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Pathological fatigue is present when fatigue is perceived to continually

interfere with everyday life. Pathological fatigue has been linked with a

dysfunction in the cortico-striatal-thalamic circuits. Previous studies have

investigated measures of functional connectivity, such as modularity to

quantify levels of segregation. However, previous results have shown both

increases and decreases in segregation for pathological fatigue. There are

multiple factors why previous studies might have differing results, including:

(i) Does the functional connectivity of patients with pathological fatigue

display more segregation or integration compared to healthy controls? (ii) Do

network properties differ depending on whether patients with pathological

fatigue perform a task compared to periods of rest? (iii) Are the brain

networks of patients with pathological fatigue and healthy controls differently

affected by prolonged cognitive activity? We recruited individuals suffering

from pathological fatigue after mild traumatic brain injury (n = 20) and age-

matched healthy controls (n = 20) to perform cognitive tasks for 2.5 h. We

used functional near-infrared spectroscopy (fNIRS) to assess hemodynamic

changes in the frontal cortex. The participants had a resting state session

before and after the cognitive test session. Cognitive testing included the

Digit Symbol Coding test at the beginning and the end of the procedure to

measure processing speed. We conducted an exploratory network analysis

on these resting state and Digit Symbol Coding sessions with no a priori

hypothesis relating to how patients and controls differ in their functional

networks since previous research has found results in both directions. Our

result showed a Group vs. Time interaction (p = 0.026, ηp
2 = 0.137), with a

post hoc test revealing that the TBI patients developed higher modularity
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toward the end of the cognitive test session. This work helps to identify how

functional networks differ under pathological fatigue compared to healthy

controls. Further, it shows how the functional networks dynamically change

over time as the patient performs tasks over a time scale that affect their

fatigue level.
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Introduction

Pathological fatigue is when the general tendency of
fatigability and the sensation of fatigue is perceived to interfere
with everyday life (Skau et al., 2021). Pathological fatigue is
often a consequence of trauma to, or disturbance in, the central
nervous system (Johansson and Rönnbäck, 2014; Berginström,
2019). The prevalence of pathological fatigue is estimated
to be between 36–77% after stroke, 45–73% after traumatic
brain injury (TBI), 38–83% in multiple sclerosis (MS), and
28–58% in Parkinson’s disease (Kluger et al., 2013). It is
also associated with conditions, such as exhaustion disorder
(Sandstrom et al., 2005; Krabbe et al., 2017), infection of the
central nervous system (Morris et al., 2015), or hormonal
imbalance (Möller et al., 2014), together with additional
symptoms such as sensitivity to light and sound and irritability.
Individuals suffering from pathological fatigue after mild TBI
often report an increased sensation of fatigue after mental
activity with an abnormally long recovery time (Johansson
and Ronnback, 2017). Studies of pathological fatigue after
moderate to severe TBI using functional magnetic resonance
imaging (fMRI) indicate a dysfunction within cortico-striatal-
thalamic circuits (Kohl et al., 2009; Nordin et al., 2016;
Berginstrom et al., 2017; Möller et al., 2017; Wylie et al.,
2017).

The interplay between integration and segregation within
brain networks is considered a critical property of brain
function and cognition (Sporns, 2013). Among the many
network measures, modularity is one of the more commonly
used when studying fatigue. It is a global measure that
quantifies the segregation of the entire network. Based
on the co-variation of functional brain activity among
different brain regions, groups of nodes get clustered
together into communities (note, in network theory, these
are called “communities,” which is analogous to “brain
networks” or “resting-state networks” often used in cognitive
neuroscience). Modularity quantifies how tight-knit these
communities are compared to chance. Modularity is high
if there are fewer between-community connections (see
Figure 1) which are interpreted as higher segregation
between communities. Contrarily, low modularity is

indicative of either low segregation or high integration in
the network.

Numerous neuroimaging studies on patient populations
with fatigue have used functional connectivity measures, but the
findings are inconclusive. Some studies have found increased
integration or connectivity in pathological fatigue. Messé et al.
(2013) investigated network properties for TBI patients, with
and without post-concussion symptoms (including fatigue). The
group with post-concussion symptoms had lower modularity,
i.e., a less segregated functional network. Similarly, higher self-
reported fatigue in chronic fatigue patients was associated with
a lower degree of connectivity for the medial frontal cortex with
the rest of the brain (Gay et al., 2016). On the other hand,
Høgestøl et al. (2019) found that connectivity in the default
modal network increased for MS patients with high severity of
depressive and fatigue symptoms. In contrast, Kim et al. (2015)
reported that patients with chronic fatigue syndrome displayed a
decrease in global efficiency, a measure for network integration.

In cohorts with healthy adults, previous research has found
that inducing fatigue results in an decrease in segregation
measured by decreased modularity (Ben Simon et al., 2017) and
an increase in path length, another measure of segregation (Sun
et al., 2014). Wylie et al. (2020) identified a network made up of
the dorsolateral prefrontal cortex (DLPFC), ventromedial PFC
(VMPFC), dorsal anterior cingulate cortex (dACC), anterior
insula, and the striatum, which showed less connectivity when
state fatigue increased after cognitive activity.

In sum, researchers have linked changes in connectivity,
through common topographical measures such as modularity,
to pathological fatigue and cognitive fatigability in healthy
adults. However, whether there is a change in integration or
segregation is unclear. Further, we do not know if different
factors in design and population impact the varying results.
For example, it is unclear if cognitive fatigability (i.e., the
decrement in cognitive performance over a consecutive time)
affects the modularity of networks differently for healthy adults
compared to individuals suffering from pathological fatigue.
Moreover, study design aspects, such as the duration of cognitive
activity for inducing cognitive fatigue, can vary [e.g., 20 min
in Sun et al. (2014), but 2.5 h in Skau et al. (2019)]. Further,
some studies above performed their network calculation from
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FIGURE 1

Conceptual overview of modularity in a network. (A) A schematic network of 10 nodes in two communities (red and blue) connected by binary
edges. On the left, the nodes are shown graphically, and on the right, the same schematic network is shown as a connectivity matrix.
(B) Examples of modularity as a measure. When there are fewer between-community edges, the modularity measure is higher, interpreted as
more segregation.

resting-state sessions, while others had participants perform a
task. In summary, the following three factors relating to network
theory and fatigue are still not fully understood:

1. Do the brain networks of patients with pathological
fatigue display more segregation or integration
compared to healthy controls?

2. Do network properties differ depending on whether
patients with pathological fatigue perform a task
compared to periods of rest?

3. Are the brain networks of patients with pathological
fatigue and healthy control differently affected by
prolonged cognitive activity?

In this study, we provide evidence relating to each of these
questions. We use the functional near-infrared spectroscopy
(fNIRS) data of pathological fatigue after mild TBI from Skau
et al. (2019). fNIRS is an optical imaging technique that applies
near-infrared light to measure the change in oxygenated and
deoxygenated hemoglobin a couple of centimeters down into
the neocortex. Twenty individuals suffering from pathological
fatigue after mild TBI and twenty healthy controls performed
cognitive tests for about 2.5 h. The test battery consisted of
6 neuropsychological tests done twice, intermediated with a
sustained attention task. Throughout the experiment, multiple
resting-state sessions were done (see Figure 2A).

We conducted an exploratory network analysis with no
a priori hypothesis related to how patients and controls
differ in their functional networks considering previous articles
have found results in both directions. We chose modularity
to evaluate segregation since modularity is an intuitive,
single global measure. Previous studies have used it, and it
circumnavigates specific problems relating to network measures
over time (see Thompson et al., 2020). We analyze the contrast
in modularity before and after performing a long battery of
tests in healthy adults and patients. Further, we analyze the
first and last resting-state session and the Digit Symbol Coding
(DSC) that measures processing speed. This work helps identify
how network analyses of pathological fatigue differ from healthy
controls and dynamically change over time as the patient
performs tasks over a time scale that affects their fatigue.

Materials and methods

Study participants and protocol

Details of the protocol and descriptions of the cognitive and
neuropsychological tests included in the test session but not
analyzed here are presented in Skau et al. (2019).

Twenty individuals with pathological fatigue after mild TBI
(minimum 5 months after injury) were recruited from the
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FIGURE 2

Overview of design and methodology. (A) Timeline of tasks performed by participants in this study. The blocks analyzed in this manuscript have
been highlighted: resting-state sessions (green) and digit symbol coding tasks (DSC, red). (B) The difference in self-reported state fatigue

following the resting-state session (lastŰfirst) for both groups. (C) Difference in task performance in the DSC task (last-first). Panels (C,D) show
data previously reported in Skau et al. (2019). (D) The 44 recording sites on the frontal cortex. These 44 recording sites become nodes in the
network. (E) An example connectivity matrix from one resting-state session showing three communities for the 44 nodes depicted in panel (B).
Similar to the connectivity matrix in 1A, but with weighted edges instead of binary edges. (F) Descriptive statistics of the community detection
properties. Histograms show the number of communities (top) and the number of nodes in the largest community (bottom) for rest (green) and
DSC task (red) and both patients and healthy controls.
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Department of Neurology, Sahlgrenska University Hospital,
Gothenburg. Inclusion criteria were as follows: diagnosed with
mild TBI according to the definition proposed by The World
Health Organization Collaborating Center for Neurotrauma
Task Force (Carroll et al., 2004); scoring above the cut-off
score of 10.5 on the Mental Fatigue Scale (MFS) (Johansson
and Rönnbäck, 2014); aged 20–65 years and not suffering from
any other psychiatric or neurological disorders. All participants
recovered well and were independent in their daily living,
except for their pathological fatigue. Six individuals received
methylphenidate drug treatment but suspended the treatment
1 week before the assessment. As reported in Skau et al. (2019),
no significant differences concerning the cognitive test results
and ratings on MFS were detected between these six individuals
compared to the other individuals with TBI. Twenty-one healthy
controls who neither suffered from pathological fatigue (below
10.5 points on MFS) nor had any psychiatric or neurological
disorders were recruited from the general community at
request. One control subject was excluded due to failure to
follow instructions. The Regional Ethical Review Board in
Gothenburg approved the study (reference number: 028-16).
The participants gave their informed written consent before
the assessment and were told they could withdraw at any
time.

Experimental design

Each participant was seated in a chair next to a table
with a computer screen. All tests were performed sitting
in the same location. Depending on the task requirements,
different responses from the participants, such as computer
input (via mouse, tablet, or game controller), pen and paper,
or verbal responses, were needed. The fNIRS cap with optodes
attached was carefully placed on the participant’s head and
worn throughout the experimental session. In order to minimize
ambient light reaching the optodes at the scalp, the fNIRS
cap was covered by another stretchable cap. The experiment
consisted of two identical test sessions with six individual
tests performed in the same sequence (Figure 2A). The two
sessions were separated by a sustained-attention test with an
8-min one-back task (OPATUS-CPTA) and completing the
MFS (Figure 2A). In total, the test procedure took 2 1/2 h.
Participants were allowed to take a short break where they could
drink water or stand up and stretch their legs between tests while
keeping the fNIRS cap on.

Before and after the experimental procedure, participants
rated their energy level on a visual analog scale (VAS). The VAS
scale was a continuous line (10 cm) between the two end-points:
“full of energy” and “totally exhausted, no energy left,” and was
used to evaluate state fatigue. Mean and SD were 3.13 ± 2.0
and 7.27 ± 1.7 (for the patients) and 2.66 ± 1.5 and 4.12 ± 1.6

(for the controls) for the first and second VAS, respectively (see
Figure 2B).

There were five separate occasions of 1-min resting-state
recordings where participants were asked to focus on a fixation
cross. These sessions were positioned: before the first task, after
the first Stroop-Simon test, before the second Stroop-Simon test,
after the second Stroop-Simon test, and right at the end of the
experiment (see Figure 2A).

Digit Symbol Coding (DSC) is a subtest within the
Processing Speed Index in WAIS-IV (Wechsler, 2010) that was
used to measure attention, mental and psychomotor operation
speed, and visual discrimination. Participants are asked to
perform as many symbols as possible for 2 min. The raw score
is the number of correct symbols performed. Mean and SD were
65.6 ± 11.7 and 67.0 ± 15.6 (for the patients) and 72.2 ± 10.9
and 80.4 ± 12.4 (for the controls) for the first and second test,
respectively (see Figure 2C).

Functional near-infrared spectroscopy
data acquisition

The fNIRS measurements were performed using a
continuous wave system (NTS) Optical Imaging System,
Gowerlabs Ltd., United Kingdom (Everdell et al., 2005),
using two wavelengths (780 and 850 nm) to measure changes
in the concentration of oxygenated hemoglobin (oxy-Hb),
deoxygenated hemoglobin (deoxy-Hb), and their total sum
hemoglobin (tot-Hb). The system has 16 dual-wavelength
sources and 16 detectors. The array consisted of 44 standard
fNIRS channels (i.e., source/detector pairs) with a source-
detector distance of 30, plus two short-separation channels with
a source-detector distance of 10 mm, as suggested in previous
studies (Gagnon et al., 2011; Brigadoi and Cooper, 2015).
Short separation channels are only sensitive to hemodynamics
in the scalp. Since the regular separation channels measure
signals originating in both the brain and the scalp, the use of
short-separation channels allowed us to regress the scalp signal
from regular-separation signals to improve the brain specificity
of the fNIRS measurement (Gagnon et al., 2011; Brigadoi and
Cooper, 2015). The placement of the optodes was designed
to encompass the frontal cortex, previously reported to be
involved in executive function and cognitive control tasks (see
Figure 2D; Roberts and Hall, 2008). Data were acquired at a
sampling frequency of 10 Hz.

Functional near-infrared spectroscopy
data analysis

The fNIRS data were preprocessed using MATLAB (2018)
and the MATLAB-based fNIRS-processing package HomER2
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(Huppert et al., 2009). The processing pipeline started with
pruning the raw data such that channels were rejected if their
mean intensity was below the instrument’s noise floor (1e-4
A.U.). The raw data was then converted to optical density.
A high band-pass filter of 0.05 was used to correct for drift
and a low band-pass 0.5 filter to remove pulse and respiration.
The HomER2 functions hmrMotionArtifactByChannel and
hmrMotionCorrectSpline were used to correct for motion
artifacts. Optical density was converted to hemoglobin
concentration with hmrOD2Conc with a default pathlength
factor of 6.0 for both wavelengths. Before hmrBlockAvg was
used, activity from short separation channels was regressed out
of the long 44 standard channels. The short channel selected
for regression was the one with the highest correlation to the
respective long channel.

Functional connectivity and network
analysis

To create the networks, we used the 44 fNIRS channels as
nodes in the network. To create the edges between the nodes,
the preprocessed and denoised time series of each node were
correlated with each other using Pearson correlations. This
process creates a 44 × 44 symmetrical weighted connectivity
matrix for each subject and session, representing the functional
connectivity for that session (Figure 2E).

Before the community detection, the negative edges were set
to 0. The Louvain community detection algorithm was used, as
implemented in the python-louvain package (V0.15). Through
the community detection algorithm, nodes are clustered into
non-overlapping communities. The modularity of the network
was calculated after the community detection. As there is
stochasticity within the Louvain algorithm, it was run 100
times with the modularity calculated each time and the average
modularity over all runs was used. The resolution parameter was
set to 1, but to demonstrate that this parameter has not induced
or influenced the results, Supplementary Figure 1 shows that
this parameter has little effect on the results when jittering
between 0.8 and 1.2.

One task or group could have varying community profiles
leading to problematic comparisons (e.g., if every node is
placed in a singleton community or all nodes belong to the
same community). To illustrate that this was not the case,
Figure 2F shows distributions of the number of communities
detected and the size of the largest community. While there is a
slight skewness difference between patients and controls at rest
regarding the number of communities, they both have the same
median (3). None of the distributions display extreme values
rendering modularity comparison problematic. We included the
number of nodes in the largest community to demonstrate that
the community sizes were not the majority of nodes followed by
1–2 singleton communities.

Statistics

We used the open-source program JASP version 0.13.1 for
statistical analysis (Marsman and Wagenmakers, 2017). We
conducted a repeated ANOVA with one between-group variable
Group (TBI, controls), and two within-group variables Time
(first, last) and Activity (rest, task), with Age as a covariate. Post
hoc t-tests were performed with the Holm method used for
multiple comparison correction. The datasets generated in the
current study are available from the corresponding author on
reasonable request.

Pearson’s correlations were used to evaluate if the change
in state fatigue was linearly associated with the change in task
performance and change in rest and task modularity. Delta
scores (last–first) were used for the self-reported state fatigue
measure (the VAS) and the delta DSC task performance, delta
rest modularity, and delta task modularity.

Results

When analyzing the modularity scores, the repeated three-
way ANOVA revealed a significant Group vs. Time interaction
[F(1,34) = 5.399, p = 0.026 ηp

2 = 0.137]. Post hoc test showed
higher modularity in TBI last > TBI first with t(19) = −2.812,
with a Holms corrected p-value of 0.049 and a Cohen’s d of
−0.653. This result suggests that no matter the activity (rest or
task), patients have higher modularity after 2.5 h of cognitive
activity (see Figure 3 and Supplementary Table 1 for the other
post hoc results).

Since there was a Group vs. Time interaction, the main
effect results of Group and Time need to be interpreted
accordingly. There were no main effect differences for Group
[F(1,34) = 0.127, p = 0.742 with a ηp

2 = 0.004], indicating no
overall difference in modularity between patients and control
when both time points are pooled together. There were no main
effect differences for Time [F(1,34) = 1.054, p = 0.312 with a
ηp

2 = 0.03], indicating that overall (when both groups are pooled
together) there was no difference over time, even though the
post hoc test showed that the TBI group had significantly higher
modularity. There were no main effect differences for Activity
[F(1,34) = 0.005, p = 0.947 with a ηp

2 = 1.337e-4], indicating that
overall, for both groups, there was no difference in modularity
between rest and task.

Finally, delta VAS (the changes in self-reported state fatigue)
correlated negatively with the DSC performance delta score
(r = −0.518, p < 0.001), indicating that the more change in
delta VAS, the less change in delta DSC. There was no significant
correlation between delta VAS and the delta modularity with
r = 0.201 and p = 0.226 for rest and r = 0.183 and p = 0.285
for DSC, indicating no linear correlation between the difference
in network measures and behavior.
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FIGURE 3

Change in modularity over 2.5 h of cognitive activity. Panel (A) shows the change in modularity between the first and last resting-state session.
(B) The change in modularity during the first and last Digit Symbol Coding (DSC) task was done at the experiment’s beginning and end. Error
bars indicate the standard error of the mean.

Discussion

The debate about fatigue has led to the question whether
induced fatigue in healthy individuals (i.e., increased sensation
of fatigue after effort) is comparable with pathological fatigue.
This scenario would imply that pathological fatigue is only
a more intense form of fatigue compared to what healthy
individuals experience. It would also suggest a common
underlying neural mechanism, as discussed by Wylie et al.
(2020). In a second scenario, pathological fatigue would be
seen as qualitatively different from induced fatigue in healthy
individuals (which is both time-limited and alleviated by rest),
having a different underlying pathophysiological mechanism
and, consequently, should not be viewed as an extreme on
one single fatigue continuum, as discussed by Rönnbäck and
Johansson (2022). Under the first assumption, we would expect
some common brain network configuration to be impacted,
leading to fatigue (e.g., a similar change in network properties).
This change would occur regardless of whether the fatigue was
induced or pathological.

In the present study, we tried to bring some clarity to this
question by evaluating network modularity since it is a common
measure of the network topology which has been identified to
be associated with both pathological fatigue (Messé et al., 2013)
and induced sensation of fatigue by fatigability in healthy adults
(Ben Simon et al., 2017). We let healthy adults and individuals
suffering from pathological fatigue after mild TBI perform on a
2.5 h long, cognitively intense test battery.

Our results indicate that brain networks of patients
with pathological fatigue do not display more segregation
or integration compared to healthy controls, nor do we
find network properties that differ depending on whether

patients with pathological fatigue perform a task compared to
periods of rest. When looking over both timepoints, patients
and controls have a comparable level of modularity for rest
and task, and no significant difference is detected between
the groups (see Figure 3). These results contradict (Messé
et al., 2013), which reported lower modularity for individuals
with post-concussion symptoms. On the other hand, the
results from Gay et al. (2016) and Høgestøl et al. (2019),
that increased fatigue in chronic fatigue and MS patients is
associated with less connectivity in the frontal cortex, are in
line with our result. However, since we have used previously
analyzed data and had no specific hypothesis about how
the network properties would vary between conditions, these
results should be considered exploratory. Our results highlight
features that can guide hypothesis in future confirmatory
studies relating to both network analyses using fNIRS and
key issues in the experimental design when studying chronic
fatigue.

As for our third question: are the brain networks of patients
with pathological fatigue and healthy control differently affected
by prolonged cognitive activity? The answer is yes; the patients’
modularity increased for both rest and task due to the prolonged
activity, while the modularity stayed the same for the controls.
If we compare this to the behavioral data presented in Skau
et al. (2019), both groups reported increased state fatigue, and
no group performed worse on the second task—the controls
improved their performance. In contrast, patients performed
similarly in the first task (see Figures 2B,C). Together this
means that the prolonged cognitive activity increased state
fatigue since both groups reported increased state fatigue
(higher values on the VAS post-experiment). However, the
controls did not display any change in modularity, whereas
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the patients did, suggesting that the fatigue in patients has a
different underlying neural or network correlate. This increase
in segregation after prolonged mental activity for patients
with pathological fatigue could be part of an explanation
for the abnormally long recovery time and something future
investigation needs to determine.

Changes in modularity could be instantiated in several
ways by either within-community edges weakening (splitting
the community into two) or by strengthening between-
community edges. Further, modularity changes are identified
in several related pathological conditions. In their review
of the connectivity in stroke patients, Baldassarre et al.
(2016) highlight that stroke patients show more network
segregation and that the increased cognitive performance after
recovery correlated with an increase/restoration of functional
connectivity. Similarly, Fleischer and colleagues reviewed the
literature on MS that has used the graph theoretical approach
for network integration and found that increased modularity
was not only typical for MS, but the increase in modularity also
negatively correlated with cognitive ability and MS symptom
progression (Fleischer et al., 2019). For Parkinson’s disease, a
recent review found that the global efficiency, another graph
theoretical measure, was decreased in patients compared to
healthy controls (Tessitore et al., 2019). Community segregation
in these patient groups is often pathophysiologically interpreted
as a consequence of reorganization or adaptation to the
neurological disease or acute/chronic neural inflammation.
While all these issues may impact modularity, conversely,
pathological fatigue is a very common symptom in these patient
groups (stroke, MS, and Parkinson’s disease) (Kluger et al.,
2013), and research about the overlap between fatigue symptoms
and network modularity across different patient groups will be
important for our understanding of pathological fatigue.

In a recent paper, Rönnbäck and Johansson (2022) proposed
the theory that pathological fatigue after TBI is due to
neuro-inflammation in the CNS caused by the trauma. They
argue that neuro-inflammation would affect astroglial cells
and their ability to fine-tune the extracellular glutamate levels
and clearance of excessive glutamate from the extracellular
space. The prolonged mental activity would lead to increased
excitatory glutamate in the extracellular space, which would
cause swelling of astrocytes and shrinkage of the extracellular
space. Neural signaling would become less specific, and the
shrinking of extracellular space would result in the non-specific
activation of adjacent neurons (Rönnbäck and Johansson, 2022).
Our results would support such a hypothesis since a latent
neuro-inflammatory process could, after prolonged activity,
result in diffuse neuronal signaling, causing segregation of
functional networks. For controls, assuming the absence of
neuro-inflammation, neuronal signaling would not become
diffused after prolonged activity; consequently, no functional
network segregation would be detected. This interpretation
would also support the second scenario mentioned above, that

there is no true continuum between the fatigue of healthy
adults and the fatigue experienced by individuals suffering from
pathological fatigue. However, the leap from cellular events to
large-scale network activity is currently not warranted due to a
lack of sufficient data. It should be seen as a working hypothesis
until more studies become available.

Limitations

Due to the study’s design, there was a time difference
between the first resting state session and the first DSC,
whereas the last resting state session was right after the
last DSC. Digitizing the placement of the fNIRS optodes
was done, but the measurements were too noisy and were
concluded to be unreliable. Therefore, we do not have external
measurements confirming the channel localization. However,
head size measurements were taken before the experiment.
EasyCap sizes 54, 56, and 58 were used to fit the participants’
heads as accurately as possible using face and 10/20 head
landmarks to get measurements where intended.

Neither coffee intake during the day nor sleep quality of
the previous night were controlled for, which might also impact
network properties. Although the study was exploratory, the
small sample size is a limitation.

Since there was no additional time point after the end of the
experiment to evaluate whether the connectivity configurations
recovered for the patient group, we cannot rule out that
the observed Time vs. Group interaction is not driven by
fluctuations unrelated to the effort. Since the recovery time
for individuals with pathological fatigue is prolonged, it would
be fruitful in future research to investigate several time points
after a long and cognitively intense experiment to focus on the
recovery of the network properties.

Conclusion

This exploratory analysis suggests increased segregation in
the frontal cortex for patients with pathological fatigue after
prolonged mental activity but not for healthy controls. Future
research should determine if this pattern holds in other patient
groups suffering from pathological fatigue, how long and intense
the mental activity needs to be to generate segregation in the
frontal cortex, and how long the recovery time needs to be to
reach the baseline level of modularity.
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