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Donor lymphocyte infusion (DLI) is a key strategy for the treatment of AML relapse after
allogeneic hematopoietic cell transplantation (allo-HCT) and has been used for either
prophylactic, pre-emptive, or therapeutic purposes. However, the prognosis of these
patients remains dismal even after DLI infusion (2-year overall survival, ~25%), and the
efficacy is achieved at the cost of toxicities such as graft-versus-host (GVH) disease.
Attempts to optimize DLI efficacy and safety, such as dose/timing modification and the
use of cytoreduction, before DLI have been performed previously. Recently, a great
number of novel targeted and immunomodulatory agents have emerged. Some of them,
such as hypomethylating agents, FLT3 and Bcl-2 inhibitors, have been used in
combination with DLI, aiming to enhance the graft-versus-leukemia effect. Moreover,
manipulation of the DLI graft through cell selection (e.g., donor NK cells) or cell engineering
(donor CAR-T cells) has shown potentially superior anti-tumor effects but less GVH effect
than conventional DLI in clinical trials. This review summarizes the recent advances on the
use of DLI for the prophylaxis/treatment of AML relapse and discusses future strategies
which may further improve the treatment efficacy.

Keywords: donor lymphocyte infusion (DLI), AML—acute myeloid leukemia, allogeneic hematopoietic cell
transplantation, new drug, cell engineering
INTRODUCTION

Allogeneic hematopoietic cell transplantation (allo-HCT) remains the therapy with the highest
chance of long-term remission for acute myeloid leukemia (AML), especially for those in first
complete remission (CR1) who belong to the European LeukemiaNet (ELN) intermediate or high-
risk prognostic groups, those who remain measurable residual disease (MRD)-positive after
induction therapy as well as those beyond CR1 (1). Disease relapse has been the main cause of
failure for allo-HCT, with a dismal 2-year overall survival (OS) of less than 20% even in the most
recent studies (1–4). Although both donor lymphocyte infusion (DLI) (5, 6) and a second allo-HCT
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(7, 8) have shown definite efficacy in patients deemed for
intensive treatments, DLI seems to confer a similar outcome
but with a lower incidence of non-relapse mortality (4).
However, the survival benefits associated with DLI therapy
remains unsatisfactory. In a study recently published, Kharfan-
Dabaja et al. observed a 2-year OS of only 25% for patients with
AML hematological relapse after allo-HCT who received
therapeutic DLI (4). Therefore, there is still a lot of room for
progress for DLI therapy in AML relapse after allo-HCT.

DLI is a kind of immunotherapy which can induce durable
remission by enhancing the graft-versus-leukemia (GVL) effect
(9). It was introduced for the treatment of leukemia relapse in the
early 1990s (10) and was shown to be more effective in chronic
myeloid leukemia (CML) (11, 12) than in acute leukemias (5, 13).
With the application of tyrosine kinase inhibitors, DLI usage for
CML relapse treatment has decreased. DLI could be used in
either HLA-matched or mismatched allo-HCTs from different
donors, including matched related, unrelated, or haploidentical
related donors. With the introduction of anti-thymocyte globulin
(ATG)-based and post-transplant cyclophosphamide (PT-Cy)-
based haplo-HCT systems, the proportion of haploidentical HCT
(haplo-HCT) within allo-HCT has increased rapidly (14, 15).
Meanwhile, haplo-DLI has emerged as a promising strategy for
leukemia relapse post-haplo-HCT since they may provide a
stronger GVL effect due to a greater HLA disparity than those
from HLA-matched donors (16, 17) and the fact that the
availability of haploidentical related donors is superior to
unrelated donors (9).

DLI has been used to either treat or prevent AML relapse. The
therapeutic use of DLI is limited to T cell-replete allo-HCT
protocols. Regarding the claim that DLI alone may not be
sufficient to control overt relapse and that high tumor burden
prior to DLI is associated with poor therapeutic response (4, 5,
18–20), cytoreduction with chemotherapy prior to therapeutic
DLI (chemo+DLI) is frequently used, which may improve the
efficacy and exert potential immunomodulatory effects (21, 22).
Consistently, chemotherapy plus DLI has been found to be
superior to DLI (23) or chemotherapy alone (13) in inducing
disease remission after post-HCT AML hematological relapse.
Pre-emptive and prophylactic DLIs have also been intensively
investigated, which could effectively prevent hematological
relapse with lower toxicity compared with therapeutic DLI.
Pre-emptive DLI guided by MRD has shown definite efficacy
in eliminating residual disease and promote donor chimerism
(24, 25). Prophylactic DLI has been used to enhance immune
reconstitution and prevent infection/relapse in T cell-depleted
allo-HCT (26, 27) and in both ATG-based (28) and PT-Cy-based
T cell-replete allo-HCT (29).

In the recent decade, cellular therapy and novel drugs have
come into focus for the treatment of hematological malignancies
with exciting results. Efforts have been made to “transplant”
these modalities to AML relapse after allo-HCT, with the aim to
maximize the therapeutic effects while minimizing the toxicity.
The recommended strategies to optimize the DLI, including DLI
regimen and protocol improvement, additional use of novel
drugs, and cell engineering, are schematically shown in Figure 1.
Frontiers in Oncology | www.frontiersin.org 2
COMPARISON OF cDLI AND mDLI

Two major types of DLIs are commonly used: the “conventional
DLI” (cDLI in the following chapters) prepared by leukapheresis
of unstimulated peripheral blood, and “modified DLI” (mDLI in
the following chapters) using granulocyte colony-stimulating
factor-mobilized peripheral blood stem cells (PBSCs). Both
cDLI (5, 30) and mDLI (6, 31) have shown determined efficacy
in the prophylaxis or treatment of AML relapse after allo-HCT.
While cDLI is often used in Western countries using the PT-Cy-
based allo-HCT protocol, mDLI, developed by Peking
University, is regularly used by Chinese groups using the G-
CSF/ATG-based protocol. Meanwhile, the cell dose is usually
higher for mDLI (1 × 107 to 1 × 108 CD3+ cells/kg in both haplo
and HLA-matched settings) (13, 32–34) than cDLI (haplo: 1 ×
105 to 1 × 106 CD3+ cells/kg; HLA-matched: 1 × 107 to 1 × 108

CD3+ cells/kg) (35–37). Furthermore, mDLI is often followed by
short-term immunosuppression with cyclosporine A (CsA) or
methotrexate (38), while cDLI is not used in combination with
GVHD prophylaxis (9). Comparative studies between cDLI and
mDLI in the PT-Cy- or ATG-based allo-HCT protocols
are required.
THERAPEUTIC DLI

Around 1995, inspired by a series of success for therapeutic DLI
in CML (39), both cDLI (40) and mDLI (39) were evaluated in
relapsed AML after allo-HCT. Collins et al. reported 39 AML
patients receiving cDLI without chemotherapy after allo-HCT
relapse; the CR rate was only 15.4% (40). With the addition of
chemotherapy in prior, the CR rate and survival have increased.
Schmid et al. summarized a big cohort of 399 AML patients with
hematological relapse after allo-HCT: 75% of patients received
chemo+cDLI, and the CR rate for the whole cohort was 34%,
bringing an overall aGVHD incidence of 43%. Meanwhile, the 2-
year OS was 21% for patients receiving cDLI and only 9% for
those not receiving cDLI (5). Chemo+mDLI followed by short-
term immunosuppression was developed by the group in Peking
University and was majorly used after haplo-HCT (6). In an early
report of 20 patients with relapsed hematological malignancies
(AML, n = 7) after haplo-HCT, 9 received chemo+mDLI.
Moreover, 75% (n = 15) of patients achieved complete
remission, and the 2-year leukemia-free survival (LFS) was
40% for the whole cohort (6). Yan et al. evaluated the efficacy
of chemo+mDLI in 82 patients (AML, n = 45) who relapsed after
haplo-HCT. The CR rate was significantly higher in the chemo+
mDLI cohort than in the chemotherapy cohort (64.0 vs. 12.5%)
(13). The incidence of grade II–IV aGVHD was 62.7%. In this
study, chronic GVHD (cGVHD) and durable MRD negativity
after chemo+DLI were found to be associated with a lower
relapse rate. Following this observation, a cGVHD- and MRD-
guided chemo+DLI consolidation strategy was developed and
tested in a prospective trial of 47 patients (AML, n = 25) (32).
The 1-year relapse rate (22 vs. 56%) and LFS (71 vs. 35%) were
significantly better in the consolidation cohort than in the
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FIGURE 1 | Recommended strategies to optimize the donor lymphocyte infusion (DLI), including DLI regimen and protocol improvement, additional use of novel
drugs, and cell engineering. The area within the dotted bordered square indicate strategies, including novel drugs and cell engineering. High-risk AML represents
those defined to have a higher risk of relapse in different studies. cDLI, DLI prepared by leukapheresis of unstimulated peripheral blood; mDLI, DLI derived from
peripheral blood stem cells mobilized by granulocyte colony-stimulating factor; HMAs, hypomethylating agents; FDC, full donor chimerism; CIK, cytokine-induced
killer cells; TAA-T, tumor-antigen-specific T cells; FLAMSA, condition regimen including fludarabine, cytarabine, and amsacrine.
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control. More recently, therapeutic DLI has been investigated in
the PT-Cy based haplo-HCT protocol. In a retrospective cohort
of 40 patients (AML, n = 16) receiving cDLI-based therapy after
relapse from PT-Cy-based haplo-HCT, 30% of patients achieved
a CR, with 25% of patients developing aGVHD. Meanwhile,
higher rates of CR were achieved among those treated with
chemo+cDLI than cDLI alone (41). A study conducted by Ghiso
et al. used either cDLI alone or chemo+cDLI for molecular or
hematological relapsed leukemia patients after PT-Cy-based
haplo-HCT. A response rate of 33% and grades II and III
aGVHD incidence of 17% were reported (24). Goldsmith et al.
summarized 21 patients with disease relapse (90%) or loss of
chimerism (10%) after PT-Cy-based haplo-HCT, in which 76%
of patients received chemo+cDLI. Seven patients (33%) finally
achieved CR or full donor chimerism, and the grades I–III
aGVHD incidence was 23.8% (42). The experience on
therapeutic DLI is limited to ATG- or PTCy-based T cell-
replete allo-HCT protocols.
PRE-EMPTIVE DLI

MRD positivity prior to (43) or after (44) allo-HCT is positively
associated with relapse incidence and negatively correlated with
disease-free survival for AML patients. Furthermore, early MRD
after allo-HCT (within +30 day) predicts the highest risk of
relapse (44). Meanwhile, loss of donor chimerism (mixed
chimerism, MC) predicts disease relapse and poorer relapse-
free survival after allo-HCT in AML (45, 46). Pre-emptive DLI
has been used to eradicate MRD and promote donor chimerism
after allo-HCT in AML.

Pre-emptive DLI has brought about definite benefits in
response rate and survival as compared to therapeutic DLI (24,
25, 47). Ghiso et al. compared pre-emptive cDLI for molecular
relapse and therapeutic cDLI for hematological relapse after PT-
Cy-based haplo-HCT. A higher response rate in the pre-emptive
cohort (45 vs. 33%) was observed (24). Recently, Rettig et al.
reported a significantly better survival for post-allo-HCT AML
patients receiving pre-emptive than therapeutic mDLI (2-year
OS: 64 vs. 26%) (25).

MRD is the most frequently used indicator for pre-emptive
DLI, which is detected majorly by either flow cytometry (47),
quantitative PCR (qPCR) (48), or, more recently, genomic
sequencing (49). Yan et al. compared pre-emptive mDLI and
IL-2 therapy on 105 standard-risk acute leukemia patients (AML,
n = 61) with persistent MRD after allo-HCT. The 3-year
cumulative incidence (CI) of relapse was significantly lower
(27.8 vs. 64.4%), and the disease-free survival (55.6 vs. 24.1%)
was significantly better in the pre-emptive mDLI cohort (18).
The grade II–IV aGVHD and extensive cGVHD incidences after
pre-emptive mDLI were 27.9 and 34.2%, respectively. Since
patients with late-onset MRD had a lower risk of relapse than
patients with early-onset MRD after pre-emptive DLI (50), we
further compared the relapse rate and survival between pre-
emptive DLI and IL-2 in patients with late-onset MRD (MRD
positivity at >100 days after allo-HCT), and similar outcomes for
Frontiers in Oncology | www.frontiersin.org 4
the two strategies were observed (51). Quantitative assessment of
WT1 as MRD has been used as a marker for pre-emptive DLI in
AML patients after allo-HCT (52), and WT1 copies/104 Abelson
cells in marrow cells has been suggested as the cutoff value (48).
In order to better prevent disease recurrence, chemo+mDLI as
pre-emptive therapy has been evaluated in ATG-based T cell-
replete allo-HCT (53). A comparative study between chemo+
pre-emptive mDLI and pre-emptive mDLI alone in acute
leukemia/MDS patients showed that both strategies led to
similar percentages of patients (chemo+DLI: 78.3 vs. DLI:
75%) to turn MRD-negative, thus advocating the use of pre-
emptive mDLI alone for MRD+ patients for its lower toxicity.
Several studies have also shown that pre-emptive DLI effectively
converts MC to full donor chimerism (FDC), while its capacity in
preventing disease relapse or prolonging survival remains to be
established for lack of comparative studies (54). Caldemeyer et al.
reported pre-emptive cDLI use in 29 patients with hematological
malignancies who were identified MC without detectable disease
after allo-HCT, and 93% of these patients converted to FDC with
a cumulative grade II–IV aGVHD and/or extensive cGVHD
incidence of 31% (55). Feliu et al. retrospectively analyzed 119
patients (AML, n = 48) receiving pre-emptive cDLI for falling
CD3 chimerism, and 60% of patients achieved FDC after
treatment (56). Of note is the fact that, in relapsed patients
with exclusively recipient chimerism, DLI may not be effective
and may lead to severe aplasia (57).
PROPHYLACTIC DLI

Prophylactic DLI in T Cell-Depleted
Allo-HCT
Allo-BMT or HCT with ex vivo T cell depletion has been carried
out extensively from the 1980s in both HLA-identical (58) or
haploidentical settings (59). Ex vivo T cell depletion minimizes
GVHD but is associated with slow immune recovery and a
higher risk of relapse and infections (60). Prophylactic DLI has
been used to enhance immune reconstitution so as to reduce the
infection and relapse rates (26, 27). Kothari et al. studied, in a
prospective trial, 75 patients (AML, n = 37) receiving T cell-
depleted-matched related allo-HCT, in which 26 patients
received at least one cDLI (median DLI number ≥3). The 2-
year PFS was better in the DLI cohort than the entire population
(57 vs. 41%), and the 1-year grade II–IV aGVHD rate was 28%
for the DLI cohort (61). Gilman et al. studied prophylactic DLI
after T cell-depleted haploidentical HCT in a phase I/II trial
comprising 35 patients (AML, n = 10) (27). These patients
received between day +30 and day +42 a single dose of up to
5◊104 CD3/kg prophylactic mDLI, followed by methotrexate; a
2-year OS of 69% was achieved, with a CI of 11% for grade II–IV
aGVHD and 14% for cGVHD (27). Several techniques have been
applied to manipulate prophylactic DLI to enhance its anti-
leukemic and anti-infectious capacity while sparing the GVH
effects. Following the rational that CD8+ T cell depletion reduces
the risk of GVHD induced by DLI (62), Dodero et al. reported
the results of a phase I/II trial comprising 23 patients with
January 2022 | Volume 11 | Article 790299
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hematological malignancies who received escalating doses of
prophylactic CD8+ T-depleted DLI (median DLI number = 2)
after T cell-depleted reduced-intensity allo-HCT. A grade II–IV
aGVHD incidence of 26% was observed (63). Regulatory T cells
(Tregs) could prevent GVHD occurrence by facilitating the
immune self-tolerance and homeostasis (64), which have been
co-infused to suppress the GVH while maintaining the GVL
effects (65). Martelli et al. reported 43 acute leukemia patients
(AML, n = 33) receiving T cell-depleted haplo-HCT. These
patients received freshly isolated donor Tregs on day -4,
followed by a megadose of purified CD34+ cells and Tcons on
day 0. Only 15% of the patients developed grade II–IV aGVHD,
with a CI of 5% after 46 months of follow-up (66). Recently, the
same group has updated the data using this transplant protocol
in 50 aged AML patients (age >50) receiving haplo-HCT. Fifteen
(30%) patients developed grade II–IV aGVHD, and only 2
patients (4%) relapsed. The OS after a median follow-up of 29
months was 77% (67). Infusion of pathogen-specific T cells may
decrease the risk of specific infections after transplantation.
Perruccio et al. generated and infused donor alloantigen-
deleted Aspergillus and CMV-specific donor T cells after T
cell-depleted haplo-HCT. These two adoptive immunotherapy
strategies successfully cleared invasive aspergillosis and
prevented CMV reactivation, respectively (68). Recently, third-
party pathogen-specific cytotoxic T cells have been developed for
off-the-shelf use. Olsen et al. reported a trial using third-party BK
virus-specific cytotoxic T cell infusions into 59 patients
developing BK virus-associated hemorrhagic cystitis after allo-
HCT, and a day 14 overall response rate of 67.7% was observed
(69). Moreover, several techniques are being investigated for
optimal T cell allodepletion with preservation of pathogen-
specific responses and Tregs (70). Despite these encouraging
results, cell selection remains a time- and labor-consuming
technique with high expenses, which has limited its
extensive use.

Prophylactic DLI in T Cell-Replete
Allo-HCT
Schmid et al. reported an early trial testing of prophylactic cDLI
in 75 patients with high-risk AML/MDS defined by progressive/
refractory (R/R) disease, second remission after early relapse, or
first remission with poor cytogenetics/delayed response to
induction chemotherapy. These patients received reduced-
intensity T cell-replete HLA-matched allo-HCT. Escalating
doses of prophylactic cDLI without immunosuppression were
infused from day +120 for patients without immunosuppression
or GVHD (matched related donor, escalating from 1◊105 to
2◊106 CD3+ cells/kg; matched unrelated donor, escalating from
2◊105 to 5◊106 CD3+ cells/kg, median DLI number = 2). A 2-
year LFS of 40% was achieved (71). Later, Jedlickova et al.
compared the long-term results of patients receiving
prophylactic cDLI within the prospective trial introduced
above with a well-matched control group without DLI. The
overall survival at 7 years after transplant was 67%, compared
with 31% in the control group (P < 0.001). This study has
demonstrated the long-term survival benefit achieved by
Frontiers in Oncology | www.frontiersin.org 5
prophylactic cDLI in AML/MDS (37). Indeed the prophylactic
cDLI usage described above is part of a sequential approach
combining (1) a short course of chemotherapy followed by a
reduced-intensity conditioning regimen (2), reduced-intensity
allo-HCT (3), new drugs to prevent relapse, and (4) prophylactic
DLI starting at day +120. This sequential regimen aims to reduce
the toxicity of allo-HCT and optimize the anti-leukemia effects of
DLI. In the two studies described above, the FLAMSA regimen
(fludarabine, cytarabine, and amsacrine) was applied. Similarly,
other allo-HCT protocols have also been reported as part of this
sequential regimen (72). Mohty et al. conducted a phase II study
testing a sequential regimen of clofarabine, cytosine arabinoside,
and reduced-intensity allo-HCT, followed by delayed
prophylactic cDLI, in refractory AML patients (73). The 1-year
OS and CI of non-relapse mortality (NRM) were 54 and 8%,
respectively. Shelikova et al. reported 22 children with R/R AML
who received cytoreduction with fludarabine and cytarabine
and subsequent myeloablative conditioning with treosulfan
and thiotepa. The following prophylactic mDLI or cDLI
comprised of a CD45RA-depleted fraction with or without a
hypomethylating agent. The CR rate was 95%, with a 2-year EFS
of 49% and TRM of 9% (74).

The Chinese groups evaluated extensively prophylactic mDLI
in the ATG-based T cell-replete protocol, which usually included
a single mDLI dose (the same for haplo and HLA-matched
settings) followed by short-term immunosuppression. Wang et
al. retrospectively compared patients receiving prophylactic
mDLI and those without in T cell-replete haplo-HCT (median
0.6◊108 CD3+ cells/kg for the entire cohort). The 2-year CI of
relapse was lower (36 vs. 55%) and the 3-year OS was better (31
vs. 11%) in the prophylactic DLI group than in the control (28).
Later, the same group developed a strategy of prophylactic mDLI
followed by MRD- and GVHD-guided multiple DLIs for R/R
acute leukemia. In a prospective study comprising 100 patients
(AML, n = 59), this protocol achieved a 3-year CI of relapse, LFS,
and OS of 32, 50, and 51%, respectively (33). We have recently
reported a matched-pair study in ATG-based haplo-HCT
between patients (n = 34; AML, n = 28) receiving a single-dose
prophylactic mDLI (median: 3.8◊107 CD3+ cells/kg), followed by
low-dose CsA, and the same number of patients without. The 5-
year LFS was superior (65 vs. 34%), and the CI of relapse (15 vs.
49%) was lower for the mDLI cohort than the control.
Meanwhile, the 100-day CI of grade II–IV aGVHD for the
mDLI cohort was 26.7% (34). Gao et al. compared
haploidentical and matched-sibling mDLI, followed by low-
dose CsA (median: 2.3◊107 CD3+ cells/kg for the entire
cohort), in high-risk AML defined by progressive disease at
transplant, CR1 achievement with ≥3 cycles of chemotherapy,
or those carrying TP53, DNMT3a, TET2, or FLT3-ITD gene
mutations. They observed a higher 100-day grade II–IV aGVHD
CI (60 vs. 31%) and worse 1-year NRM (28 vs. 0%) in the haplo
than the matched-sibling cohort, indicating a potentially higher
toxicity for haplo than matched-sibling DLI (75).

Prophylactic DLI has also been evaluated in PT-Cy-based T
cell-replete allo-HCT. Jaiswal et al. reported a small cohort of 21
AML patients not in remission who underwent PT-Cy-based
January 2022 | Volume 11 | Article 790299
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haplo-HCT and received three consecutive prophylactic mDLIs,
with each dose being 1 × 106 CD3+ cells/kg, on days +21, +35,
and +60 with concurrent CsA use (71% of the studied patients
received all 3 doses), which decreased the progression rate from
66 to 21% (29). Cauchois et al. analyzed 36 patients with high-
risk hematological malignancies (AML, n = 21), defined as with a
high disease risk index or not in CR before transplant who
received escalating doses of prophylactic cDLI (from 1 × 105/kg
to 2.5 × 106/kg, median DLI number = 1) after PT-Cy-based
haplo-HCT. The CI of relapse at 1 year after prophylactic DLI
was 16%, and the PFS was 76%, respectively (76).
FEASIBILITY AND SIDE EFFECTS OF DLI

Although DLIs have shown definite efficacy in preventing or
controlling disease relapse after allo-HCT, feasibility requires to
be examined before each DLI infusion even if it is planned and
the donor is willing to donate. Prophylactic or pre-emptive DLI
may not be administrated because of early relapse, a history of
severe GVHD, active GVHD with continuous need of
immunosuppression, severe infections, significant cytopenia,
early death or choice of the patients (37). In the trial
conducted by Jedlickova et al. testing prophylactic DLI for
high-risk AML after allo-HCT, only ~30% of patients received
prophylactic DLI as planned in the protocol (37), while in
another phase II trial on prophylactic azacytidine + DLI for
high-risk AML/MDS after allo-HCT, 56.7% of patients received
at least one DLI (36). In the retrospective study conducted by
Guillaume et al. evaluating the efficacy of prophylactic/pre-
emptive azacytidine + DLI on high-risk AML/MDS after allo-
HCT, 79% of patients received at least one DLI (77). For
therapeutic DLI, inadequate organ function, active severe
acute/chronic GVHD, and severe infections are regarded as
contraindications (24). Another crucial barrier for successful
DLI usage is HLA loss, which represents an important
immune-escape mechanism that allows the leukemia to relapse
after allo-HCT (78). Genomic loss of mismatched HLA occurs
through a mechanism of copy-neutral loss of heterozygosity,
eliminating the incompatible HLA alleles without decreasing the
overall level of expression of HLA class I molecules (79). HLA
loss accounts for around one-third of relapses after haplo-HCT
(78, 80) and also a minority of relapses from matched or
mismatched unrelated allo-HCTs (81). Since patients with
HLA loss relapse were unlikely to benefit from DLI of the
original donor, the 2019 EBMT consensus of DLI after haplo-
HCT recommended a second allo-HCT from a related donor
with a different mismatched haplotype or a mismatched
unrelated donor (9).

GVHD is the main complication of DLI. The morbidity and
severity of DLI-related GVHD was closely related to the type of
DLI (cDLI or mDLI), the time interval between transplantation
and DLI, the transplant protocol, the dose of CD3+ cells, the
donor type, and the immunosuppressant. Since G-CSF
mobilization alters the cellular composition and cytokine
profile of the DLI graft, it was suggested that the mDLI might
Frontiers in Oncology | www.frontiersin.org 6
reduce the GVHD incidence (38), but this hypothesis is not yet
confirmed in a head-to-head study. The time interval between
transplantation and DLI greatly affects the morbidity and
severity of DLI-associated GVHD (34). It is accepted that the
shorter the interval, the higher the risk that GVHD will occur. In
our study, we initially tested prophylactic mDLI in 5 patients at a
median of 71 days post-HCT; 2 patients developed grade IV
aGVHD, and 1 had grade I aGVHD, indicating a high incidence
of aGVHD for early prophylactic mDLI infusion (31). Su et al.
compared the safety of efficacy of prophylactic mDLI on day +60
and day +90 after T cell-replete allo-HCT and observed that
prophylactic mDLI on day +90 was associated with a lower
extensive cGVHD incidence (10 vs. 28%) and better GVHD-free,
relapse-free survival (GRFS) (55 vs. 41%) (82). Meanwhile, pre-
emptive/prophylactic DLI infused very early after allo-HCT
(within 40 days) may be impaired by the remaining ATG in
the human body (83).

In different transplant protocols, the timing of DLI and the
related GVHD incidence vary greatly. In an earlier study
conducted by Liga et al., 15 patients (AML, n = 8) received
HLA-identical allo-HCT with an alemtuzumab-containing
conditioning regimen and prophylactic mDLI with dose
escalation (dose escalation for unrelated donor: 0.5 to 1 × 106

CD3+ cells/kg, for sibling: 0.75 to 1.5 × 106 CD3+ cells/kg,
median DLI number = 3) in the absence of concurrent
immunosuppression. The first infusion was given at a median
of 162 days post-transplantation, and the DLI-associated GVHD
incidence was 47% (84). In the PT-Cy-based haplo-HCT, an
earlier study conducted by Legrand et al. included 22 AML
patients receiving escalating doses of prophylactic cDLI (median
DLI number = 1) after HLA-matched or haploidentical HCT, in
which 4 (18%) received PT-Cy as GVHD prophylaxis. The
first prophylactic DLI (the dose ranged from 0.1 to 10 × 106

CD3+/kg) was performed in a median time of 130 days post-
transplant, and the cumulative incidence of DLI-associated
GVHD was 37% (35). Later, Cauchois et al. reported 36
patients receiving prophylactic cDLI with dose escalation after
PT-Cy-based haplo-HCT (escalating from 1 × 105/kg to 2.5 × 106

CD3+ cells/kg, median DLI number = 1) at a median time of 109
days between transplant and the first DLI; the cumulative 1-year
incidence of cDLI-induced GVHD was 33% (76). Notably, in the
study conducted by Jaiswal et al., the first prophylactic mDLI was
given as early as +21 day after PT-Cy-based haplo-HCT with
concurrent immunosuppression, and the cumulative incidence
of aGVHD was only 31% (29). This study indicates that
concurrent GVHD prophylaxis might control the GVHD
caused by very early DLI infusions.

The CD3+ T cell dose is another important factor affecting
DLI-associated GVHD. An early comparative study between
escalating cDLI and a single infusion in relapsed CML after
allo-HCT showed that the escalating regimen was associated
with a lower incidence of GVHD but with similar outcomes in
disease control (85). Bar et al. retrospectively analyzed the effects
of an initial CD3+ T cell dose within therapeutic cDLI on the
GVHD incidence after allo-HCT in 225 patients with
hematological malignancies (AML, n = 71). Compared to
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lower doses, an initial CD3+ T cell dose above 1 × 108/kg in cDLI
was found to be associated with a higher 1-year CI of GVHD
(55%) but did not decrease the relapse incidence or improve the
survival (86). As for donor type, haplo-DLI may bring about a
higher incidence of GVHD than HLA-matched DLI due to
higher alloreactivity. Gao et al. observed a higher incidence of
grade II–IV DLI-associated aGVHD in haploidentical than
matched sibling prophylactic mDLI (60 vs. 31%) after allo-
HCT in high-risk AML (2◊107 CD3+ cells/kg for both groups)
(75). Yu et al. analyzed refractory acute leukemia patients
receiving allo-HCT followed by prophylactic mDLI (3◊107

CD3+ cells/kg for both groups). A total of 119 patients (AML,
n = 54) received haploidentical and 132 patients (AML, n = 57)
received matched-sibling donor allo-HCT. The haploidentical
group was associated with a higher incidence of grade II–IV
aGVHD (62 vs. 54% p=0.025) but with a similar 3-year incidence
of cGVHD (87).

Concurrent immunosuppression has been routinely used with
mDLI in the G-CSF/ATG-based allo-HCT protocol to reduce the
incidence of DLI-associated GVHD. Immunosuppression with
either CsA or methotrexate (MTX) is normally used right after a
single dose ofmDLI andmaintained for 2–6weeks according to the
donor–recipient relationship, the aimof theDLI (prophylactic, pre-
emptive, or therapeutic), or at the discretion of the physician. We
reported the use of low-dose CsA (1 to 2mg/kg/day) after DLI for 3
to4weeks after prophylacticmDLI (medianof 3.8× 107CD3+ cells/
kg) in the G-CSF/ATG-based allo-HCT protocol, and the CI of
grade II–IV DLI-associated aGVHD was 17.6% (34). Yan et al.
reported GVHD prophylaxis for 2–4 weeks after HLA-identical
related pre-emptive mDLI or 4–6 weeks after an HLA-identical
unrelated or HLA-haploidentical mDLI. The grade II–IV DLI-
associated aGVHD incidencewas 28% (18).When comparingCsA
and MTX, MTX might bring about a similar anti-GVHD effect
while preserving a strongerGVL effect due to a highermaintenance
of absolute lymphocyte count (88). In a retrospective study
including 124 patients receiving either prophylactic, pre-emptive,
or therapeutic DLI, Yan et al. observed that the duration of GVHD
prophylaxis was the only independent factor affecting the
development of grade III–IV mDLI-associated aGVHD. The
cumulative incidences of grade III–IV acute GVHD in patients
withprophylaxismore than6, 4–6, 2–4, and<2weekswere 9.3, 14.4,
31.6, and 49.5%, respectively (p = 0.018) (89). In PT-Cy-based
myeloablative haplo-HCT, Jaiswal et al. reported CsA use during
consecutive prophylactic mDLIs (each dose: 1 × 106 CD3+ cells/kg)
until day+60and taperedover4weeks.The cumulative incidenceof
aGVHD was 31% (29). It is noteworthy that dose escalation
strategy is frequently used with cDLI according to the CD3+ cell
count for GVHD prevention, while adjuvant immunosuppression
has not been reported. Meanwhile, no comparative study has
supported differences on the incidences of DLI-associated
aGVHD between mDLI plus immunosuppression and cDLI
without immunosuppression (9). Finally, the possibility of
impaired GVL effect after immunosuppression remains to
be excluded.

Aplasia happens in between 18 and 40% of patients after DLI
infusion (24, 38). Insufficient donor chimerism and conditions of
Frontiers in Oncology | www.frontiersin.org 7
DLI usage might be important reasons for the development of
aplasia (57). Prophylactic (34, 37, 75, 90) and pre-emptive
DLIs (56) seem to rarely induce DLI-associated cytopenia,
while therapeutic DLIs are associated with a considerable risk
of aplasia. Glass et al. reported both neutropenia and
thrombocytopenia incidences of 36% among 11 patients
(AML, n = 5) with hematological malignancy relapse after
allo-HCT who received cytoreductive therapy+mDLI (39).
Huang observed incidences of 20% neutropenia and 35%
thrombocytopenia among 20 patients (AML, n = 7) with
hematological malignancy relapse after allo-HCT and
therapeutic DLI (6). The higher incidence of cytopenia during
therapeutic DLI is probable due to cytoreductive therapy in prior
and lower donor chimerism during infusions. Notably, DLI with
adjuvant drugs has also been reported to induce considerable
hematological toxicities. Grade III/IV neutropenia and
thrombocytopenia occurred during 65 and 63% of treatment
cycles in a prospective single-arm multicenter phase II trial,
conducted by Schroeder et al., testing azacytidine plus
therapeutic cDLI for AML/MDS relapse after allo-HCT (91).
Similarly, venetoclax plus therapeutic mDLI led to anemia,
neutropenia, and thrombocytopenia in 55, 73, and 64% of
patients with relapsed AML after allo-HCT, respectively (92).
However, it is important to clarify the reason for cytopenia since
it could be due to other reasons than DLI itself, including
primary disease, infection, GVHD, etc.

Infection is another non-negligible complication after DLI
following DLI-associated GVHD or cytopenia. Viral and fungal
infections are main causes of infection-related deaths (71). In T
cell-depleted haplo-HCT, Gilman et al. reported that 11% of
patients died of fatal viral/fungal infections after prophylactic
cDLI (27). In the ATG-based T cell-replete protocol, an earlier
study reported a high septicemia incidence of 49% after
prophylactic cDLI and an infection-related death incidence of
25% at 1 year after transplant (71). With the advancement of
anti-infection strategies, in a recent study conducted within the
ATG-based T cell-replete allo-HCT protocol, Su reported an
infection-related death rate of 10–15% after prophylactic mDLI
(82). In the FLAMSA RIC protocol, Jedlickova reported an
incidence of only 4% for infection-related death after
prophylactic cDLI after 7 years of follow-up. For therapeutic
DLI, Huang et al. previously observed that therapeutic mDLI led
to an infection-related death incidence of 20% after T-cell replete
ATG. More recently, Rettig et al. reported an infection-related
death incidence of only 2% after therapeutic mDLI usage for
AML relapse after ATG-based allo-HCT (25). In the PT-Cy-
based T cell-replete protocol, Jaiswal documented 5 (24%)
CMV infections and 1 (5%) fungal infection among 21
patients receiving PT-Cy-based haplo-HCT and prophylactic
mDLI (29). Moreover, Ghiso et al. reported a cumulative
infection incidence of 12% after therapeutic or pre-emptive
cDLI after PT-Cy-based haplo-HCT (24). Collectively,
regardless of the great difference among transplant platforms,
advanced infection management strategies may have
significantly reduced the incidences of infection-related death
after therapeutic DLI.
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NEW DRUGS AND DLI

Hypomethylating Agents
The clinical studies on the combined use of novel drugs andDLI are
summarized in Table 1. Hypomethylating agents azacitidine and
decitabine are approved drugs with demonstrated efficacy and
prolong the survival of MDS and AML patients (102). Early
preclinical studies showed that low-dose azacitidine upregulates
epigenetically silenced tumorantigens and induces a cytotoxicT cell
response (103), and it also mitigates GVHD via Treg induction
(104). The hypomethylating agent (HMA)/DLI combination has
been used for both salvage therapy and post-transplant
maintenance in AML/MDS. In a multi-center retrospective
analysis comprising 154 relapsed AML/MDS (AML, n = 124;
MDS, n = 28; MPN, n = 2) patients receiving HMA/DLI
combination, the overall response rate (ORR) was 33%, and the
CR rate was 27% (93). In a bigger retrospective study derived from
the EBMT database comprising 181 patients (AML, n = 116; MDS,
n = 65) receiving HMA/DLI combination as salvage therapy after
hematological relapse, the ORR rate was 29%, and the CR rate was
15% (94). Schroeder et al. reported 30 relapsed AML/MDS (AML,
n = 28,MDS, n = 2) patients receiving up to 6 cycles of azacytidine,
followed by DLI after every second cycle in a prospective trial. The
overall response rate (ORR)was30%, and theCRratewas 23%(91).
Moreover, following the pre-clinical evidence that azacitidine
mitigates GVHD, Ghobadi et al. conducted a phase I trial
wherein azacitidine was applied on days 4, 6, 8, and 10 post-DLI
in 8 patients with post-transplant AML relapse; 6 out of 8 (75%)
patients responded with 2 (25%) cytogenetic complete remissions.
Ofnote is the fact thatnopatient experiencedgrade III–IVaGVHD,
indicating enough safety and GVHD prevention capacity for
azacitidine use following DLI (95).

Guillaume et al. conducted a phase II trial evaluating
prophylactic azacytidine followed by DLI in 30 high-risk AML/
MDSpatients.High-riskAMLwasdefinedasCR1withunfavorable
cytogenetics, requiring ≥2 cycles of treatment for remission,
remission greater than CR2, or progressive disease. High-risk
MDS was defined as with an intermediate-2 or higher risk
International Prognostic Scoring System (IPSS) score. The DFS
was 65.5% at 2 years, and the CI of relapse was 27.6%. Meanwhile,
the 2-year CI of grade I–III aGVHD was 31.5% (36). In another
retrospective study analyzing 77 high-risk AML/MDS patients
based on unfavorable genomic or clinical status at transplantation
(AML, n = 54; MDS, n = 23), prophylactic or pre-emptive
azacitidine combined with DLI achieved a 2-year CI of relapse of
22%, and the CIs of grade II–IV acute GVHD and cGVHD were
27.4 and 45%, respectively (77).

Like azacitidine, the use of decitabine in combination with DLI
hasbeen forbothpost-transplant salvageandmaintenance inAML/
MDS. A retrospectivemulticenter analysis fromGermany reported
that decitabine plusDLI achieved anORR of 25% andCRof 17% in
36patientswith relapsedAML(n=29) orMDS (n=7).Meanwhile,
only 7 patients (19%) experienced aGVHD after treatment. It is
however noteworthy that the 2-yearOSwas only 11% in this cohort
(96). In another retrospective analysis, including 26 patients with
relapsed hematological malignancies (AML, n = 18, MDS, n = 6,
MPN, n = 2), decitabine plus DLI achieved an ORR of 19% and a
Frontiers in Oncology | www.frontiersin.org 8
CR/CRi rate of 15% (97). In a prospective single-arm study,
decitabine plus DLI was applied as prophylaxis in 28 patients
with high-risk hematological malignancies, defined as with at
least one of the unfavorable gene mutations (FLT3- ITD, TP53,
ASXL1,DNMT3A,orTET2) (AML,n=23;MDS,n=2;ALL,n=3).
A 3-year relapse-free survival of 48.2% and OS of 48.9% were
observed, together with a 3-year relapse rate of 26.1% post-DLI.
Meanwhile, the incidence of grade II–IV aGVHD at 100 days post-
DLI was 25.8%, and the cGVHD incidence at 3 years post-DLI
was 21.6% (90). Collectively, the HMA/DLI combination after
allo-HCT is safe for both consolidation and salvage therapy, while
the efficacy remains to be further improved.

FLT3 Inhibitors
FLT3 internal tandem duplications (ITDs) and FLT3-tyrosine
kinase domain (TKD) mutations occur in ~25 and <10% of AML
patients, respectively (105). FLT3 mutations, especially FLT3-ITD,
indicate an adverse prognosis (106). Sorafenib is currently the only
FLT3 inhibitor intensively investigated in the post-transplant
setting. Single-agent sorafenib was shown to significantly reduce
the relapse rate asmaintenance therapy for FLT3-ITDmutantAML
after allo-HCT (107, 108).Battipaglia et al. reported27patientswith
FLT3-positiveAMLwho received sorafenibmaintenance after allo-
HCT, which led to a 1-year PFS of 92% (107). We observed that
maintenance sorafenib was superior to prophylactic DLI in FLT3-
ITD AML patients, with a lower relapse rate (4.2 vs. 25%) and a
lower incidence of grade II–IV aGVHD (8.7 vs. 46.3%) (109).

The effects of post-transplant sorafenib is multifaceted,
including direct FLT mutation inhibition, GVL effect
augmentation through IL-15 production in FLT3-ITD mutant
leukemia cells, and also synergic effects with alloreactive T cells
(110).A synergic effectof sorafenib andDLI is therefore anticipated.
Xuan et al. analyzed 83 FLT3-ITDmutant AML patients with overt
relapse after allo-HCT who received salvage therapies (98). A
superior survival was observed in sorafenib-containing regimen
to conventional therapy (OS: 46.8 vs. 20%). In a subgroup analysis,
the best survival was achieved for patients receiving sorafenib-
containing chemotherapy followed by DLI, which is superior to
other therapeutic regimens, including sorafenib combined with
chemotherapy, chemotherapy fol lowed by DLI, and
monochemotherapy. No significant differences were observed
concerning GVHD incidences among these therapies. In
addition, Bruzzese et al. reported, in a small cohort of four
patients, that the pre-emptive use of sorafenib followed by DLI in
MRD-positive FLT3-ITD AML patients achieved MRD negativity
in 3 patients (75%) (99). Interestingly, in this report, the remaining
patient discontinued sorafenib because of toxicity and changed to
gilteritinib, and long-term remission was achieved. Therefore, the
use of other FLT3 inhibitors before and after allo-HCTaswell as the
combined use with DLI warrants further investigations.

Bcl-2 Inhibitors
Aberrant Bcl-2 overexpression is identified in patients with
AML, rendering survival advantage for the leukemia cells. The
Bcl-2 inhibitor venetoclax combined with HMAs has achieved
~70% CR or CRi rate in untreated elderly AML patients unfit for
conventional intensive chemotherapy (111, 112). In the post-
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TABLE 1 | Published studies on new drugs/DLI combined use for AML relapse after allo-HCT.

Study No. of Patients
(Perspective/
Retrospective)

Diagnosis/
Disease
Status
Before
Therapy

Drug Total Dose/
Dose of
Each

Course

Indication
for DLI

Median
TotalCD3

+/kg

Median
Number
of DLI

Disease
Response

GVHD Survival Notes

Hypomethylating agents/DLI combination
Schroeder
et al. (91)

30 (prospective) AML = 28
MDS = 2
Hematological
relapse

Aza Median
course
number = 3
Each
course:
100 mg/
m2 × 5 days

Therapeutic 5 × 106 1 Aza and Aza+
DLI:
ORR = 30%
CR = 23%

Aza and
Aza+DLI:
aGVHD =
37%
cGVHD=
17%

OS after
median of
817 days:
17%

DLI after
every
2nd Aza
cycle

Schroeder
et al.
(93)

154
(retrospective)

AML = 128
MDS = 28
MPN = 2
Hematological/
molecular
relapse

Aza Median
course
number = 4;
each
course:
100mg/m2 ×
5 days or
75mg/m2 ×
7 days

Therapeutic 31.2 ×
106

2 Aza+DLI:
ORR = 33%
CR = 27%

Aza+DLI:
aGVHD =
31%
cGVHD=
31%

2-year OS:
molecular
relapse: 69%;
hematological
relapse: 19%

DLI after
every
2nd Aza
cycle

Craddock
et al.
(94)

181
(retrospective)

AML = 116
MDS = 65
Hematological
relapse

Aza 1,050 mg/
m2

Therapeutic N.A. N.A. Aza and Aza+
DLI:
ORR = 29.3%
CR = 15.3%

Aza and
Aza+DLI:
grade II–IV
aGVHD =
7%

Aza alone or
Aza+DLI:
2-year OS:
12.4%

Ghobadi
et al. (95)

8 (prospective) AML = 8
Hematological
relapse

Aza Each
infusion:
3 received
45 mg/m2;
5 received
75 mg/m2

Therapeutic 1 × 107 1 Aza+DLI:
ORR = 75%
(6/8)
CR = 37.5%
CRi = 37.5%

Aza+DLI:
aGVHD =
62.5%

Aza+DLI:
median OS:
12.5 months;
median DFS:
2.9 months

Aza on
days 4,
6, 8, and
10 after
DLI

Guillaume
et al. (36)

30 (prospective) AML = 20
MDS = 10
Hematological
remission

Aza Median
course
number = 5
Each
course:
32 mg/m2×
5 days

Prophylactic N.A. 3 Aza and Aza+
DLI:
2-year CI of
relapse =
27.6%

Aza and
Aza+DLI:
Grades I–
III aGVHD
= 31.5%
2-year
cGVHD =
53%

Aza and Aza
+DLI:
2-year OS:
65.5%
2-year DFS:
65.5%

Guillaume
et al. (77)

77
(retrospective)

AML = 54
MDS = 23
Hematological
remission

Aza Median
course
number = 9
Each
course:
32 mg/m2 ×
5 days

Pre-emptive
or
prophylactic

N.A. 1 Aza and Aza+
DLI:
2-year CI of
relapse =
22%

Aza and
Aza+DLI:
grade II–IV
aGVHD:
27.4%
cGVHD =
45%

Aza and Aza
+DLI:
2-year OS:
70.8%
2-year PFS:
68.3%

Schroeder
et al.
(96)

36
(retrospective)

AML = 29
MDS = 7
Hematological/
molecular
relapse

Dac Median
course
number = 2
Each
course:
20 mg/m2 ×
5 days or
10 days

Therapeutic 6.5 × 106 2 Dac and Dac+
DLI:
ORR = 25%
CR = 17%

Dac and
Dac+DLI:
aGVHD:
19%
cGVHD =
5%

Aza and Aza
+DLI:
2-year OS:
11%

Sommer
et al.
(97)

26
(retrospective)

AML = 18
MDS = 6
MPN = 2
Hematological
relapse

Dac Median
course
number = 2
Each
course:
20 mg/m2 ×
5 days or
10 days

Therapeutic N.A. 2 Dac and Dac+
DLI:
ORR = 19%
CR/Cri = 15%

Dac+DLI:
aGVHD:
17%
cGVHD =
6%

Median OS:
4.7 months
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TABLE 1 | Continued

Study No. of Patients
(Perspective/
Retrospective)

Diagnosis/
Disease
Status
Before
Therapy

Drug Total Dose/
Dose of
Each

Course

Indication
for DLI

Median
TotalCD3

+/kg

Median
Number
of DLI

Disease
Response

GVHD Survival Notes

Zhang et
al.
(90)

28 (prospective) AML = 23
MDS = 2
ALL = 3

Dac Median
course
number = 2
Each
course:
10 mg/
m2×5d

Prophylactic 2 × 107 1 DLI and Dac+
DLI:
3-year CI of
relapse =
26.1%

DLI and
Dac+DLI:
100-day
aGVHD:
25.8%
3-year
cGVHD:
21.6%

DLI and Dac+
DLI:
3-year OS:
48.9%
3-year RFS:
48.2%

mDLI

FLT3 inhibitors
Xuan et al.
(98)

41
(retrospective)

AML with
FLT3-ITD
Hematological
relapse

Sorafenib 400 mg
twice daily,
adjusted on
suspected
toxicity

Therapeutic 3.2 × 107 1 Sorafenib
+chemo+DLI:
ORR: 87.8%
CR: 80.7%

Sorafenib
+chemo+
DLI:
1-year
aGVHD:
39.5%
1-year
cGVHD:
32.8%

Sorafenib+
chemo+DLI:
1-year OS:
53.2%
3-year RFS:
50.8%

mDLI

Bruzzese
et al. (99)

4 (retrospective) AML with
FLT3-ITD
MRD-positive

Sorafenib 200 mg
twice daily

Pre-emptive 22.6 ×
106

3 Sorafenib+
DLI:
MRD
negativity:
75%
Relapse
incidence: 0%

Sorafenib
+DLI:
aGVHD:
0%
cGVHD:
25%

Sorafenib+
DLI:
After 38.7
months
OS: 100%
PFS: 100%

Bcl-2 inhibitors
Amit et al.
(92)

22
(retrospective)

AML = 22
Hematological/
molecular
relapse

Venetoclax Median
course
number = 2
Each
course:
400 mg
daily × 28
days

Therapeutic N.A. 1 Venetoclax+
DLI:
ORR: 50%
CR/CRi: 23%

Venetoclax
+DLI:
aGVHD:
18%
cGVHD:
27%

Venetoclax+
DLI:
Median OS:
6.1 months

Deacetylase inhibitors
Bug et al.
(100)

18 (prospective) AML
(unknown)
MDS
(unknown)

Pnb Schedule A:
10 mg TIW
weekly
Schedule B:
20 mg TIW
every other
week

Prophylactic Schedule
A: 0.2 ×
106

Schedule
B:

0.9 × 106

2 N.A. N.A. N.A.

Kalin et al.
(101)

110
(prospective)

AML = 110 Pnb+Dac Prophylactic N.A. 2 Pnb+Dac and
Pnb+Dax+
DLI: 2-year CI
of relapse =
35%

Pnb+Dac
and Pnb+
Dac+DLI
6-month
grade II–IV
aGVHD:
23%
1-year
moderate–
severe
cGVHD:
22%

Pnb+Dac and
Pnb+Dac+
DLI:
2-year OS:
50%
2-year PFS:
49%
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transplant setting, Schuler et al. retrospectively analyzed 32 AML
patients who relapsed after allo-HCT and reported an ORR of
47% after venetoclax/HMA combined therapy. However, 72% of
patients experienced severe infections, and 78% of patients died
after a median follow-up of 8.4 months (113). We have recently
reported 44 patients (AML, n = 34) with post-allo-HCT relapse
who received salvage venetoclax/HMA, which achieved a CR/
CRi incidence of 34.1% (114).

The reports have shown that venetoclax enhances T cell-
mediated cytotoxicity against AML (115) and does not impair
activated T cell proliferation (116). Therefore, venetoclax plus
DLI has been tried in the post-transplant setting. Amit et al.
summarized 22 AML patients with post-transplant relapse who
received the venetoclax/DLI combination; a total of 11 patients
(50%) responded, and CR/CRi was achieved in 5 patients (23%).
Meanwhile, microbiology-documented infections occurred in 8
patients (36%) and aGVHD in 4 patients (18%) (92).

Other Agents
The deacetylase inhibitors (DACi) may enhance leukemia-specific
cytotoxicity and mitigate GVHD but, conversely, could impair T
and NK cell function (100). DACi panobinostat was evaluated in a
phase I/II trial as maintenance therapy for high-risk AML/MDS in
hematological complete remission after allo-HCT. High-risk AML
was defined as with adverse risk cytogenetics, R/R disease, or
secondary AML. In this study, 18 patients received the
panobinostat/DLI combination, which showed a good safety
profile but whose efficacy was unevaluable (100). Another phase
I/II study evaluated the panobinostat/decitabine combination as
maintenance in 110 patients with poor-risk AML/MDS after allo-
HCT, in which 60 patients received DLI afterwards. The CI of
relapse for the whole cohort was 35%, and the 2-year progression-
free survival was 49%. Grades 3 and 4 adverse events related to
panobinostat and decitabine were observed in 26% of evaluated
patients. This study revealed the feasibility of the DACi/HMA/DLI
combination as maintenance for AML after allo-HCTwith enough
safety and efficacy (101). Recently, IDH1/IDH2 inhibitors have
been the other hotspot in the field of AML treatment. Instead of
toxicity, IDH1/IDH2 inhibitors mainly exert therapeutic effects
through the differentiation andmaturation ofmalignant cells (117).
In two pilot phase I studies, IDH1 inhibitor ivosidenib (118)
achieved an ORR of 41.6%, and IDH2 inhibitor enasidenib (119)
obtained an ORR of 40.3% in R/R AML patients with relevant
mutations. Of note is that the continuous daily use of these two
drugs led to a low frequency of treatment-related adverse events.
The combined use of IDH1/IDH2 inhibitors and DLI requires
further investigation for post-transplant AML relapse harboring
these specific mutations.
DLI COMPOSITION MANIPULATION
AND ENGINEERING

Donor-Derived NK Cells
The clinical studies on DLI composition manipulation and
engineering are summarized in Table 2. Donor-derived natural
Frontiers in Oncology | www.frontiersin.org 11
killer (NK) cells may eliminate recipient malignant cells in the
setting of mismatched or haploidentical transplant through
alloreactivity (133) and attenuate GVHD via recipient
dendritic cell elimination (134) and direct lysis or regulation of
alloreactive T cells (135, 136). In a phase I trial, mbIL21 ex vivo-
expanded donor NK cells were infused on days -2, +7, and +28
posttransplant for 13 patients with high-risk myeloid
malignancies (AML, n = 8) who received PT-Cy-based haplo-
HCT (120). In this study, high-risk AML was defined as a
refractory disease or with unfavorable cytogenetics/molecular
mutations, and high-risk MDS was that with an intermediate- or
high-risk IPSS score. The safety of donor NK cell infusion was
demonstrated, and it was observed that donor NK cell infusion
might be related to lower viral infections and relapse rate. The
other phase I trial tested prophylactic IL-2 activated donor-
derived NK cell infusions 60–120 days after matched sibling allo-
HCT in 16 patients with hematological diseases (AML, n = 6).
The safety of this strategy was demonstrated, and promising
efficacy was indicated (137). Meanwhile, Jaiswal et al. observed
that a well-designed CD56-enriched DLI infusion after PT-Cy-
based haplo-HCT prompted the good reconstitution of mature
NK cells with a reduced incidence of aGVHD (121). More
recently, CTLA4Ig has emerged as a novel and simpler
approach in dissociating GVL and GVHD effects due to the
rational that CTLA4Ig attenuates T cell activation but is resistant
to NK cells. CTLA4Ig has been applied in combination with early
sequential mDLI in patients with advanced hematological
malignancies who received PT-Cy-based haplo-HCT.
Compared to DLI alone, the CTLA4Ig-DLI decreased the acute
GVHD (aGVHD) incidence from 18.8 to 9.6% and the cGVHD
incidence from 36.5 to 15.3% (122). Interestingly, the disease
progression rate was also lower in the CTLA4Ig-DLI group than
in the DLI group (15.7 vs. 31.1%), which is probably due to an
early expansion of functionally competent adaptive NK cells after
the CTLA4Ig treatment (138, 139). Several strategies have been
applied to enhance the anti-leukemic capacity of donor-derived
NK cells, including the combined use with an immunomodulatory
drug (eg., lenalidomide) (140), cytokine pre-activation (141),
blocking of the inhibitory receptors [eg., PD1/PD-L1 (142) and
iKIR (143)], selection of HLA-mismatched single KIR NK cells
(144), or genetically modified NK cells (e.g., CAR-NK cells will be
introduced in thenext chapter).These techniques are expected tobe
used soon to potentiate NK cell therapy for AML relapse after
allo-HCT.

CAR-T and CAR-NK Cells
CAR-T infusions post-allo-HCT have been intensively
investigated, especially in B-ALL. Both allogenic and
autologous CAR-T cells targeting CD19 (CART19) have been
applied in clinical trials for B-ALL relapse after allo-HCT, with a
CR rate of more than 80% (145) (146, 147). Apart from the
satisfactory remission rate, CAR-T seems to confer a lower
aGVHD incidence compared to DLI. Smith et al. summarized
132 patients from 9 studies who received posttransplant CART19
and observed a total aGVHD rate of 14% for donor-derived
CAR-T and only 2% for recipient-derived CAR-T (148).
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TABLE 2 | Studies on DLI composition manipulation/engineering for AML relapse after allo-HCT.

ase
onse

GVHD Survival Notes

se: Grades I–II
aGVHD = 54%
cGVHD = 0%

Follow-
up: 14.7
months
OS:
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PFS:
84.6%

Infusions on days -2,
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r CI
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cGVHD =
32.2%

1-year
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Single infusion 72 h
after PT-Cy
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r CI
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100-day CI of
grade II–IV
aGVHD: 9.6%
2-year CI of
cGVHD:
15.3%
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GRFS:
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1-year
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1-year
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ATIR101
Infusion: +28 day
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26.3% (5/19)
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1-year
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(PerSpective/
Retrospective)

allo-HCT regimen

Diagnosis/
Disease Status
Before Therapy

Cellular
Product/
Drug

Technique Used Cell or drug Course/Dose for
Each Course

Toxicity Dise
Resp

Donor-derived NK cells
Ciurea
et al.
(120)

13 (perspective)
PT-Cy-based
haplo-HCT

AML, n = 8
CML, n = 5
Remission

Ex vivo
expanded
donor NK
cells

Expansion with mbIL21-
expressing feeder cells

Median course number: 3
1 × 105/kg to 1 × 108/kg NK
cells per course

No infusion
reaction or
DLTs

Relap
7.7%

Jaiswal
et al.
(121)

10
(perspective)
PT-Cy-based
haplo-HCT

AML, n = 7
IMF, n = 1
CML, n = 1
MPAL, n = 1
Remission

CD56-
enriched DLI

Ex vivo positive selection of
CD56+ cells

Single infusion
Median CD56+CD3- cell count
per dose: 6.7 × 106/kg

No
Infusion-
related
toxicities;
DLT: grade 2
mucositis
in 3 patients

1-yea
of rela
52%

Jaiswal
et al.
(122)

75
(prospective)
PT-Cy-based
haplo-HCT

AML/CML-BC, n
= 32
ALL, n = 29
Lymphoma, n =
14
Remission

CTLA4Ig N.A. 3 infusions on day +7, +21, and
+35
Day +7: 1 × 106 T cells/kg
Day +21: 5 × 106 T cells/kg
Day +35: 5 × 106 T cells/kg

N.A. CTLA
+DLI
2-yea
of rela
15.7%

CAR-T cells
Cui et al.
(123)

6
(prospective)
ATG-based allo-
HCT

AML, n = 6
Hematological
relapse

CD38-
directed CAR-
T

N.A Median course number: 1
Median cell dose per patient:
8.05 × 106

CRS: 100%
Grade 3
CRS: 16.7%

4 wee
after
T:
CR:
66.7%
CRi:
66.7%

Other techniques
Roy et
al. (124)

23
(prospective)
TCD haplo-HCT

AML, n = 16
ALL, n = 7
Remission

ATIR101 Ex vivo alloreactive T cell
depletion using photodepletion

Single infusion
Cell dose: 2 × 106 T cells/kg

N.A. N.A.

Davies
et al.
(125)

19
(prospective)
TCD haplo-HCT

AML, n = 12
ALL, n = 4
MDS, n = 3
Remission

Alloanergized
DLI

Co-culture of unstimulated
donor PBMC with gamma-
irradiated allostimulator PBMC

Single infusion with dose
escalation (n = 16)
103 T cells/kg (n = 4)
104 T cells/kg (n = 8)
Dose level 3
105 T cells/kg (n = 4)

DLTs:
VOD, n = 1
respiratory
distress
syndrome, n
= 5
sepsis/multi-

Relap
incide
12.5%
C
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Disease Status
Before Therapy

Cellular
Product/
Drug
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Toxicity Diseas
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organ failure,
n = 1

Maung
et al.
(126)

16
(prospective)
Alemtuzumab- or
ATG-based HLA-
identical allo-HCT

AML, n = 6
NHL, n = 4
MM, n = 2
HD, n = 1
CLL, n = 1
IMF, n = 1
MDS/MPN, n = 1
Remission

CD45RA+

naive T cell-
depleted DLI

Ex vivo depletion using
magnetic particles

Single infusion with dose
escalation for each patient
1 × 106 T cells/kg
5 × 106 T cells/kg
1 × 107 T cells/kg

No DLTs Relapse
incidence
43.7%

Ho et al.
(127)

16
(prospective)
allo-HCT from MSD
donors

HL, n = 5
CLL, n = 3
MPN/MF, n = 3
NHL, n = 2
AML, n = 1
MDS, n = 1
MM, n = 1
Hematological
relapse

Co-infusing
donor-derived
DC and DLI

DC generated ex vivo from
donor PBMCs

Single DC+DLI infusion
Median DC yield: 1.16 × 108

cells
DLI: 3 × 107 T cells/kg

DLTs:
1 idiopathic
respiratory
failure;
1 ventricular
cardiac arrest

ORR:
28.6% (4
14)
CR:
21.4% (3
14)

Laport
et al.
(128)

18
(prospective)
allo-HCT from MSD
donors
(protocol unknown)

NHL, n = 5
MM, n = 3
AML, n = 2
ALL, n = 2
CLL, n = 2
MDS, n = 2
APL, n = 1
HD, n = 1
Hematological
relapse

CIKs Major cytokines added:
CD3 mAb and IL-2

Single infusion with dose
escalation for each patient
1 × 107 T cells/kg (n = 4)
5 × 107 T cells/kg (n = 6)
1 × 108 T cells/kg (n = 8)

DLTs:
1 sustained
ventricular
tachycardia
1 hepatic
transaminase
level rises

CR:
27.8% (5
18)

Narayan
et al.
(129)

44
(prospective)
TLI-ATG-based
allo-HCT

AML, n = 12
MDS, n = 27
MPN, n = 2
MDS/MPN, n = 3
Remission

CIKs Major cytokines added:
CD3 mAb and IL-2

Single infusion
1 × 108 T cells/kg

N.A. 2-year C
of relaps
65.9%

Merker
et al.
(130)

36 (prospective)
Alemtuzumab or
ATG based allo-
HCT

AML, n = 15
ALL, n = 18
NHL, n = 2
CML, n = 1
Hematological/
molecular
relapse

CIKs Major cytokines added:
IL-15, IFN-g, anti-CD3 mAb, IL-
2

Each patient received:
dose escalation
initiated from 1 × 106/kg to 5 ×
106/kg, 1 × 107/kg to a
maximum of 1 × 108 T cells/kg

N.A. CR: 53%

Introna
et al.
(131)

73
(prospective)

AML, n = 41
ALL, n = 19
MM, n = 4

Sequential
infusion of DLI
and CIKs

Major cytokines added:
CD3 mAb and IL-2

Each patient received:
2 DLI infusions plus 3 CIK
infusions with dose escalation

No DLTs ORR: 30
CR: 26%
e
s

I
e

%

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ye et al. DLI Optimization in AML

Frontiers in Oncology | www.frontiersin.org 14
CAR-T cell therapy in AML has been much more challenging
compared to B cell malignancies, majorly due to the lack of
AML-specific target antigens and clonal heterogeneity, leading to
unwanted on-target off-leukemia toxicity and risk of relapse
from minor clones (149). Despite the difficulties, major efforts
have been made to develop CAR-T cells for AML. Cui et al.
reported a pioneering study using CD38-directed CAR-T cells in
6 patients with relapsed CD38+ AML after allo-HCT, and 4
(66.7%) achieved CR or CR with incomplete count recovery
(CRi) (123). Notably, several key CAR-T products have shown
promising efficacy in R/R AML and are tested in clinical trials
[summarized by Daver et al. (150)]. An earlier study showed that
LeY CAR-T achieved 1 CR in 4 adult R/R AML patients (151).
The CD33 antibody–drug conjugate gemtuzumab ozogamicin
was the only approved antibody-targeted therapy for AML, and
the CD33/CD3-bispecific BiTE antibody construct has shown
potent pre-clinical anti-AML activity (152). Although an earlier
case report showed unsatisfactory results in one refractory AML
patient receiving CD33 CAR-T infusion (153), several clinical
trials are ongoing to prove its efficacy. CD123 CAR-T has shown
potent antileukemic efficacy in a preclinical human AML
xenograft model, while severe hematologic toxicities
accompany the conventional second-generation CD123 CAR-T
(154). More recently, a switchable universal CAR-T platform
(UniCAR) has been tested in clinical trials (155). In a
preliminary report on 3 R/R AML patients receiving CD123
UniCAR-T, the cell infusion was well tolerated, and CRi was
achieved in 2 patients and PR in 1 patient (156). In addition,
NKG2D CAR-T cells have been evaluated in a phase I clinical
trial on AML/MDS and multiple myeloma patients. Among the 7
reported R/R AML patients, the CR/CRi rate was 42% (157).
Moreover, CAR-T cells redirected to several novel targets [FLT3
(158, 159), CLL-1 (160), CD70 (161), IL-10R (162), mesothelin
(163), Siglec-6 (164), etc.] have shown potent efficacy in pre-
clinical studies, and some of them (eg., CLL-1) are currently
being assessed in clinical trials (150). Furthermore, to overcome
AML heterogeneity, dual CAR-T cells have also been
investigated in AML. In a phase I study, Liu et al. evaluated
compound CAR-T cells targeting both CD33 and CLL-1 in R/R
AML; 2 patients who had blast counts >20% before cCAR T cell
infusion achieved MRD-negative remission and were able to
proceed to allo-HSCT (165). Other dual CAR-T, such as CD123/
CLL-1 CAR-T cells, and further engineered CAR-T cells, such as
CD19 CAR-T cells engineered to secrete a biparatopic anti-
CLEC12A bridging protein, have been developed and
evaluated (166).

Despite its potency, CAR-T cell therapy owns well-defined
limitations, including cytokine release syndrome (CRS) and
GVHD. With the potential to dissociate the GVL and GVHD
effects, CAR-NK cells potentially confer better disease control
with lower toxicity than CAR-T cells in both pre- and post-
transplant settings (167). Due to difficulties in manufacturing
(168), CAR-NK has been forwarded to clinical trials
[summarized by Lu et al. (169)] more lately than CAR-T cells.
Following the success of CD19 CAR-NK cells on B cell
malignancies (170), few but encouraging results have been
published on AML. Tang et al. reported three patients with
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R/R AML who received CD33-CAR NK-92 cells in a phase I trial.
One patient experienced a high fever and two moderate fevers,
and grade I CRS was observed in 2 patients, showing enough
safety for the CAR-NK cell infusions in patients with high tumor
burden (171). Moreover, CAR-NK redirected to several other
AML antigens [e.g., NKG2D ligands (172), CD38 (173), CD123
(174), NPM1c (175), CD7 (176), etc.] have shown preclinical
efficacy in hematological malignancies and are being investigated
in clinical trials for AML.
OTHER TECHNIQUES OF DLI
COMPOSITION MANIPULATION
AND ENGINEERING

Efforts have been made to modify the composition of DLI to
reduce the GVHD rate but maintain the GVL effects. Infusion of
ATIR101, the donor-derived T cell-enriched product selectively
depleted of recipient-alloreactive T cells, in T cell-depleted
(TCD) haplo-HCT has decreased the NRM rate and improved
the GRFS versus TCD haplo-HCT alone (124). In addition,
infusion of alloanergized DLI generated ex vivo on day +35
was shown to promote immune reconstitution and expand
regulatory T cells after CD34-selected haplo-HCT (125).
Inspired by the preclinical studies which indicated that naïve T
cells are major drivers of GVHD, a phase I dose escalating study
of CD45RA+ naïve T cell-depleted DLI was conducted in allo-
HCT patients. Among the 28 patients evaluated, no patient
developed grade III/IV acute GVHD or severe cGVHD,
indicating the preventive capacity of this technique against
GVHD (126). Moreover, since dendritic cells may bolster T
cell responses through antigen presentation, a phase I trial has
evaluated the co-infusion of DC followed by DLI in 16 relapsed
patients with hematological malignancies after allo-HCT.
Among the 14 evaluable patients, 4 (29%) achieved long-term
remission, and only one developed grade II aGVHD (127).

Cytokine-induced killer cells (CIK cells), which are
ex vivo-activated cytotoxic T cells containing predominantly
CD3+CD8+NKG2D+ cells along with significantly expanded
CD3+CD56+ cells, have shown anti-leukemic activity without
causing severe aGVHD in relapse treatment (128) or
consolidation (129) after allo-HCT. Merker et al. observed
superior disease control but lower incidence of aGVHD for CIK
in a comparative study between CIK and DLI in patients with
overt hematologic relapse after allo-HCT (130). The sequential
infusion of DLI and CIK has also been tested in a phase II trial for
hematological relapse post-allo-HCT, but the response rate was
unsatisfactory (response rate, 30%) (131). Notably, CAR-
engineered CIK cells have shown potent anti-leukemic efficacy
in pre-clinical studies in vitro and in vivo (177). Another attractive
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modality is multiple tumor antigen-specific T cells (TAA-T). In a
prospective study conducted by Williams et al., expanded
lymphocytes reactive to TAAs, including WT1, PRAME, and
surviving, achieved 60% (3/5) CR rate in 5 AML patients relapsed
after allo-HCT without causing GVHD (132). Moreover, T cells
engineered with specific TCR (TCR-T) have shown potent anti-
leukemic efficacy in vitro and in xenograft mouse models of
lymphoid malignancies with low risk of aGVHD (178, 179).
Finally, adoptive transfer of suicide gene-modified DLI has
allowed efficient GVHD control via inducible cell elimination
(180, 181).
CONCLUSIONS AND PERSPECTIVES

The aim of DLI optimization is to maximize its GVL while
minimizing the GVH effects. Many factors, including
transplantation type, donor origin, disease burden, DLI dosage/
timing, and immunosuppression, all affect greatly its efficacy/
toxicity. It is recommended to use prophylactic/pre-emptive DLIs
especially in high-risk AML after allo-HCT since therapeutic DLI
for overt relapse is related to a lower chance of disease control.
MRD-guided pre-emptive DLI awaits further improvement with
the introduction of unbiased techniques with higher specificity,
such as whole-genome sequencing. Additional use of novel drugs
and composition manipulation are two promising directions
which may revolutionize the DLI. Many novel targeted/
immunomodulatory drugs are in the pipeline for clinical use in
AML, while their efficacy/toxicity as well as their influence on the
GVL/GVH effects must be clarified before clinical use after allo-
HCT. Finally, cell engineering may help to realize the final aim of
“perfectDLI”with full disease control and noGVHD, which awaits
breakthrough in cellular immunotherapy for myeloid diseases.
Integration of novel techniques (eg., CAR and TCR combined
use) and personalized cell engineering techniques may further
enhance the efficacy of cellular immunotherapy.
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