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INTRODUCTION
Combined serendipitous and rational
drug-design and -retasking approaches
continue to identify many natural and syn-
thetic substances with multipurpose ther-
apeutic properties (Clark, 2013a). Among
these substances are Ca2+ modulators
capable of attenuating the transmission
and severity of viral, bacterial, fungal,
and protozoal infections (Clark and
Eisenstein, 2013; Clark et al., 2013). The
majority of purported Ca2+-modulating
antiinfective compounds belong to the
functional drug class termed Ca2+-
channel blockers, including traditional
synthetic 1,4-dihydropyridines, pheny-
lalkylamines, and benzodiazepines long
approved and marketed for various human
and animal cardiovascular and neurolog-
ical indications (Clark and Eisenstein,
2013; Clark et al., 2013). Additional
Ca2+-modulating (putative) antiinfec-
tive substances, such as artemisinin,
caloxin, dantrolene, cyclosporin A, and
FK506, can be further categorized within
a broader set of natural and synthetic
compounds that affect operation of Ca2+
channels, transporters, exchangers, and/or
protein sensors of both hosts and infec-
tious agents (Clark and Eisenstein, 2013;
Clark et al., 2013). Notably, depending
on chemical structure, site, and mecha-
nism of chemical action, and delivered
chemical concentrations, these and other
non-traditional antimicrobial and -viral
compounds, many of which are expressed
by pathogens themselves, may instead
exert helpful trophic effects on hosts,
their symbiotic microbiota, and harbored
mutualistic copathogens. The reasons
for such biphasic drug-response profiles

partly derive from how pathogens evolved
to parasitize host Ca2+-dependent func-
tions and resources, yielding insights
into devising better antiinfective treat-
ment regimens and new valued probiotic
medicines.

PATHOGEN USURPATION OF HOST
Ca2+ SYSTEMS
Viruses, bacteria, fungi, and protozoa
evolved the strong obligate parasitic strat-
egy of hijacking host systems to augment
their comparatively primitive genomic,
epigenomic, and somatic capabilities,
thereby facilitating infectious disease
adaptation and propagation. Though
infectious agents coopt many different
host systems, few are more significant
than host intracellular Ca2+ signaling
pathways. Free intracellular Ca2+ serves
as an intermediate between sensory input
and response output for all known cel-
lular life. Its ubiquitous presence within
cells of diverse phylogeny and function
makes Ca2+ an essential messenger for
controlling host-cell stress responses, fate
and death, synaptic plasticity, home-
ostasis, motility, bioenergetics, growth,
morphogenesis, immunodefenses, protein
modification and transport, cytoskele-
tal polymerization, endosome formation,
and various other host processes (Clark
and Eisenstein, 2013; Clark et al., 2013).
Therefore, the ability of microbes to pref-
erentially control host intracellular Ca2+
pathways enables them to optimize the
timing and effectiveness of infection stages
against barriers to invasion, pathogen-
esis, proliferation, and release (Moreno
and Docampo, 2003; TranVan et al., 2004;
Kozubowski et al., 2009; Zhou et al., 2009;

Clark and Eisenstein, 2013; Clark et al.,
2013).

Pathogens, mainly via toxic proteins
and lipopolysaccharides, manipulate host
intracellular Ca2+ systems by modulating
(1) ligand- [e.g., N-methyl-D-aspartate
receptors (NMDAr)] and voltage-gated
(e.g., L-, N-, P/Q-, R-, and T-type recep-
tors and Bsc1, Cch1, and NaChBac recep-
tors) channels that permit Ca2+ entry
from extracellular spaces, (2) upstream
first or second messengers (e.g., inositol
1,4,5-trisphosphate (IP3), AMP-activated
protein kinase, and mitogen-activated
protein kinase pathways), (3) ion- (e.g.,
Ca2+/H+ and Na+/Ca2+ exchangers)
and ATP-dependent (e.g., sarcoplasmic-
endoplasmic-reticulum (SERCA) and
plasma-membrane (PMCA) ATPases)
Ca2+ pumps that sequester or extrude
free cytosolic Ca2+, (4) ligand-gated chan-
nels (e.g., IP3 and ryanodine receptors)
and peptidergic porins (e.g., amoebapor-
ins, aquaporins, and PorB) responsible
for store-operated Ca2+ mobilization
and leakage, and (5) downstream host
Ca2+ binding proteins and sensors (e.g.,
calmodulin, calrectulin, calcineurin, cal-
nexin, and annexin) (Clark and Eisenstein,
2013; Clark et al., 2013). The wide
range of host intracellular Ca2+ systems
influenced by pathogen factors gives
microbes remarkable control over the
behavior and well-being of humans and
animals, including, but not limited to,
mental function and psychological state,
voluntary and involuntary motor perfor-
mance, and gastrointestinal absorption
and metabolism. Yet, for microbes, the
advantages of pathogen-mediated regu-
lation of host intracellular Ca2+ systems
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extend beyond the impact on host health.
In the case of viruses, increased host free
cytosolic Ca2+ levels may promote viral
adsorption, structural stability, capsid
uncoating, enzymatic activity, replication,
assembly, transport, and fusion (cf. Zhou
et al., 2009; Clark and Eisenstein, 2013).
Whereas, in cases of bacteria, fungi, and
protozoa, alterations of host intracellular
Ca2+ homeostasis is critical for pathogen
sensory transduction, cell energetics,
infection sequences, stress adaptation,
gene expression, toxin biosynthesis and
secretion, molecular biomimicry, conju-
gation and true sexual reproduction, cell
motility and tropisms, growth, biofilm
formation and cell aggregation, antigenic
variation, and morphogenesis and lifecy-
cle transitions (cf. Cyert, 2003; Moreno
and Docampo, 2003; TranVan et al., 2004;
Kozubowski et al., 2009; Clark et al., 2013).

PATHOGEN SELECTIVE MANIPULATION
OF HOST Ca2+ SYSTEMS
To coordinate pathogen needs with oper-
ation of host cells, infectious agents
must precisely change their host envi-
ronment to maximize survival, prolifer-
ation, and spread with a repertoire of
social-like (e.g., cell-cell communication,
biofilm formation, cooperative, and com-
petitive coinfection, etc.) and non-social
(e.g., phenotypic variation, biomimicry,
etc.) phenomena sometimes interpreted
as pathogen intelligence (cf. Crespi, 2001;
Casadesus and D’Ari, 2002; Ben-Jacob
et al., 2004; Hellingwerf, 2005; Marijuán
et al., 2010; Clark, 2013b). In regard
to host intracellular Ca2+ homeostasis,
pathogens rely on certain toxins that may
either increase or decrease intracellular
Ca2+ levels depending on stages of infec-
tion and host status. Such fine-tuned
aptitude for altering host Ca2+ systems
confers both advantages and disadvantages
on hosts in relation to proper cell func-
tion and fate. Although most pathogens
have evolved suites of toxins to manipulate
host processes, including Ca2+-mediated
ones, the selective fitness of surprisingly
numerous single toxin molecules achieves
multiplexed pathogen attacks on their
host niche. This kind of pathogen intel-
ligence conserves viral, bacterial, fungal,
and protozoal resources for highly effi-
cient and integrated host invasion and
exploitation.

For example, overexpression of the
multifunctional Hepatitus B Virus (HBV)
protein HBx activates caspase-dependent
cleavage of host Ca2+ PMCA, elevat-
ing free intracellular Ca2+ concentrations
(Chami et al., 2003) as well as IP3 pro-
duction and mitochondrial Ca2+ uptake
during virus replication (Gearhart and
Bouchard, 2010a,b; Yang and Bouchard,
2012). Unless competitively antagonized
by IP3-receptor-inhibitors dantrolene and
FK506 or other drug types, temporary
stimulation of the endoplasmic reticu-
lum/mitochondrial interface by IP3 boosts
ATP synthesis and transport for energy-
dependent cell processes required dur-
ing early viral infection stages. However,
when mitochondrial Ca2+ uptake subse-
quently exceeds buffering capacity, HBx
advances mitochondrial swelling and frag-
mentation (Chami et al., 2003), making
host cells more vulnerable to free radical
generation, metabolic stress, and apopto-
sis prior to viral release. While sequalae
are treatable with non-traditional com-
pounds, including dual-active Beta Cell
Lymphoma (Bcl)-related proteins (Clark
and Eisenstein, 2013), HBV obviously
evolved to carefully manage host-cell oper-
ation through well-timed, titrated levels
of a single toxin, with lower concentra-
tions of HBx causing long-term/short-
term positive outcomes for virus/host
and higher concentrations of HBx largely
causing positive/negative outcomes for
virus/host. This sort of versatility for single
viral toxins to exploit host Ca2+ systems
is observed for other viruses, including
Human Immunodeficiency Virus type 1
(HIV-1). HIV-1, via the transcription fac-
tor Tat, for instance, potentiates Ca2+
influx through dihydropyridine-sensitive
voltage-gated L-type Ca2+ (Lannuzel et al.,
1995) and NMDAr channels (Prendergast
et al., 2002; Self et al., 2004), lead-
ing to host-cell cytotoxicity. By means
of the same Ca2+ channels, Tat also
evokes production of the tumor necrosis
factor (TNF)-alpha cytokine, an impor-
tant compound for HIV-1 replication and
pathogennesis (Contreras et al., 2005).
Each harmful effect on host cells may be
mitigated by voltage-gated L-type Ca2+
(e.g., nifedipine) and NMDAr channel
antagonists (e.g., memantine). In contrast,
Tat, similar to verapamil, inhibits cytotoxic
release of serine esterases by blocking the

phenylalkylamine-binding site of voltage-
gated Ca2+ channels (Zocchi et al., 1998).
As with protein HBx of HBV, Tat therefore
affords HIV-1 with the ability to either
facilitate or guard against host-cell death
depending on infection stage and location
(e.g., molecule-binding site, cell type, and
organ). Moreover, besides direct influence
over host condition, both HBx and Tat
may act synergistically on HBV and HIV-1
infections (Li et al., 2012) as well as pro-
vide opportunistic copathogens, such as
mycobacteria (Pathak et al., 2010; Toossi
et al., 2012), herpesviruses (Huang et al.,
2001; Guo et al., 2004; Caselli et al., 2005),
and commensal host fungi (Cassone
and Cauda, 2012) and coliform bacte-
ria (cf. Diniello et al., 1998; Mani et al.,
2007), an (probiotic) enriched or (anti-
infective) hostile host habitat affecting
communicable disease progression.

Only two among many instances of
viral proteins were discussed above to
illustrate the powerful biphasic regula-
tion of pathogen toxins in modifying host
and infectious agent physiology (cf. Clark
and Eisenstein, 2013). A large number
of pathogen-associated Ca2+-modulating
factors exist for bacteria, fungi, and pro-
tozoa as well (cf. Clark et al., 2013).
These endo- and exotoxins, of which
just a few exemplars will be described
here for protists, often allow microbes to
evade host defenses by usurping mem-
brane repair systems, down-regulating
redox immunological responses, mim-
icking proinflammatory chemokine and
cytokine mobilization, and initiating ire-
versible host programmed cell death. In
addition to purely selfish pathogen infec-
tive, survival, and reproductive strategies,
such compounds may render trophic sup-
port and protective immunity for hosts
and their microbiota. Prime examples,
similar to those also reported for obli-
gate parasitic Chlamydia, Rickettsia, and
Toxoplasma species (cf. Romano et al.,
2013), come from intracellular protozoan
trypanosomes, etiogenic agents of Chagas’
disease, sleeping sickness, and other
human and animal illnesses. Several sub-
stances, a serine endopeptidase, also called
a proteolytically generated trypomastig-
ote factor, Tc-Tox, an acidic pore-forming
protein, and acidic sphingomyelinase, syn-
thesized and secreted by Trypanosoma
cruzi induce host plasma-membrane
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damage, extracellular Ca2+ entry, IP3 for-
mation, transient store-operated cytosolic
Ca2+ liberation, and/or cytoskeletal
reorganization to assist in parasite inter-
nalization and trafficking (Tardieux
et al., 1994; Burleigh and Andrews, 1995;
Rodríguez et al., 1995; Burleigh et al.,
1997; Fernandes et al., 2011). These com-
pounds are only produced during the
infective stage of trypanosome lifecycles,
when Ca2+-dependent, energy-expensive
lysosome and endosome recruitment
works to restore integrity of pathogen-
injured host plasma membranes. To a
limited extent, toxin activation of store-
operated Ca2+ release can be decreased
by IP3-receptor blockers. But by directly
commandeering host membrane-repair
systems and subverting intracellular
innate immune-surveillance and potent
inflammatory signaling pathways, trypo-
mastigotes ensure successful host invasion
and maintenance of host structural and
biotic reliability for persistent cryptic
and latent trypanosome and copathogen
disease states, such as those involving
multiple trypanosome strains, symbiotic
enterobacteria and other Gram-negative
bacteria, and entomopathic double-
stranded DNA viruses (Peacock et al.,
2007; Alam et al., 2012; Lowry et al.,
2013). In turn, these processes, directed
by identical toxin concentrations used
for trypanosome benefit, can present
formidable obstacles to other infectious
agents, including convergent trypanosome
strains (Ulrich and Schmid-Hempel,
2012) and possible Encephalitozoon (cf.
Leitch et al., 2001) and Toxoplasma
parasites (cf. Meirelles and De Souza,
1983), which compete for limited shared
host resources and/or must overcome
toxin-modified host immunoresponses.

PROSPECTIVE Ca2+-MODULATING
PROBIOTIC AND OTHER TREATMENT
STRATEGIES
Repurposed medications which tar-
get pathogen capacities to alter host
Ca2+ homeostasis and vital cell func-
tions, such as traditional Ca2+-channel
blockers, SERCA-inhibitor artemisinins,
PMCA-inhibitor caloxins, and the IP3-
receptor-inhibitors dantrolene, FK506,
and Bcl antiapoptotic compounds (Clark
and Eisenstein, 2013; Clark et al., 2013),
show efficacious antiinfective effects

against both treatable and previous drug-
resistant pathogens. Given examples of
HBV, HIV-1, and trypanosome infec-
tions readily demonstrate how these
drugs exert their chemotherapeutic prop-
erties through disruption of pathogen
attack, reinforcement of compromised
host immunity, and trophic support for
host operation. Perhaps more significantly,
toxins encoded by pathogens also show
non-traditional antiinfective and probiotic
traits, oftentimes in a concentration-
dependent manner. Such highly adaptive
cooperative and competitive traits evolved
so pathogens can invade, inhabit, and
abandon host niches. Many of these mul-
tipurpose pathogen toxins modulate Ca2+
systems of host cells and host microbiota,
including aforementioned viral and pro-
tozoan toxins, HBx, Tat, and Tc-Tox, and
different pathogen virulence factors, such
as mycobacterial (macolide) mycolactone
and lipoarabinomannan (Rojas et al.,
2000; Snyder and Small, 2003; Vergne
et al., 2003; Boulkroun et al., 2010),
staphylococcal leukotoxins (Jover et al.,
2013), coliform heat-stable enterotoxin B
(Dreyfus et al., 1993), and saccharomycete
and ascomycete gliotoxins (Niide et al.,
2006), to name a few. In some cases,
predictable antiinfective properties of
pathogen toxins result from mechanisms
known for antibiotic drugs, including the
streptomycin-analogous (Diniello et al.,
1998) polyamine-starving characteris-
tics of Tat (Mani et al., 2007), or from
entirely novel mechanisms. Regardless,
pathogen toxins with combined anti-
infective and biotic qualities provide
exciting substrate to begin developing new
medicines of broad therapeutic potential
and lifespan.
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