
1

R E S E A R C H  A R T I C L E

Conflict of interest: The authors have 
declared that no conflict of interest 
exists.

Copyright: © 2022, Chait et al. This is 
an open access article published under 
the terms of the Creative Commons 
Attribution 4.0 International License.

Submitted: December 29, 2021 
Accepted: April 20, 2022 
Published: June 8, 2022

Reference information: JCI Insight. 
2022;7(11):e157608. 
https://doi.org/10.1172/jci.
insight.157608.

Immune and epithelial determinants of 
age-related risk and alveolar injury in fatal 
COVID-19
Michael Chait,1 Mine M. Yilmaz,1 Shanila Shakil,1 Amy W. Ku,1 Pranay Dogra,2 Thomas J. Connors,3 
Peter A. Szabo,2 Joshua I. Gray,2 Steven B. Wells,4 Masaru Kubota,5 Rei Matsumoto,5  
Maya M.L. Poon,2,6 Mark E. Snyder,7 Matthew R. Baldwin,8 Peter A. Sims,4,9 Anjali Saqi,1  
Donna L. Farber,2,6 and Stuart P. Weisberg1

1Department of Pathology and Cell Biology, 2Department of Microbiology and Immunology, 3Department of Pediatrics, 
4Department of Systems Biology, and 5Department of Surgery, Columbia University Irving Medical Center, New York, New 

York, USA. 6Medical Scientist Training Program, Columbia University, New York, New York, USA. 7Department of Medicine, 

University of Pittsburgh, Pittsburgh, Pennsylvania, USA. 8Department of Medicine and 9Department of Biochemistry and 

Molecular Biophysics, Columbia University Irving Medical Center, New York, New York, USA.

Introduction
SARS-CoV-2 is unique among viral respiratory pathogens in its capacity to rapidly induce respiratory fail-
ure in adults. The risk for death by COVID-19 increases progressively and dramatically with age (1) such 
that individuals over 65 years of  age comprise more than 80% of  deaths from COVID-19 (2, 3), while male 
sex (4), hypertension, and diabetes mellitus (5) are also risk factors for severe COVID-19.

The primary cause of  death in patients with severe COVID-19 is lung damage leading to failure of  pul-
monary gas exchange (6–8). Although SARS-CoV-2 enters the respiratory tract by infecting cells of  nasal and 
large airway epithelium that have the highest expression of  the viral entry receptor angiotensin-converting 
enzyme 2 (9), fatal cases often show severe damage to the distal lung, particularly the small airspaces — 
alveoli — that comprise the lung’s gas exchange interface (10–13). The mechanisms of  alveolar injury and 
age-related susceptibility to lung damage and mortality from SARS-CoV-2 infection remain poorly defined.

Due to the uniquely rapid course of  respiratory failure in COVID-19, deaths often occur precipitously, 
before supportive care can be established. Patients who receive advanced supportive care, such as mechanical 
ventilation, often do not recover pulmonary function and die after protracted intervals of  hospitalization (4). 
Early mortality cases — typically hours or days after hospitalization (4) — often have severe hypoxia, precipi-
tous clinical decline, and death without either prominent pulmonary immune infiltrates or typical histological 
patterns of  acute lung injury (ALI) (11, 14–17). These cases likely reflect the earliest stages of  viral infec-
tion and associated inflammation, and they show higher viral burden and high levels of  proinflammatory  
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cytokines and interferon-stimulated genes (ISGs) (11). Late mortality cases — typically 1–2 weeks after hos-
pitalization (4) — show increased pulmonary immune infiltration (14, 18) and typical histological patterns 
of  ALI affecting the alveolar epithelial lining, most commonly diffuse alveolar damage (DAD) (10, 11, 19). 
Thus, the lung injury pattern and immune infiltration in COVID-19 occurs along a continuum dependent on 
the time postinfection, with early mortality cases reflecting the earliest stages of  lung injury and late mortality 
cases showing advanced lung damage and dysfunctional repair mechanisms (14).

The alveolar gas exchange interface comprises type 1 alveolar epithelial (T1AE) cells with flattened 
morphology that actively participate in gas exchange and type 2 alveolar epithelial (T2AE) cells with cuboi-
dal morphology that produce pulmonary surfactant required for maintaining alveolar surface tension. 
Notably, T2AE cells are less differentiated than T1AE cells and possess progenitor capacity for self-renewal 
and repair of  alveolar epithelial damage (20, 21).

There is substantial evidence that the immunopathological response to SARS-CoV-2 infection plays a 
major role in alveolar epithelial destruction (12, 18, 22–25). Single-cell RNA-Seq studies of  COVID-19 patient 
lung and airway washings and single-nucleus RNA-Seq studies of  COVID-19 autopsy samples reveal severe 
dysregulation of  both epithelial and immune function (12, 22, 23). There is evidence for unregulated tissue 
inflammatory responses with aberrantly activated monocytes/macrophages and T cells as well as impaired 
alveolar epithelial cell function and regeneration (12, 23, 26). Defining the interrelationships between alveolar 
epithelial damage and tissue immune cells at distinct immunopathological stages of  COVID-19 can elucidate 
mechanisms of  respiratory failure to better optimize COVID-19 medical management and mitigation efforts. 
In addition, a better understanding of  the factors involved in alveolar injury can help advance our understand-
ing of  many other lung diseases that cause respiratory failure by disrupting alveolar epithelium (27).

Here we have performed gene expression studies coupled with epithelial and immune cell profiling 
focused on the immunopathological processes at the lung’s alveolar gas exchange interface in 24 COVID-19 
autopsies and 43 uninfected organ donors. We identify marked and selective T2AE cell loss and increased 
perialveolar lymphocyte cytotoxicity as defining elements of  early lung tissue changes in fatal COVID-19 
that are manifest prior to appearance of  the typical histological ALI patterns. In the lungs of  uninfected indi-
viduals, we show that selective depletion of  T2AE cells correlates with increasing age, suggesting that lower 
baseline T2AE cell density may increase risk in older individuals for severe lung damage from COVID-19. 
In the lungs of  fatal COVID-19 cases with ALI, we identify prominent infiltration of  CD4+ macrophages 
expressing high levels of  T cell activation and costimulation genes, which strongly correlates with increased 
extent of  alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results provide import-
ant insights into the dynamics and interrelationships of  alveolar epithelial cells with age and immune cell 
infiltration and elucidate how immune cells might orchestrate alveolar injury in fatal COVID-19.

Results
Histopathology of  early and late COVID-19 mortality from an autopsy series. To define histopathologic changes 
associated with early and late COVID-19 mortality, fatal COVID-19 cases (n = 24) were selected from among 
a previously defined cohort of  postmortem examinations performed at NewYork-Presbyterian Hospital on 
patients who died of  COVID-19 between March and June of  2020 (11). All cases were confirmed SARS-
CoV-2 positive by PCR with either pre- or postmortem testing and had availability of  paraffin-embedded  
lung tissue blocks without autolysis. The fatal COVID-19 cases largely comprised older adults ranging 
in age from 57 to 93 (median age, 73), predominantly men (75%), with the majority Hispanic or African 
American (54%). Comorbidities previously shown to be associated with COVID-19 mortality were present 
in the vast majority of  these cases, including hypertension (96%), diabetes (50%), and heart disease (46%). 
The median time from symptom onset to death was 16.5 days (range, 1–42 days). Consistent with previous 
reports showing distinct early and late peaks of  COVID-19 mortality (4, 14), 1 in 3 of  the patients (8/24) in 
our cohort presented in rapidly deteriorating clinical condition, with death within 5 days of  hospitalization 
(median, 0.5; range, 0–5 days) and 10 days of  symptom onset (median, 2.5; range, 1–9 days). The remain-
ing patients (16/24) displayed more gradual clinical decline, with death occurring after a more prolonged 
symptomatic period (median, 19.5; range, 10–43 days) (Supplemental Table 1; supplemental material avail-
able online with this article; https://doi.org/10.1172/jci.insight.157608DS1). Otherwise, the profile of  
clinical characteristics and comorbidities was similar between the early and late mortality groups, with all 
patients showing evidence of  hypoxemia based on oxygen saturation or partial pressure of  oxygen (Sup-
plemental Table 1). Histopathological assessment of  the postmortem examinations (Figure 1A) revealed 
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patterns of  ALI (see Methods) (11, 28), predominately DAD in 81.25% of  the late COVID-19 mortality 
cases (13/16 cases) and 25% in the early COVID-19 mortality cases (2/8 cases) (Figure 1B). In 75% of  the 
early mortality cases, signs of  vascular congestion and capillary proliferation were observed (Supplemental 
Table 1 and Figure 1A) consistent with previous reports (11, 13). Staining for SARS-CoV-2 nucleocapsid 
protein (N protein) was positive in 50% (4/8) of  the early COVID-19 mortality cases and 25% (4/16) of  
the late COVID-19 mortality cases (Figure 1C). In N protein–positive areas (Figure 1C), staining localized 
mostly to hyaline membranes and apical surfaces of  pneumocytes lining the alveolar septa, consistent with 
previous reports (14, 29). Simple logistic regression analysis showed a significantly increased probability 
of  ALI (odds ratio = 1.124, CI = 1.022–1.1277, P = 0.0386) and decreased probability of  SARS-CoV-2 N 
protein positivity (odds ratio = 0.9096, CI = 0.8079–0.9955, P = 0.0128) associated with increased symp-
tomatic interval. These results show that widespread ALI is most frequently associated with late COVID-19 
mortality and is often not present in early COVID-19 mortality.

ISGs and loss of  surfactant transcripts in early COVID-19 mortality. To define changes in gene expression 
associated with early and late COVID-19 mortality in bulk lung tissue, we used RNA extracted from 
the FFPE archival lung tissue to profile pulmonary gene expression across 8 late COVID-19 mortality  
patients, 6 early COVID-19 mortality patients, and 10 organ donor controls using a 760-gene panel 
encompassing transcripts involved in both immune cell-tissue interactions and lung tissue homeostasis. 
Control samples were collected prior to 2019 from brain-dead organ donors over age 40 (median, 60.5; 
range 42–92 years) and did not show evidence of  viral respiratory infection, pulmonary cause of  death, or 
histological patterns of  ALI (data not shown).

In comparison with control lungs, early mortality COVID-19 cases showed 59 upregulated transcripts and 
16 downregulated transcripts (Figure 2A and Supplemental Figure 1) using the cutoff  adjusted P value < 0.05 
and log fold change (FC) ≥ 1. Upregulated genes in early COVID-19 mortality included many involved with 
interferon signaling (e.g., GBP2, ISG15), the NF-κB pathway (e.g., NFKB2, NFKBIA), and TNF-α and IL-1 sig-
naling (e.g., TANK, NOD1, RELA). Late COVID-19 mortality showed 16 upregulated transcripts and 8 down-
regulated transcripts (Figure 2A and Supplemental Figure 2). Upregulated genes in late COVID-19 mortality 
included those involved in pyroptosis (30) (e.g., GZMA, CASP1) and fibrosis (COL1A1). Notably, both the early 
and late mortality cases showed marked coordinate downregulation of genes associated with T2AE cells and 
encoding pulmonary surfactant proteins (SFTA2, SFTPB, SFTPC, SFTPD) (Figure 2, A and B).

In gene set enrichment analysis (31–33), transcripts upregulated in the early COVID-19 mortality cases 
showed the greatest enrichment for Gene Ontology (GO) terms related to antiviral immune responses, 
including interferon-gamma-mediated signaling pathway (GO:0060333, 15/68 transcripts, early vs. 4/68 
transcripts, late), type I interferon signaling pathway (GO:0060337, 14/65 transcripts, early vs. 4/65 tran-
scripts, late), and defense response to virus (GO:0051607, 10/133 transcripts, early vs. 2/133 transcripts, 
late). Upregulated transcripts in early and late COVID-19 mortality were both enriched for GO terms relat-
ed to macrophage differentiation and migration (Supplemental Figure 3).

Most of  the interferon and NF-κB pathway genes that were found to be increased in early COVID-19 
mortality showed decreased expression in the late mortality cases (Figure 2B). Analysis of  the relation-
ship between gene expression and the symptomatic interval prior to death across all the COVID-19 mor-
tality cases identified 72 transcripts that correlated (adjusted P value < 0.1) with symptomatic interval 
(Supplemental Table 2). Genes that were found to be upregulated in the early COVID-19 mortality cases 
and involved with the interferon (ISG20, IRF1, GBP2) and NF-κB (NFKB2, NFKBIA, TNFAIP3) pathways 
showed linear decline with longer symptomatic interval (Figure 2C). In contrast, the fibrosis-related tran-
script COL1A1 showed linear increase with symptomatic interval (Figure 2C) consistent with a fibrotic 
response to prolonged lung injury. In contrast, the surfactant transcripts remained profoundly suppressed 
across the full range of  symptomatic intervals (Figure 2C). These results show that lung gene signatures of  
T2AE cell dysfunction define all fatal COVID-19 cases whereas the gene signatures of  inflammation and 
antiviral responses are highly dependent on timing and stage of  disease.

Patterns of  alveolar epithelial cell loss in fatal COVID-19. Given the central role of  alveolar epithelial cells 
in pulmonary surfactant production, gas exchange, and tissue repair (20, 27), we performed quantitative 
alveolar epithelial cell profiling on COVID-19 cases and uninfected controls. All alveolar epithelial cells 
express high levels of  nuclear transcription termination factor 1 (TTF-1), a member of  the Nkx2 family 
of  homeodomain-containing transcription factors and a master regulator of  pulmonary epithelial cell 
differentiation (34, 35). T2AE cells coexpress nuclear TTF-1 and cytoplasmic Napsin-A, a key enzyme in 
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pulmonary surfactant production (Supplemental Figure 4A) (36). T1AE cells express nuclear TTF-1 with-
out cytoplasmic Napsin-A (37–40). Using flow cytometry, we further validated a TTF-1 and Napsin-A 
dual-labeling strategy for classifying alveolar epithelial cells, by using the additional T2AE cell–specific 
marker, HTII-280 (41) (Supplemental Figure 4B).

We used dual chromogen immunohistochemistry to stain lung tissue sections of  the COVID-19 
cases and controls for TTF-1 (brown) and Napsin-A (red) with hematoxylin nuclear counterstain (Fig-
ure 3A). Cells were classified as T2AE based on nuclear TTF-1+ and cytoplasmic Napsin-A+ staining 
(TTF-1+Napsin-A+), and these cells showed characteristic cuboidal morphology and localization along 
the alveolar airspaces in the control lung (Figure 3A, double arrows) (20, 41). Cells were classified as 
T1AE based on nuclear TTF-1+ and cytoplasmic Napsin-A– staining (TTF-1+Napsin-A–), and these cells 
showed characteristic thin nuclei and cytoplasm lining the alveoli (Figure 3A, solid arrows) (39, 40). The 
cells with Napsin-A+ cytoplasm and TTF-1– nuclei (Figure 3A, single arrows) comprised mostly macro-
phages, and these cells were not quantified in this analysis (37).

Quantification of  the alveolar epithelial cells revealed selective loss of  T2AE cells in the COVID-19 
mortality cases that lacked histologically apparent ALI, with further decline in T2AE cells associated with 
presence of  ALI (Figure 3B, left). Marked depletion of  T2AE cells was observed across the full range of  
symptomatic intervals (Figure 3B, right). In contrast, we observed significant loss of  T1AE cells only in 
those cases with ALI (Figure 3C, left). Whereas T1AE cells remained intact in the early mortality cases, 
T1AE density showed linear decrease with increasing symptomatic interval specifically in those cases with 
ALI (Figure 3C, right). These data show that T2AE cell loss is a defining characteristic of  fatal COVID-19 
even at early stages before ALI is histologically apparent and that ALI development is associated with fur-
ther loss of  T2AE cells and with the time-dependent loss of  T1AE cells.

Aging drives selective T2AE cell loss in the uninfected lung. Given the key role of  alveolar epithelial cells in respi-
ratory function and lung repair, we examined whether patient age — the dominant risk factor for COVID-19 
severity and mortality — is a predictor for alveolar epithelial cell density. We first examined the baseline state 
of  alveolar epithelium in the uninfected lung from 43 organ donors with an age range of  18–92 years. We 
observed reduced T2AE cell density in lungs from the organ donors with increasing age (Figure 4A). Seg-
mental linear regression analysis revealed an inflection point around 57 ± 11 (X0 ± SEM) years of  age (Figure 
4A), after which age-related T2AE cell decline was accelerated. In multiple linear regression analysis of  the 

Figure 1. Histopathological findings in early and late COVID-19 mortality. (A) H&E-stained sections (20× original magnification fields) demonstrating the 
predominant histopathological changes seen in uninfected lung (left panel, control), early COVID-19 mortality (middle panel, <10 days symptomatic interval), 
and late COVID-19 mortality (right panel, >10 days symptomatic interval). (B) Bar plots depicting the percentage of early COVID-19 mortality (n = 8) and late 
COVID-19 mortality cases (n = 16) showing predominant histological patterns of acute lung injury (ALI, shown in red). (C) Representative SARS-CoV-2 nucle-
ocapsid protein (N protein) stain is shown (left) with bar plots depicting the percentage of early (n = 8) and late (n = 16) COVID-19 mortality cases that were 
histologically positive for the SARS-CoV-2 N protein (shown in green, right). Black scale bar: 50 μm. 
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uninfected cohort, age was found to be a significant predictor of  lower T2AE cell density after adjustment for 
smoking status and presence of  underlying lung disease (Supplemental Table 3). In contrast, no relationship 
was observed between age and T1AE cell density (Figure 4B and Supplemental Table 3). In the COVID-19 
mortality cases, T2AE cell density was markedly reduced (Figure 3B) in all cases; however, age was found 
not to be a significant predictor of  T2AE (Figure 4C) or T1AE (Figure 4D) cell density. These findings show 
that lower baseline T2AE cell density is associated with increased age, which may increase susceptibility of  
alveolar epithelium to damage in COVID-19.

Enhanced lymphocyte cytotoxicity and CD4+ macrophage infiltration in fatal COVID-19. To elucidate factors 
associated with the local lung immune response that may drive alveolar epithelial injury in COVID-19, 

Figure 2. Gene expression profiles in early and late COVID-19 mortality. (A) Bowtie plots showing gene expression log2 fold change plotted against 
–log10-adjusted P value for comparison of the early (top left, n = 6) and late COVID-19 mortality cases (bottom left, n = 8) versus uninfected controls 
(n = 10). Red dots correspond to gene expression changes for the indicated comparison with adjusted P < 0.05. P values were adjusted for multi-
ple-hypothesis testing using the Benjamini-Hochberg method. (B) Heatmap depicting the normalized and scaled transcript levels across COVID-19 
cases (ordered by symptomatic interval) and controls for all the significantly altered transcripts falling into the indicated functional categories. (C) 
Dot plots depicting log2-normalized counts of the indicated transcripts. Controls are shown to the left (blue squares, n = 10), and COVID-19 cases are 
plotted against symptomatic interval (red dots, n = 14). The best-fit line with 95% confidence bands and R2 and P values were calculated using simple 
linear regression analysis. Error bars show median and interquartile range.
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we profiled the major immune lineages in lung tissue of  the COVID-19 cases and controls. Representa-
tive sections from each lung sample were stained using a 6-color immune lineage panel with markers to 
delineate B cells (CD19), T cells (CD4 and CD8), neutrophils (MMP9), macrophages (CD163), and the 
cytotoxic effector molecule granzyme B (GZMB) (Figure 5A). Image analysis was performed on 20–50 

Figure 3. Distinct profiles of alveolar epithelial cell loss associated with lung tissue pathology in fatal COVID-19. (A) Dual-chromogen staining in alveolar 
lungs for nuclear TTF-1 (brown) and cytoplasmic Napsin-A (red) with hematoxylin counterstain (blue). Shown are representative original magnification 40× 
fields from 2 uninfected controls (left), early COVID-19 mortality cases without ALI (middle), and late COVID-19 mortality cases with ALI (right). (B and C) 
Dot plots depicting type 2 alveolar epithelial cell density (T2AE, TTF-1+Napsin-A+) (B, left) and type 1 alveolar epithelial cell density (T1AE, TTF-1+Napsin-A–) 
(C, left) in the controls (n = 17) compared with the COVID-19 mortality cases with (n = 15) and without (n = 9) ALI (indicated on the x axis). Also shown are 
the T2AE (B, right) and T1AE (C, right) cell densities plotted against the symptomatic interval. The best-fit line with 95% confidence bands and R2 and P 
values were calculated using simple linear regression analysis. Black scale bar: 50 μm. Solid arrow, T1AE cells; double arrow, T2AE cells; single arrow, mac-
rophages. Error bars show median and interquartile range. **P < 0.01, ***P < 0.001, ****P < 0.0001.
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original magnification 20× fields of  alveolar lung per person (1354 fields total), and classification into 
immune cell lineages was performed on each cell using information from all 6 markers with a trainable 
machine learning algorithm (inForm 2.3, PerkinElmer) (see Methods and Supplemental Figure 5A).

Quantification of  the immune cell density in lung tissue revealed no significant differences in the major 
lymphocyte lineages or neutrophils (Polymorphonuclear neutrophil, PMN) in the COVID-19 mortality 
cases (Figure 5B). However, we did observe increased GZMB expression in the CD8+ T cells (Figure 5, 
A and C) as well as increased density of  Lin–GZMB+ cytotoxic cells in all the COVID-19 mortality cases 
(Figure 5B). These cytotoxic cells were often found adjacent to or within the alveolar wall (Figure 5A, 
middle and right) and were increased similarly across early and late stages of  COVID-19 and lung injury 
patterns (Figure 5, B and C). Thus, alveolar infiltration by cytotoxic lymphocytes occurs in early stages of  
COVID-19 prior to development of  ALI.

With the development of  ALI, we observed marked changes in the lung macrophage population. Where-
as uninfected lung tissue contains a predominant CD163+ macrophage population that is negative for the 
other lineage markers, we observed increased density of  CD4+CD163+ macrophages in the COVID-19 cases 
with ALI (Figure 5, A and B, and Supplemental Figure 5B). These CD4+ macrophages were predominantly 
round to oval, lacking in processes with high cytoplasm to nuclear ratio, consistent with the in situ appearance 
of  alveolar rather than interstitial macrophages (Figure 5A, right) (42). In addition, we observed modestly but 
significantly reduced density of  the CD4–CD163+ macrophages in the COVID-19 cases without ALI (Figure 
5B). These results show that ALI in COVID-19 is associated with infiltration of  CD4+ macrophages.

Increased T cell cytotoxicity correlates with alveolar epithelial damage in COVID-19. To better define how cytotoxic 
immune cells may contribute to alveolar epithelial damage, we performed reanalysis of the T and NK cell tran-
scriptome signatures from a previously published single-cell RNA-Seq (scRNA-Seq) data set of bronchoalveo-
lar (BAL) washings from 3 patients intubated with severe COVID-19 (serially sampled at days 1–6, 8–10, and 
19–22 after symptom onset) (22). After selection of highly variable features and clustering (Figure 6A, top left),  

Figure 4. Age-associated changes in lung alveolar epithelial cells in uninfected organ donors and COVID-19 mortality 
cases. Dot plots depicting T2AE (A) and T1AE (B) cell density in uninfected organ donors (black dots, n = 43) plotted 
against donor age. Also shown are dot plots depicting T2AE (C) and T1AE (D) cell density in the COVID-19 cases (n = 24, 
red dots). The best-fit line and P values were calculated using simple linear regression analysis. The X0 and Y0 values for 
the age versus T2AE cell density plot were calculated using segmental linear regression where appropriate.
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Figure 5. Patterns of immune cell infiltration associated with lung tissue pathology in fatal COVID-19. (A) Representative original magnification 
20× fields of 7-color multiplex staining with single markers shown for the boxed magnified field, of alveolar lung tissue from uninfected controls 
(left), early COVID-19 mortality cases without ALI (middle), and late COVID-19 mortality cases with ALI (right). (B) Lung tissue density of immune 
cell subsets defined based on expression of the 6 immune lineage markers for each of the controls (n = 9–12, blue dots), COVID-19 mortality cases 
without ALI (n = 9, green dots), and COVID-19 mortality cases with ALI (n = 10–15, red dots). P values were calculated using a mixed effects model 
2-way ANOVA and Dunnett’s multiple comparisons test. (C) Representative contour plots depicting granzyme B (GZMB) expression plotted against 
CD8 expression (left) in the imaged CD8+ T cells of a control and COVID-19 mortality case with compiled data (right). For each case, mortality at ear-
ly (unfilled dot, n = 8) or late (filled dot, n = 16) stage of disease is also indicated. P values were calculated using Welch’s ANOVA test and Dunnett’s 
multiple comparisons test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Error bars show median and interquartile range. White scale bar, 
top images 50 μm; single marker images 25 μm. Arrow colors indicate lineages (magenta, macrophage; cyan, CD4+ T cell; orange CD8+ T cell; red, 
neutrophil; yellow, B cell).
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GZMB expression was detected predominately in a subset of CD8+ T cells comprising 3 clusters (clusters 3, 7, 
and 10). We found that the CD8+ T cells expressing the highest levels of GZMB also had high coexpression of  
multiple transcripts encoding cytotoxicity molecules (e.g., PRF1, GZMA, GZMK, GNLY, CST7) (Figure 6A, 
right) in contrast with the other subsets. Expression of these same cytolytic markers is also shared by a single 
cluster of NK cells (cluster 4) defined by high expression of NK lineage markers and lack of T cell lineage 
markers (Figure 6A, right). These results show that the GZMB+CD8+ cells in COVID-19 lung tissue likely 
coexpress a broad range of cytotoxic effector molecules, which may contribute to local tissue damage.

We further defined the relationship between T cell cytotoxicity and the density of  TTF-1+ alveo-
lar epithelial cells. The percentage of  CD8+ T cells expressing GZMB was significantly correlated with 
greater depletion of  T1AE cells and T2AE cells across all the COVID-19 cases (Figure 6B). In con-
trast, overall CD8+ T cell density (encompassing GZMB+ and GZMB–) was found not to be significantly  
correlated with alveolar epithelial cells (Figure 6C). In a multivariable linear regression model of  the 
COVID-19 cases, the expression of  GZMB in the CD8+ T cells was found to be a significant predictor 
of  lower alveolar epithelial cell density after adjustment for confounding factors including age, presence 
of  ALI, and length of  symptomatic interval (Supplemental Table 4). These results show that increased T 
cell cytotoxicity correlates with increased extent of  alveolar epithelial damage in fatal COVID-19.

CD4+ macrophages express gene signatures of  T cell activation and tissue inflammation. The strong association 
of  CD4+ macrophages with ALI in COVID-19 prompted us to assess myeloid cell transcriptomes for dis-
tinct subsets associated with CD4 expression. We performed reanalysis of  the previously published myeloid 
cell transcriptomes in the scRNA-Seq data set of  BAL washings from patients with severe COVID-19 (22). 
After selection of  highly variable features in the myeloid data set and clustering, CD4 expression was detect-
ed predominately in a transcriptionally distinct subset of  the BAL myeloid cells corresponding to 3 clusters 
(cluster 5, 12, and 14; Figure 7A). Analysis of  these clusters revealed high expression of  core macrophage 
lineage genes, including CD68 and CSF1R, in addition to scavenger receptor transcripts associated with 
alveolar macrophages (the genes MRC1 and MSR1, encoding CD206 and CD204) (43). In contrast with 
interstitial macrophages, which express high levels of  CD169 and low levels of  CD11c and produce IL-10, 
the CD4+ macrophages expressed relatively high levels of  CD11c transcript (ITGAX), low levels of  CD169 
transcript (SIGLEC1), and low IL10 transcript (Supplemental Figure 6) (42, 44).

Notably, the CD4+ macrophages also showed distinctly high expression of  several transcripts associat-
ed with T cell activation, including all components of  MHC class II (HLA-DRA, HLA-DRB1, HLA-DQA1, 
HLA-DQB1, HLA-DPA1, and HLA-DPB1), as well as costimulation molecules (CD80, CD86, CD40, and 
CD72) and transcripts associated with inflammation, tissue damage, and fibrosis (NFKB1, MMP9, MMP14, 
and AREG) (45, 46) (Figure 7A). High MHC class II expression is not typical of  steady-state resident alve-
olar macrophages (44) but has been reported in monocyte-derived alveolar macrophages, which are recruit-
ed in the setting of  lung inflammation (24, 47, 48). The CD4+ macrophages in COVID-19 also expressed 
several other markers of  monocyte-derived alveolar macrophages, including the APOE transcript and genes 
encoding the complement component C1Q (24, 47, 48).

Previous studies have identified high levels of  chemokine expression as well as IL-1β expression in the 
lung macrophages of  patients with severe COVID-19 (22, 23). In this data set, the highest expression of  
chemokines and IL-1β was found in transcriptionally distinct clusters (0, 3, 4, and 6) separate from the CD4+ 
macrophage subset (Figure 7A). The chemokine- and IL-1β–expressing macrophage subsets were found to 
express the lowest levels of  CD4 and T cell activation genes (Figure 7A). These results show that CD4 tran-
script corresponds with macrophage subsets expressing high levels of  T cell activation genes and are distinct 
from the chemokine-producing macrophage subsets also infiltrating lungs of  patients with severe COVID-19.

CD4+ macrophages predict epithelial cell loss and lymphocyte cytotoxicity. The distinctly high coexpression of  
T cell activation molecules with proinflammatory mediators in the CD4+ macrophage population prompted 
further analysis of  how these cells correlate with the local epithelial and immune cells in the lung. In a linear 
regression analysis, we observed increased CD4+ macrophage density in COVID-19 autopsy samples to be 
strongly correlated with decreased density of  alveolar epithelial cells (Figure 7B). Multivariable analysis of  
the COVID-19 cases showed that higher CD4+ macrophage density and lung macrophage CD4 expression 
level both remained significant predictors of  lower alveolar epithelial cell density even after adjustment for 
the presence of  ALI (Supplemental Tables 5 and 6). In contrast, the CD4– macrophage density did not 
correlate with alveolar epithelial cells (Figure 7C). In addition, we found the CD4+ macrophage density to 
be positively correlated with GZMB expression in the CD8+ T cells whereas the lung CD4– macrophages 
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density was not found to correlate with GZMB expression in CD8+ T cells (Figure 7D). These results show 
that CD4+ macrophages, but not CD4– macrophages, are associated with alveolar epithelial dysfunction and 
lymphocyte cytotoxicity in fatal COVID-19.

Discussion
SARS-CoV-2 infection is uniquely destructive to the lung’s alveolar gas exchange interface, particularly 
in older individuals. Understanding the mechanisms underlying alveolar damage and age-related risk in 
COVID-19 is required to improve patient outcomes and for addressing future respiratory pandemic threats. 

Figure 6. Correlation of lung T cell cytotoxicity with alveolar epithelial cell loss in fatal COVID-19. (A) Uniform manifold approximation and projection 
(UMAP) embeddings of total T/NK cells obtained from airways of 3 patients with COVID-19 (top left) with a feature plot showing normalized expression of 
GZMB (bottom left). Representative marker genes for each cluster are shown in the normalized and scaled heatmap to the right, with color bars corre-
sponding to position on the UMAP. (B) The percentage GZMB+ cells within the CD8+ T cell subset in lungs and (C) the overall density of all CD8+ T cells is 
plotted against the density of lung T2AE cells (left) and T1AE cells (right) from all COVID-19 cases (n = 24) and controls (n = 12). The best-fit line with 95% 
confidence bands and R2 and P values were calculated using simple linear regression analysis.
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Figure 7. Correlation of CD4+ macrophages with T cell cytotoxicity and alveolar epithelial cell loss in fatal COVID-19. (A) UMAP embeddings of total 
monocytes (Mo) and macrophages (Mac) from airways of 3 patients with COVID-19 (top left). Feature plot shows normalized expression of CD4 (bottom 
left). Representative marker genes for each cluster are shown in the normalized and scaled heatmap on the right with color bars corresponding to posi-
tion on the UMAP. (B and C) The density of CD4+ macrophages (B) and CD4– macrophages (C) in lung tissue is plotted against the density of lung T2AE 
cells (left) and T1AE cells (right). (D) The density of CD4+ macrophages (left) and CD4– macrophages (right) is plotted against the percentage of GZMB+ 
cells in the CD8+ T cell subset for all COVID-19 cases (n = 24) and controls (n = 12). The best-fit line with 95% confidence bands and R2 and P values were 
calculated using simple linear regression analysis.
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Due to the severity of  COVID-19, strain on emergency medical and hospital resources, and disparities in 
health care access, many patients with COVID-19 die before supportive care can be established or after 
prolonged hospitalization due to refractory disease (4). Therefore, autopsy studies have played a pivotal 
role in defining mechanisms of  COVID-19 pathogenesis. Previous autopsy studies have identified distinct 
immunopathological stages in fatal COVID-19 and defined the transcriptome signatures of  lung epithelial 
and immune dysfunction at single-cell resolution (12, 18, 23, 24, 29, 49). With this study, we have eluci-
dated potentially novel facets of  the immunopathological processes driving alveolar destruction in fatal 
COVID-19 using coordinated analysis of  epithelial and immune cell subsets in lung tissue from early and 
late COVID-19 mortality cases and uninfected organ donors.

Although previous studies have described T2AE and T1AE cell loss and dysfunction in fatal cases of  
COVID-19 (23, 49) and in other severe lung diseases (27), this study provides evidence that selective T2AE 
cell loss occurs in early stages of COVID-19 prior to development of ALI (Figure 2C and Figure 3B) and thus 
may play a primary role in respiratory failure. Consistent with our results in tissue, recent studies in blood have 
shown that biomarkers of T2AE cell damage are increased in the earliest stages of severe COVID-19 (50). Loss 
of T2AE cells may promote alveolar collapse and prevent alveolar repair (20, 21). Surfactant is primarily pro-
duced by T2AE cells and is required to maintain alveolar surface tension (20, 21). In murine models, alveolar 
surfactant loss, by itself, can disrupt pulmonary gas exchange and cause hypoxemia (51, 52). Thus, acute loss 
of surfactant may contribute to “silent hypoxia” in COVID-19 before ALI, inflammation, and edema are histo-
logically or radiographically apparent (11, 14–16, 53). Also, T2AE cells have progenitor activity that is required 
to regenerate damaged alveolar epithelium (20, 21, 27), and thus T2AE cell loss in early-stage COVID-19 may 
contribute to progressive depletion of T1AE cells (Figure 3C) and inability to recover alveolar function.

Lower T2AE cell density associated with increased age in the uninfected cohort (Figure 4A) may 
reflect diminished functional reserve and regenerative capacity of  alveolar epithelium (20, 21, 27). Thus, an 
impaired T2AE cell baseline may underlie susceptibility of  older individuals to developing severe COVID-19. 
In the setting of  fatal COVID-19 and evolving ALI, alveolar epithelial cell depletion is primarily correlated 
with cytotoxic T cells and CD4+ macrophages (Figure 6B and Figure 7B), rather than age (Figure 4C). Thus, 
immune-mediated damage may exert dominant effects on alveolar epithelial cells once severe disease is 
established in the absence of  significant regenerative responses.

Widespread damage to the alveolar epithelium in COVID-19 is probably mediated by the tissue immune 
response (14, 24, 29). Most studies investigating immune mechanisms of lung injury in COVID-19 have focused 
on the role of macrophages, the predominant immune subset in lungs (12, 14, 18, 22). Our study reveals that 
cytotoxic lymphocytes are increased in early COVID-19 prior to macrophage infiltration and development 
of ALI (Figure 5, B and C). Although a previous study has shown increased concentration of the cytotoxic 
effector molecules GZMB and perforin in airway supernatant of patients with COVID-19 (22), we believe our 
study is the first to demonstrate the marked induction of GZMB in situ within the CD8+ T cell compartment 
in early COVID-19 (Figure 5) and the correlation of lymphocyte cytotoxicity with alveolar epithelial cell loss 
(Figure 6B and Supplemental Table 4). Our analysis of scRNA-Seq data from airway immune cells of patients 
with COVID-19 (Figure 6A) showed that the highest GZMB expression corresponded to broadly cytotoxic gene 
signatures in CD8+ T cells, supporting a role for CD8+ T cell cytotoxicity in alveolar epithelial destruction.

Increased lung macrophage density in COVID-19 is closely associated with ALI (12, 14, 18, 22), and 
scRNA-Seq studies show proinflammatory macrophage gene expression signatures in COVID-19 with 
distinctly high expression of  IL-1β and chemokines that may propagate lung inflammation (12, 18, 23, 
24). Our study is the first to our knowledge to describe a distinct CD4-expressing macrophage subset that 
becomes predominant specifically in the COVID-19 cases with ALI (Figure 5B). Previously, CD4 expres-
sion has been described on tissue-resident macrophages in murine intestine at steady state, and CD4 expres-
sion on human monocytes can mediate macrophage activation and differentiation upon ligation (54, 55). 
The COVID-19–associated CD4+ macrophages have morphologic characteristics of  alveolar macrophages 
(Figure 5A) (42, 44). However, their transcriptome signature and CD4 expression suggest that they may 
make up a subset of  monocyte-derived, rather than tissue-resident, alveolar macrophages that are recruit-
ed due to lung inflammation (24, 47, 48). Compared with other pulmonary myeloid cell populations in 
COVID-19, the transcriptome of  the CD4+ macrophage subset suggests low cytokine production but high 
capacity to activate local T cells through costimulation and antigen presentation (Figure 7A). The asso-
ciation of  increased CD4+ macrophage density with higher CD8+ T cell cytotoxicity and increased alve-
olar epithelial cell loss (Figure 7, B and D, and Supplemental Table 5) suggests a potential role for CD4+  
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macrophages in orchestrating alveolar damage through T cell interactions, although these correlations do 
not definitively establish causal relationships between these immune cells and lung damage.

In summary, our study provides an integrative perspective of  COVID-19 immunopathology at the lung’s 
gas exchange interface. It has identified key unifying characteristics across the heterogeneous infection course 
and patterns of  lung tissue injury seen in COVID-19 mortality, identified age-related changes in alveolar 
epithelium of  uninfected individuals that may contribute to COVID-19 risk, and defined dynamic interrela-
tionships between alveolar epithelial states and immune cells at different stages of  lethal infection. Together, 
these findings advance our understanding of  the immune and epithelial factors associated with respiratory 
failure in COVID-19 and age-related COVID-19 risk. Our results provide key insights into potential immune 
mechanisms of  alveolar damage and may inform the design of  therapeutic strategies that more specifically 
target the immunopathological mechanisms operative at distinct stages of  pulmonary viral infection.

Methods
COVID-19 case definition and sample collection. The study was approved by the institutional review board of  
Columbia University Irving Medical Center (CUIMC) and conducted according to institutional review 
board (IRB) requirements. The analysis of  lung tissue samples was completed for 24 SARS-CoV-2 autop-
sies confirmed with pre- or postmortem reverse transcription PCR. Autopsies were performed in Colum-
bia University NewYork-Presbyterian Hospital, in accordance with guidelines set forth by the College of  
American Pathologists and recommendations provided by the US Centers for Disease Control and Pre-
vention. Autopsies were completed using the Virchow technique, in a negative-pressure autopsy suite with 
appropriate personal protective equipment, including N-95 masks; eye protection; and disposable scrub 
caps, gowns, gloves, and rubber boots. The lungs were dissected and fixed in formalin by instillation of  
fixative solutions. Sections were taken from grossly or radiographically identified abnormal regions from 
each lung lobe. At least 1 section from each lung lobe was taken and submitted in standard tissue cassettes. 
Tissue was processed and embedded in paraffin.

Collection and processing of  control samples. Control, uninfected lung tissues were obtained from deceased 
organ donors prior to 2019 as part of  organ acquisition for clinical transplantation through an approved 
protocol and material transfer agreement with LiveOnNY as described previously (56, 57). Donors did not 
have pulmonary cause of  death and were free of  cancer and chronic diseases; seronegative for hepatitis B, 
hepatitis C, and HIV; and negative for SARS-CoV-2 by PCR. Use of  organ donor tissues does not qualify as 
“human subjects” research, as confirmed by the Columbia University IRB, as tissue samples were obtained 
from brain-dead (deceased) individuals. Lung tissue sections (<5 mm thickness) were fixed in zinc-buffered 
formalin (Anatech Ltd.) for 48–72 hours and embedded in paraffin for long-term storage. Donor medical 
history obtained from the next of  kin was provided through the organ procurement organization.

Histological analysis of  the cases and controls and sample selection. H&E staining of  the lung sections from 
all cases and controls was comprehensively analyzed by a pulmonary pathologist. The main histological 
classification was based on presence or absence of  ALI. ALI was diagnosed by presence of  DAD or fibrin, 
affecting more than 1 slide and at least 5% of  the slide area (11, 28). Presence of  vascular congestion and 
hemangiomatosis-like change was also analyzed (11).

One representative tissue block was selected from each case for RNA and image analysis based on lack of  
autolysis, presence of pathological changes representative of the overall case definition, and patterns of pre-
dominately alveolar lung without disproportionate vessels, large airway components, or nonpulmonary tissue.

RNA extraction and analysis for cases and controls. The RNA was extracted from a 20 μm thick tissue section 
using the RNeasy FFPE Kit (Qiagen) according to the manufacturer’s instructions by the Molecular Pathol-
ogy Shared Resource core facility at CUIMC. The RNA concentration and size distribution for each sample 
was assessed using NanoDrop (Thermo Fisher Scientific) and Bioanalyzer (Agilent). RNA expression pro-
filing was performed using nCounter Human Organ Transplant Panel (nanoString) to profile 770 genes in 
pathways critical for tissue homeostasis and immune-mediated tissue damage. The RNA samples passing 
quality and concentration standards were run in 2 batches each, including standards for batch calibration. 
Input RNA amounts to the nanoString assay were adjusted for RNA integrity as recommended by the manu-
facturer and were hybridized to target-specific probes and controls in a single tube for 20 hours at 65°C using 
100–900 ng of  RNA. Target-probe complexes were purified and immobilized on the nCounter prep station. 
Using the nCounter detection analyzer (nanoString), digital counts for each target RNA were acquired. 
Finally, nSolver software (nanoString) was used for batch calibration and normalization with housekeeping 
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genes (G6PD, OAZ1, ABCF1, TBP, POLR2A, NRDE2, GUSB, TBC1D10B, SDHA, UBB, PPIA, STK11IP). The 
nanoString assay includes RNA spike ins, labeled A–F in decreasing order of  concentration, with positive 
spike in F (POS_F) in the raw data accounting for the lower limit of  detection. Thus, transcripts with unde-
tectable copy number are excluded (normalized to 0).

Differential gene expression analysis was performed using nCounter Advanced Analysis Software 
(nanoString, version 2.0.134) with comparison of  the early (≤10 days symptomatic interval, n = 8) and late 
(≥10 days symptomatic interval, n = 6) mortality COVID-19, reference to a baseline of  uninfected controls 
(n = 10), and P values adjusted using the Benjamini-Hochberg method of  estimating FDRs. Differentially  
expressed transcripts were identified using an FDR-adjusted P value cutoff  of  0.05. Pathway analysis and 
calculation of  directed global significance scores for each pathway was performed using the Gene Set 
Analysis function of  the nCounter Advanced Analysis Software. Heatmaps of  directed global significance 
scores and normalized expression gene values of  differentially expressed genes were generated using the 
pheatmap function in R with clustering by rows.

Staining for flow cytometry of  alveolar epithelial lineage markers in lung tissue suspensions. Single-cell suspen-
sions of  organ donor lung tissue were processed as previously described (56, 57). Cryopreserved samples 
of  the lung suspensions were thawed, washed, and stained with the Zombie NIR (BioLegend) Fixable 
Viability Kit according to the manufacturer’s directions. Samples were then washed in cell staining buffer 
(PBS with 2% FBS) and stained with directly conjugated surface marker EpCAM-BV650, and unconju-
gated HTII-280 mouse monoclonal IgM (Terrace Biotech), at 4°C for 30 minutes, followed by incubation 
with FITC-conjugated anti–mouse IgM secondary (Jackson ImmunoResearch, Supplemental Table 7) in 
cell staining buffer. Following the surface stain, the samples were fixed and permeabilized for 1 hour at 
4°C using a transcription factor staining buffer kit (Tonbo) followed by intracellular staining with directly 
conjugated TTF-1–PE (Miltenyi Biotec) and unconjugated napsin (Thermo Fisher Scientific) or surfactant 
protein C (Thermo Fisher Scientific) rabbit polyclonal and subsequent staining with APC-conjugated anti–
rabbit IgG secondary antibody (Jackson ImmunoResearch, Supplemental Table 7). Single-cell fluorescence 
profiles were acquired from the cell suspension using the BD Fortessa flow cytometer (BD Biosciences).

Dual chromogenic staining for TTF-1 and Napsin-A and alveolar epithelial cell profiling. Representative 
tissue sections (5 μm) from each sample underwent heat-induced epitope retrieval with Bond Epi-
tope Retrieval Solution 1 (Leica) and were subsequently stained with a prediluted multiplex TTF-1 
(mouse monoclonal 8G7G3/1) + Napsin A (rabbit polyclonal) antibody reagent (Biocare). Staining 
and detection were performed using the Bond-III automated IHC stainer (Leica) and the ChromoPlex 
1 Dual Detection system (Leica) (Supplemental Table 7). In this system an HRP- conjugated polyclonal 
anti-mouse IgG localizes the TTF-1–bound primary antibodies, and alkaline phosphatase–conjugated 
(AP-conjugated) polyclonal anti-rabbit IgG localizes Napsin-A–bound primary antibodies. The HRP 
chromogen substrate 3,3′-diaminobenizidine tetrahydrochloride hydrate (DAB) was used to label nuclear  
TTF-1 with brown color, and the AP chromogen substrate, Fast Red (Leica), was used to label cyto-
plasmic Napsin A with red color. Hematoxylin counterstaining was used to label all nuclei blue. After 
staining, all slides underwent rapid dehydration, were coverslipped with mounting media (Leica), and 
then were scanned and digitized using the SCN400 slide scanner (Leica).

Analysis of  the whole slide scans was performed using HALO software implementing the multiplex 
IHC module (Indica Labs) at working analysis magnification of  30×. Fields for alveolar epithelial cell 
profiling were selected to include as much of  the section comprising alveolar lung as possible, excluding 
the large airways and vessels. Field selection was performed by an individual following a protocol blinded 
as to experimental group. Each chromogen was defined by the distinct optical density (OD) values for 
the red, green, and blue components comprising its specific color. Values for separating and isolating the 
DAB (brown, TTF-1), Fast Red (red, Napsin-A), and hematoxylin (blue, nuclear) stains were optimized 
to be applicable across all stained slides. Nuclear segmentation was performed based on both the DAB 
and hematoxylin chromogens and optimized to be applicable across all stained slides and to detect the 
thin elongated nuclei characteristic of  T1AE cells (39). The cytoplasmic compartment was sampled at 
a maximum 2 μm radius around the nuclei. TTF-1 nuclear positivity was defined by minimum average 
nuclear compartment DAB OD of  0.3 and Napsin-A cytoplasmic positivity was defined by minimum aver-
age cytoplasmic compartment Fast Red OD of  0.2. These thresholds were set based on examination of  
normal T2AE and T1AE cell staining in the uninfected control samples and on scatterplots generated of  
TTF-1 and Napsin A OD across all samples. For all fields selected for each sample, the T2AE cells were 

https://doi.org/10.1172/jci.insight.157608
https://insight.jci.org/articles/view/157608#sd
https://insight.jci.org/articles/view/157608#sd
https://insight.jci.org/articles/view/157608#sd


1 5

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(11):e157608  https://doi.org/10.1172/jci.insight.157608

defined as nuclear TTF-1+ and cytoplasmic Napsin-A+, and T1AE cells were defined as nuclear TTF-1+ and 
cytoplasmic Napsin-A–. The TTF-1– cells including macrophages expressing cytoplasmic Napsin-A were 
not quantified. The density of  T2AE and T1AE cells was computed across the cellular area of  lung tissue, 
excluding airspaces and vascular spaces, and natural log transformed for statistical analysis.

Immunohistochemical staining for SARS-CoV-2 N protein. Representative 5 μm FFPE lung tissue sections 
from each sample underwent heat-induced epitope retrieval with Bond Epitope Retrieval Solution 2 (Leica) 
and were subsequently stained with a monoclonal anti–SARS-CoV-2 N protein antibody (Sino Biological, 
clone 001). Staining and detection was performed using the Bond-III automated IHC stainer (Leica) with 
AP-conjugated polyclonal anti-rabbit IgG and the Fast Red substrate (Leica) to localize N protein–bound 
primary antibodies. After dehydration and application of  coverslip and mounting media, the samples were 
scored as positive or negative by a pathologist following a blinded protocol.

Multispectral staining and imaging of  lung tissue. Representative samples of  lung tissue, 5 μm in thickness, 
were obtained from the cases and controls with selection based on lack of  autolysis and presence of  pre-
dominant patterns of  alveolar lung without contaminating nonpulmonary tissue. Uninfected lung sections 
were obtained from deceased organ donors who were brain-dead due to nonpulmonary cause of  death. 
None of  the control samples showed pathological evidence of  ALI.

Samples were fixed in 10% formalin (Anatech Ltd.) for 48 hours prior to dehydration and embedding 
in paraffin. These lung samples were sectioned at 5 mm thickness and stained using the Opal 7-Color 
Automated IHC Detection Kit (Akoya Biosciences) as previously described (58, 59). The multiplex panel 
included DAPI for nuclear counterstaining, CD4 (1:150 dilution), CD8 (1:600 dilution), CD163 (1:200 
dilution), granzyme B (GZMB) (1:200 dilution), CD19 (1:50 dilution), and MMP9 (1:900 dilution) (see 
Supplemental Table 7 for clones and suppliers). Briefly, the Opal multiplex protocol involves multiple 
rounds of  staining. Each round comprises incubation with primary antibody, followed by mouse/rab-
bit-specific HRP-conjugated secondary antibody, followed by Opal fluorescent substrate deposition. After 
each staining round the antibodies are stripped, thus enabling subsequent stains for distinct markers using 
mouse or rabbit primary antibodies. Single controls and an unstained slide were stained with each group 
of  slides. After staining, the sections were mounted in Vectashield Hard Set mounting media (Vector 
Laboratories, catalog H1600) and stored at 4°C for up to 48 hours prior to image acquisition. Image acqui-
sition was performed using the integrated Vectra 3 automated quantitative pathology imaging system 
(PerkinElmer). An initial whole slide scan at low magnification was performed prior to color deconvolu-
tion. Based on the whole slide scan, 20 to 50 fields evenly sampling the full surface of  alveolar lung tissue 
across each slide were chosen by a pathologist following a protocol blinded to sample identity, for scan-
ning at 20× original magnification (numerical aperture 0.75) (59). A total of  1354 original magnification 
20× fields (each 0.67 mm × 0.5 mm) were analyzed from 24 COVID-19 cases and 12 uninfected controls. 
Images were analyzed using inForm software (Akoya Biosciences).

In situ immune cell profiling in lung tissue. Color deconvolution, cell segmentation, and phenotyping 
were performed using inForm software (Version 2.3, PerkinElmer/Akoya Biosciences) while blinded as 
to sample identity. Immune cell constituents within each tissue area were defined by the DAPI nuclear 
counterstain to define the nucleus of  each cell, with each associated cytoplasm and membrane detected 
via presence of  a specific stain (CD3, CD19, CD4, GZMB, MMP9, and/or CD163). Cell segmentation 
was adjusted as previously described to accurately locate all cells and minimize nuclear hypersegmenta-
tion and hyposegmentation (59). To ensure that cell phenotypes were not called by the software incor-
rectly, quality control was performed on the images from each patient, along with cell segmentation 
setting adjustments to correctly segregate membrane staining of  adjacent cells and avoid erroneously 
grouping clusters of  disparate cells. Cells were then phenotyped by training a machine learning classi-
fier using inForm software. The classifier was trained based on expression of  all 6 markers to identify 
monocyte/macrophage (CD163+, magenta cells), T cells (CD4+, cyan cells; and CD8+, orange cells), B 
cells (CD19+, yellow cells), neutrophils (MMP9+, red cells), and cytotoxic cells (GZMB+, green cells). 
After cell segmentation and phenotyping, outputs include the cell segmentation data summary provid-
ing densities and numbers of  each cell type in the lung tissue areas and the full cell segmentation data 
file providing the X and Y coordinates of  each phenotyped cell along with the fluorescence intensities.

For each sample, the full cell segmentation files were merged for each analyzed tissue area. The cell 
density of  each phenotype was calculated as the number of  cells per unit of  cellular area, excluding 
airspaces and vascular spaces, and the density value was natural log transformed. Visualization of  the 
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classified cells was performed using UMAP based on the normalized fluorescence intensities for the 6 
immune lineage markers and demonstrated cohesive clustering of  the immune lineages (Supplemental 
Figure 4A). In total, 1354 original magnification 20× fields from 24 COVID-19 mortality cases and 12 
controls were profiled, and 930,000 immune cells were analyzed. To generate the UMAP in Supplemen-
tal Figure 4A, the fluorescence intensities for each immune cell marker were transformed using arcsinh 
function from Python numpy library (60) using a cofactor calculated for each parameter using Otsu’s 
thresholding method (61) from the scikit-image toolbox from SciPy (62). Data from all immune cells from 
each condition were downsampled to display equal numbers of  cells for each condition using Rando-
mUnderSampler from the imbalanced-learn toolbox. The downsampled and transformed data set was 
used to run UMAP (63) for dimensionality reduction (n_neighbors = 15) using the 6 lineage markers. 
The data were projected in 2 dimensions using UMAP embeddings with colors indicating the immune 
phenotypes that were assigned using the machine learning classifier in inForm.

Analysis of  scRNA-Seq. Focused analysis of  myeloid cells and T/NK cells in COVID-19 was performed 
using an scRNA-Seq data set generated on the 10X Genomics Chromium platform of  the cells in BAL 
lavage samples of  3 intubated COVID-19 patients (22) (https://www.covid19cellatlas.org/index.patient.
html). The myeloid and T/NK cells were defined in the data set using an scRNA-Seq cell annotation meth-
od as previously described (22). Briefly, myeloid or T/NK cells were identified through positive and nega-
tive selection for highly expressed and specific lineage markers (CD14, FCGR3A, CD163) or T/NK markers 
(T cell: CD3D, TRAC, TRBC1, TRBC2, TRDC, TRGC1, TRGC2; NK cell: NCAM1) with 2 successive rounds 
of  clustering for identification and removal of  multiplets (22).

The final merged data set of  single-cell myeloid or T/NK cell transcriptomes was analyzed using the 
SCANPY pipeline (64), including the LogNormalize method for normalization and the vst method for 
selection of  highly variable features, scaling, and principal component analysis. The Harmony algorithm 
(65) was used for integration of  data sets across the 3 distinct participants. Using the Harmony-corrected 
principal components (PCs), a 2-dimensional embedding was created using the Python implementation 
of  UMAP (66). These embeddings appear in Figures 6 and 7. Clustering of  the cells was performed as a 
continuation of  the Seurat pipeline using the FindNeighbors function with the first 30 PCs as input and 
FindClusters function. Marker genes for each cluster with logFC and P values were defined using the Find-
Markers function in Seurat. Marker genes selected for display on the heatmap in Figures 6 and 7 were from 
representative pathways among the genes showing adjusted P value < 0.001.

Data availability. NanoString data generated for this manuscript have been deposited in NCBI’s Gene 
Expression Omnibus (accession GSE200988).

Statistics. Statistical analysis for comparison of  immune and epithelial cell density and for simple and 
multivariable linear regression was performed using Prism software version 9.0 (GraphPad). Any previ-
ously published immune cell quantifications were excluded from analysis. Specifically, the previously pub-
lished quantifications of  neutrophils and CD4+, CD8+, and CD19+ lymphocytes (22) were excluded for 5 
out of  the 24 COVID-19 patients and 3 out of  the 12 controls (Figure 5B). Quantifications of  these patients’ 
epithelial cells (Figure 3, B and C), CD4+ macrophages, CD4– macrophages, and GZMB expression (Fig-
ure 5, B and C) have not been previously published and thus were not excluded from analysis. Calculation 
of  P values was performed as indicated in the figure legends with 2-sided hypothesis testing. A P value less 
than 0.05 was considered significant. Error bars show median ± interquartile range. For the multivariable 
analysis the P values for each variable were calculated using the t statistic with 2-sided hypothesis testing. 
For the gene expression profiling of  lung tissue across COVID-19 mortality cases and controls, P values 
were calculated using the Rosalind platform for nCounter data analysis and adjusted for multiple compari-
sons using the Benjamini-Hochberg method of  estimating FDRs.

Study approval. Use of  organ donor tissues and autopsy material does not qualify as “human sub-
jects” research, as confirmed by the Columbia University IRB, as tissue samples were obtained from 
brain-dead and deceased individuals. All patient samples in this study were enrolled on protocols 
approved by the IRB at CUIMC.
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