughput testing
Low maintenance

Only grow for a limited number
of passages [96]

Some commercially
available lines

Difficult to establish [97]
Low cost

Organ-on-chip
Heterogenous [101]

Allows for the study of the interactions of
multiple cell/organ types [98]

Low throughput testing Medium maintenance High success rates Chips are expensive
High usage of media and drugs

Organoids
Heterogenous [127]

Tumours retain heterogeneity, genetics, and
histological characteristics [142]

High throughput testing Medium maintenance

Medium growing
High success rates

Established from small volumes
of tumour [132]

Expensive ECM and media

PDX 1

Tumours retain heterogeneity, genetics, and
histological characteristics [103]

Replacement of human stroma with murine
stroma [108]

Orthotopic tumours in correct
microenvironment [104]

In vivo and ex vivo drug testing
High maintenance Requires

specialist training, and multiple
licenses [106]

Slow growing
(up to four months)

Medium success rates
Expensive to maintain

GEMM 2 Tumours in correct microenvironment [109]
Immune cells present [112]

In vivo and ex vivo drug testing
Testing of immune targeted

therapies

High maintenance
Requires specialist training, and

multiple licences

High success rates
Slow growing—(up to

16 weeks)
Commercially available

1 Patient Derived Xenografts; 2 Genetically Engineered Mouse Models.
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5. Conclusions

Advanced pancreatic cancer research has allowed for the identification of hereditary disease
variants associated with PDAC, and the discovery of driver and passenger somatic mutations which
occur during the progression of the disease. However, little progress has improved patient outcomes
and overall survival. Validation of genomic variants identified through GWAS and pathway analysis
studies will allow for the identification of those at risk of developing PDAC. However, laboratory
models traditionally used to research PDAC, including established and primary cell lines, PDX and
GEMM are not representative of how PDAC grows in the patient. Organoids have emerged as a
physiologically relevant in vitro model to study cancer. Organoids can be used for both translational
research, and for the development of personalised treatment of patients. Additionally, CLOs a novel
organoid model, provide a manageable, expandable resource allowing for the use of an organoid
model for PDAC research. The future of PDAC research, and the increased survival of patients will be
the result of the validation of genomic variants, their influence on disease development, progression
and response to therapy in disease appropriate models such as organoids.
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