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Abstract: Currently, it is not fully understood how motor variability is regulated to ease of motor
learning processes during reward-based tasks. This study aimed to assess the potential relationship
between different dimensions of motor variability (i.e., the motor variability structure and the motor
synergies variability) and the learning rate in a reward-based task developed using a two-axis force
sensor in a computer environment. Forty-four participants performed a pretest, a training period, a
posttest, and three retests. They had to release a virtual ball to hit a target using a vertical handle
attached to a dynamometer in a computer-simulated reward-based task. The participants’ throwing
performance, learning ratio, force applied, variability structure (detrended fluctuation analysis, DFA),
and motor synergy variability (good and bad variability ratio, GV/BV) were calculated. Participants
with higher initial GV/BV displayed greater performance improvements than those with lower
GV/BV. DFA did not show any relationship with the learning ratio. These results suggest that
exploring a broader range of successful motor synergy combinations to achieve the task goal can
facilitate further learning during reward-based tasks. The evolution of the motor variability synergies
as an index of the individuals’ learning stages seems to be supported by our study.

Keywords: computer simulated task; learning ratio; throwing task; dynamometer; force sensor

1. Introduction

Motor variability plays a functional role in human adaptive behaviors, related to
the facilitation of motor learning [1,2]. Several studies support the idea that the Central
Nervous System (CNS) modulates motor variability to enable the exploration of all the
possible configurations provided by the large number of motor system degrees of freedom
(DOF), enhancing the achievement of the required movement solution [3-5]. How the
CNS regulates motor variability seems to depend on both individual and environmental
characteristics [6,7]. On the one hand, some studies have supported the idea that different
levels of variability should be manipulated according to the individual’s learning stage.
It seems that there is a need for inducing higher-variability conditions to promote motor
variations when exploration is required to learn a novel task. In contrast, lower-variability
conditions would facilitate a more consistent motor output which, in turn, would improve
motor performance when exploiting a viable solution [2,8]. On the other hand, there
are some differences in the effect of variability in the learning process according to the
type of task. For instance, reward-based learning is based on the idea that if an action is
followed by a successful output, the tendency to repeat that same action is strengthened [9].
However, in this learning condition, the output received by the individual who performs
the action only indicates how successful that output was; and, thus, it carries no other
feedback information about the motor execution that allows the individual to modify their
motor behavior [10]. This reason explains why this type of learning is characterized by the
need for exploration to gather knowledge about the optimal solution and exploitation of
the knowledge accrued to keep performing the right solution once it is found [2]. Thus,
higher motor variability has been related to faster reward-based learning [2,11].
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On the other hand, error-based learning consists of modifying the motor behavior
based on the perception of the difference between the planned and the observed motor
output. Thus, the improvement during practice is based on the individual’s attempt
to cancel or, at least, reduce the perturbation through the production of an output that
counteracts the current estimated output [12]. In this type of learning, the potential
benefits promoted by higher levels of motor variability are not as clear as in reward-based
learning [2].

In this study, we focused on the role of motor variability in a reward-based learning
task to estimate whether motor variability is a consequence of noise (which must be
reduced in order to improve motor performance), or whether it plays a functional role to
ease learning.

To assess the reward-based learning processes properly it is necessary to design
tasks that reduce the potential influence of error-based learning mechanisms. Laboratory
tasks designed following the reward-based learning paradigm are commonly based on
computer simulation tasks in which “shooting” or “reaching” are required to aim at
targets that are not visible by means of different sensors (e.g., dynamometers, inertial
sensors, etc.) [13]. This experimental setup enables not only analyzing the probability
of success during the reward-based task but also assessing the variability of the motor
behavior that leads to a successful or unsuccessful performance. Among the mathematical
methods to assess motor variability, nonlinear tools measure the temporal dynamics (i.e.,
the structure of variability) of those signals obtained from the sensors. Nonlinear tools
refer to all those mathematical measures that quantify the temporal organization of the
motor dynamic through the degree to which the values of a signal time series emerge or
change in an orderly manner, often across a range of time scales [14]. The structure of motor
variability has been previously shown as a relevant index to identify how an individual
explores the environment to promote learning [15,16]. Detrended fluctuation analysis (DFA)
examines long-range autocorrelation assessing the extent to which further motor behavior is
dependent on previous fluctuations [17,18]. Lower long-range autocorrelation of movement
fluctuation has been related to higher flexibility to perform motion adjustments [17,19],
and it has been successfully used to predict motor learning rate in an error-based learning
balance task [1]. However, to the best of the authors” knowledge, it is unclear whether
the analysis of variability structure can be also used to predict motor learning rate in
reward-based learning.

Other mathematical methods have examined the movement variability of motor syner-
gies to analyze the shape of the different repeated executions in the different dimensions of
the solution space, such as the uncontrolled manifold (UCM), the goal-equivalent manifold
or the tolerance, noise and covariation approaches [20]. These methods are based on the
identification of the solution manifold, defined as the possible motor configurations that
provide a successful performance and how the different repeated executions are distributed
around it. Accordingly, these methods are capable of discriminating between “good” and
“bad” variability (GV and BV, respectively) depending on whether the variations distri-
butions are or not in the range of the redundant solutions of a motor problem. The ratio
between these two types of variability, which provides information about motor synergies,
has been related to different learning stages [21], strengthening of motor synergies, and it
is characterized by the elaboration of an adequate referent configuration trajectory and the
elaboration of multijoint (multimuscle) synergies. The second one consists in the weaken-
ing of those motor synergies when other aspects of motor performance are optimized. In
turn, Latash et al. (2002) suggested that the relationship between GV and BV could quantify
how the system controls the different DoFs, indicating whether the system displays a motor
synergy or not or how strong this synergy is. Combining these two ideas, the first stage of
motor learning described would be characterized by the finding and refining of the motor
control needed in the task, emerging and strengthening motor synergies with practice,
while the second stage would be related to a drop of the synergy strength because in the
phase the aim is to optimize other aspects of performance.
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To summarize, the practice would cause changes in the ratio between good and bad
variability, which in turn, would be related to how the degrees of freedom are coordinated
in the different learning stages and the prevalence of the exploration or exploitation of
motor synergy strategies [22-24]. However, although the relationship between the motor
synergies variability and learning stages has been previously addressed [21], to the best of
our knowledge, no studies have analyzed how motor synergies variability conditions the
learning rate, especially in reward-based motor tasks.

Therefore, the main aim of this study was to assess the relationship between motor
variability and learning rate in a reward-based learning task. The application of a two-axis
force sensor in a virtual computer task enabled measurement of the features of motor
variability through its structure and the motor synergies characteristics. Based on the
literature, the hypothesis of this study is that both the motor variability synergies and the
motor variability structure will be related to reward-based learning processes. A higher
ratio between “good” and “bad” variability, as well as a lower autocorrelated variability
structure, will be related to a higher learning rate.

2. Materials and Methods
2.1. Participants

Forty-four healthy participants (11 females, 33 males) took part in this study (age =
26.46 £ 6.03 years; stature = 1.74 £ 0.08 m; mass = 69.90 & 11.04 kg). Exclusion criteria
included musculoskeletal injuries that impaired participants from pushing a vertical handle
with their hands applying a minimum of force or visual deficits that impaired participants
from seeing the visual information provided by a computer screen correctly (screen size =
21”7, distance of the handle to the screen = 48 cm).

Written informed consent was obtained from each participant prior to testing. Data
were treated anonymously, and all participants were informed of the risks and benefits of
the trial.

2.2. Instruments and Procedure

Participants performed a computer simulation task in which they had to use a vertical
fixed handle attached to a dynamometer (FSSB-R3 Warhog, RealSimulator, Madrid, Spain)
to release a virtual ball to hit a target. FSSB-R3 is a two-axis force sensor (medial lateral and
anterior posterior forces, 98 mm x 98 mm x 60 mm; 350 gr) with a maximum sensitivity
of 0.025 Ib and a maximum allowed force of 20 1Ib. The FSSB R3 includes an electronic
calibration that allows the user to perform this operation as many times as necessary. The
FSSB-R3 was connected by USB to the computer and the sample rate was set at 100 Hz.

The participants held the handle and pushed it when they wanted to release a virtual
ball from the bottom of the screen towards the target. The target was located in the upper-
left corner (45°) but was not visible for the participants (Figure 1). The way participants
could regulate the direction of the ball to hit the target was combining the forces applied in
the medial lateral (MLf) and the anterior posterior (APf) axes. Participants could not see
the ball trajectory nor where the ball ended. They just saw a green light if they hit the target
(Figure 1A), or red light if they did not (Figure 1B). The task was specifically designed by
the researchers for this study using Labview Software v.11 (National Instruments, Austin,
TX, USA).

The participants performed the task with their dominant hand, seated on a chair and
with their arm and forearm aligned in front of the handle. The sitting position and distance
of the participant to the screen was at the participant’s choice (Figure 2).

Each participant performed a pretest, a training period, a posttest, and three retests
(10 min, 24 h, and 1 week apart). Each test consisted of 100 trials and the training period
consisted of 6 series of 100 trials each.

In order to assess throwing performance for each trial, the ball trajectory was computed
through the dynamometer FSSB-R3 connected to the handle. The combination of anterior—
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posterior and medial-lateral forces gave the release angle. An application written in
Labview was used for data collection.

B

Figure 1. (A) Visual information when the participant hit the target; (B) Visual information when
the participant did not hit the target. The ball trajectory was occluded during the experiment; the
trajectory is shown in the figure as a dotted line only for the description of the task.

SCREEN

Screen height= 40 cm.

Screen size = 21"

Figure 2. Participant position and instrument distribution during the performance of the task.

2.3. Data Analysis and Reduction

An application written in MatLab R2020a (MathWorks, MA, USA) was used to com-
pute the dependent variables in this experiment. The force magnitude (FM) was computed
as the result of the forces in both axes at the moment of the ball release. The hit ratio (HR)
was used as the main parameter to assess participants” accuracy. It was computed as the
number of times the participants were able to throw the ball at the range angle to hit the
target. To measure the effect of practice, the learning ratio (LR) was computed by the
differences in the HR between the pretest and the tests performed after the practice period
(posttest and the three retention tests). The time series of data from the relative error of
each throw was also extracted, calculating the positive or negative difference between the
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release angle of the ball in each trial and the optimal angle that successfully would allow to
hit the target.

To address the variability in the combination of the horizontal forces that resulted
in the release angle of the virtual ball, an adaptation of the procedure applied by Gates
and Dingwell (2008) [25], based on the goal equivalent manifold approach introduced by
Cusumano and Cesari (2006) [26], was applied. This procedure assumes that there is an
infinite number of combinations of forces in the mediolateral and anteroposterior axes
that can result in the successful angle corresponding to the center of the target (i.e., 135°,
2.35619 rad) that allows the participant to achieve the goal (hitting the target). The space
of these two elemental variables is two-dimensional (a plane), and the magnitude of their
adequate combinations may be represented as a one-dimensional subspace (the solid line
in Figure 3). These MLf-APf combinations define the goal equivalent manifold (GEM) of
the throwing task that corresponds to the successful angle [tan~! (MLf/APf)] required to
hit the target. As long as the system stays on that line, the task is successfully performed.
The MLf-APf successful combination was defined as the line defined by the following
slope—intercept form equation:

APf = m x MLf + APf, )

where APf and MLf are the forces in the anterior—posterior and medial-lateral directions,
APf is the AP-intercept of the line with an arbitrary value of 0, and m is the line slope
defined as the tangent of 2.35619 rad (m = 1.00). After this assumption, the variability can
be decomposed into components or combinations of forces that can result in the effective
angle to hit the target (good variability or GV) or not (bad variability or BV), resulting in a
variability tangent to and perpendicular to the GEM, respectively. In this experiment, GV
was computed as the standard deviation of the distance between the force combination in
each trial and the GEM line. BV was computed as the standard deviation of the orthogonal
distance between the force combination in each trial and the synergy line. The ratio between
the good and bad Variability (GV/BV) was computed as the division between the GV
by the BV. Higher values are interpreted as stronger synergy in variability (see Figure 3).
Commonly, it has been interpreted that participants who display higher GV, have higher
flexibility in their motor patterns, since they are able to achieve the task goal using different
successful combinations. However, it has been interpreted that those participants who
display higher BV are showing an exploratory behavior in which they are still looking for
the right solutions. Thus, an increment in performance would be followed by an increment
in the GV/BV [22].

40

30

20

APf

10

-24 -19 -14 -9 -4 1
MLf

Figure 3. Representation of the different motor synergies variability. GV: Good variability; BV: Bad
variability; MLf: force in medial-lateral axis; APf: force in anterior—posterior axis.
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Finally, the detrended fluctuation analysis (DFA) was computed from the relative
error of the throwing series to assess the motor output variability structure. DFA represents
a modification of the classic root mean square analysis with a random walk to evaluate
the presence of long-term correlations within a time series using a parameter referred to
as the scaling index o [18,27]. The scaling index o corresponds to a statistical dependence
between fluctuations at one timescale and those fluctuations over multiple timescales. This
procedure assesses the extent to which further motor behavior is dependent on previous
fluctuations [28]. Less dependency on previous behavior (lower long-range autocorrelation;
lower o) has been interpreted as a higher flexibility to perform motion adjustments [1].
This measure was computed according to the procedures of Peng et al. (1995). In this
study, the slope « was obtained using a window range of N/10, going from 5 <n <15 to
maximize the long-range correlations and reduce errors incurred in by estimating o [29].
Different values of « indicate the following: « > 0.5 implies persistence in the position (the
trajectory tends to remain in its current direction); « < 0.5 implies antipersistence in the
position (the trajectory tends to return to where it came from) [27].

2.4. Statistical Analysis

Normality of the variables was evaluated using the Kolmogorov—Smirnov test with
the Lilliefors correction. First of all, repeated-measures ANOVAs were used to assess
the effect of reward training on all the variables measured. Pearson Product Moment
Correlation coefficients were calculated to analyze the relationship between the initial
performance, variability parameters, and the learning ratio. The correlational analysis re-
vealed a relationship between the initial performance, initial variability level, and learning
rate (see results section to check the correlational results). After that, it was decided to
group the participants using a linear regression method (see Barbado et al. (2017) for more
information) to assess if higher or lower initial variability was related to different learning
rates, avoiding the potential bias caused by the initial performance. First, participants
were divided into three groups according to their initial performance level, consisting of
the lowest, intermediate, and highest HRPRE scores. Then, a linear regression was made
between initial performance (i.e., HRPRE) and the representative variables for analyzing
motor variability (i.e., GV/BV and DFA). Finally, participants were grouped according
to their residual scores. Specifically, participants showing negative residuals scores (i.e.,
lower variability scores than the scores predicted by the regression analysis according
to the participants’ initial performance) were included in the “lower variability group”.
Conversely, participants showing positive residual scores (i.e., higher variability scores
than the scores predicted by the regression analysis according to the participants” initial
performance) were included into the “higher variability group”. Therefore, the whole
sample was split into two different groups with similar initial performance level but with
different initial variability levels. A mixed-way ANOVA was performed with HR as the
within-subject factor and initial variability as the between-subject factor. All statistical
analyses were performed using IBM SPSS software 26, with a significance level set at
p <0.05.

3. Results

Average values obtained in the different evaluation tests and the repeated measures
ANOVA results are displayed in Table 1 (for checking the whole database, please, see
the Supplementary Materials). Apart from the GV/BV and the DFA, all the dependent
variables showed significant differences caused by the training.

The pair comparisons results (Figure 4) showed significant differences between the
tests in the experimental variables. Regarding FM (Figure 4A), immediately after training,
the values were reduced and maintained in the Retest1 but they increased back to their
previous values in the Retest2 and Retest3. Performance increased (i.e., higher HR) after
training and these higher values were maintained even in the Retest3 (Figure 4B). Regarding
the variability measures, DFA showed slightly higher mean values after practice and it
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decreased in the subsequent retention tests, but no significant differences were observed
(Figure 4C). The GV and BV decreased after training, but the GV/BV remained stable along
the measurements (Figure 4D-F). In the Retest2, GV started to increase, but it did not show
significant differences with the previous evaluations. BV values were still significantly
lower than in the pretest. Finally, in the Retest3 both GV and BV moved closer to the
pretest values.

Table 1. Average error values (mean & SD) in all the tests calculated in the study and repeated measures ANOVA statistics
for the effect of training in the experimental variables.

Variables Pretest Posttest Retest 1 Retest 2 Retest 3 F p n?
FM (N) 2532 +£876  2042+898 2143 +854  2483+9.61 2637 +11.84 10.859 <0.01 0.202
HR (%) 23.88 +£13.31 3435+19.33 37.50420.01 3492+19.13 37.50421.83 10.644 <0.01 0.198

GV 4.81 £+ 2.06 3.34 £2.12 3.51 £2.46 3.88 £2.17 411 +2.38 8.062 <0.01 0.158
BV 3.18 £1.97 1.95+1.35 1.88 +£1.25 227 £1.29 243 £1.61 12.224 <0.01 0.221
GV/BV 1.74 £+ 0.69 2.06 + 0.94 219+1.01 2.00 +0.98 2.05 4+ 1.09 2.289 0.062 0.051
DFA 0.77 £0.23 0.85+£0.23 0.82 £0.25 0.74 £0.21 0.76 £ 0.25 2.044 0.090 0.045

FM = Force magnitude; HR = Hit ratio; GV = Good variability; BV = Bad variability; GV/BV = the ratio between good variability and bad
variability; DFA = DFA alpha value of the relative error time series data.

A b B C
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30
0.8
— 25 oy 40
2 X < 07
< 20 30 w
u§. % 0 06
15 20 0.5
10 0.4
10
5 03
0 0 0.2
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0 0 0
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Figure 4. Average error values in all the tests calculated in the study and the pair comparisons results extracted from
the repeated measures ANOVA. (A) refers to the Force magnitude values; (B) refers to the Hit ratio values; (C) refers to
Detrended Fluctuation values; (D) refers to Good Variability values; (E) refers to Bad Variability values; and (F) refers to the
Good and Bad variability ratio. a = significant differences compared with the pretest; b = significant differences compared
with the posttest; ¢ = significant differences compared with retestl.

Correlational analyses (Table 2) showed a negative correlation between the initial per-
formance (HRPRE) and the GV and BV initial levels (GVPRE, BVPRE) with moderate and
strong correlation indexes, respectively. In addition, the GV /BV in the pretest (GV/BVPRE)
was also related to the initial performance in a positive way, showing a strong correlation.
Regarding the relationship with the learning ratios, those participants who displayed lower
HRPRE were those who learned more. Regarding the variability measures, BVPRE values
correlated directly with the learning ratios, while the GV/BVPRE was negatively related
to the learning rates. GVPRE and DFAPRE did not correlate with learning ratio in any
retention test.

In order to fully understand the relationship between motor variability and learning
rate avoiding initial performance bias, as it has been mentioned in the statistical analysis
section, participants were grouped according to the participants’ GV/BV using a linear
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Pretest
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regression method [1]. DFA was not used for this analysis as it did not show any significant
relationship with learning rate nor initial performance. The participants with higher resid-
ual scores in each performance level were included in the Higher-GV/BV group, whereas
the participants with lower residual scores were included in the Lower-GV /BV group.
Some differences in the effect of practice were found between GV /BV groups (Figure 5).
Regarding the participants” performance, only the Higher-GV/BV group displayed higher
HR in all the tests after training compared with the Pretest (Figure 5A). Concerning GV
values, only the Higher-GV /BV group showed significant differences, decreasing its values
in the Posttest, Retestl, and Retest2 compared with the Pretest. However, that reduction
was not maintained after one week of resting, being significantly different in Retest3 com-
pared with the Posttest and Retest1 (Figure 5C). Both groups significantly decreased their
BV values after training. The Lower-GV/BV group displayed significantly lower values
in the Posttest (p = 0.009) and Retest2 (p = 0.006) compared with the Pretest, while the
Higher-GV/BV group showed these differences in the Posttest (p = 0.004) and Retest1
(p = 0.025), returning to the initial values in Retest2 (p = 0.014) and Retest3 (p = 0.002) as
compared to Retestl (Figure 5D). No effect of training was found in GV/BV for any group
(Figure 5B).

a 3 B ss .
a , ®m LowGV/BV ratio
25 * m HighGV/BV ratio
>
Q 2
>
[C) 15
1
05
[
D Pretest Posttest Retest1 Retest2 Retest3
bc
5
a C
a 4
> 3
o]
2
1
0
Retestl Retest2 Retest3 Pretest Posttest Retestl Retest2 Retest3

Figure 5. Pair comparisons results between the groups with different initial levels of GV/BV. (A) the Hit ratio values; (B)
refers to the Good and Bad variability ratio; (C) refers to Good Variability values; and (D) refers to Bad Variability values. *
= significant differences between groups; a = significant differences compared with the pretest; b = significant differences

compared with the posttest; ¢ = significant differences compared with Retest1.

Table 2. Pearson product moment correlation coefficient calculated between initial performance
(HRPRE), the learning ratio, and the initial outcomes of the rest of the variables.

HRpRg (%) LRposT LRRET1 LRREgT2 LRRET3
HRpgr (%) - —0.504 ** —0.579 ** —0.417 ** —0.558 **
FMpgg (N) ~0.201 ~0.019 0.023 0.018 0.094
GVpRre —0.340* 0.140 0.180 0.080 0.195
BVpRE —0.618 ** 0.320 * 0.370 * 0.254 0.477 **
GV /BVpRrg 0.667 ** -0.277 —0.341 * —0.263 —0.392 **
DFApRrg 0.207 —0.068 —0.067 —0.238 —0.138

*p <0.05; ** p < 0.01; HRpgg = Hit ratio in the pretest; FMprg = Force magnitude in the pretest; GVprg = Good
variability in the pretest; BVprg = Bad variability in the pretest; GV/BVpgrg = Good variability /Bad variability
ratio in the pretest; DFAprg = DFA from the relative error in the pretest. LRpogr = the differences in the HR
between the pretest and the posttest; LRrgr = the differences in the HR between the pretest and retestl; LRrgT2 =
the differences in the HR between the pretest and retest2; LRgrgt3 = the differences in the HR between the pretest
and retest3.
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4. Discussion

Motor variability plays a functional role in human adaptive behaviors, being related
to the facilitation of motor learning [1,2]. However, this relationship is not fully understood
because variability regulation during the learning process depends on both the individuals’
and the environment'’s characteristics [6,7]. The motor synergies variability has been related
to the individual’s learning stages in which different strategies prevail (i.e., exploration
and/or exploitation); however, it has not been directly related to the learning rate. In
addition, a previous study indicated that motor variability structure predicted the learning
rate in error-based learning tasks [1], but to the best of authors” knowledge, there is no such
evidence in reward-based learning tasks. In this study, a computer simulation task was
designed and a force dynamometer was used to measure movement variability during the
performance of a virtual throwing task. Thus, the main aim was to assess the relationship
between motor variability and learning rate in a reward-based learning task analyzing the
features of motor variability through its structure and motor synergies characteristics.

First of all, we observed a learning effect in the reward-based task carried out in
the study. A significant improvement in performance (i.e., higher hit ratio values) was
found after training and it remained stable along all the retests (Table 1 and Figure 4). This
improvement was accompanied by an initial decrease in the force applied to release the ball
and a reduction in good and bad variability, while the variability of the motor synergies
remained stable. Regarding the GV /BYV, the findings were according to one of the learning
stage scenarios in which both good and bad variability decreased in a proportion such
that the relative difference between them did not change [21]. These results have also been
found in other experimental studies in which two-arm pointing tasks based on error-based
learning were assessed [30]. These changes returned to the initial levels after the resting
period while maintaining the performance improvement. In the aforementioned study,
kinematic data for both arms were collected, providing direct information about how the
DoFs related to motor coordination were evolving. This is a limitation in our study. Our
results are based only on the performance output, no kinematic information was included.
On the other hand, in the study by Domkin et al. (2005) there were no retests to check the
variability evolution of the motor synergies in retention. Future studies should address
the whole evolution of the learning process, providing kinematic information to check the
DoFs’ evolution.

Subsequently, we carried out correlational analyses to assess if the variability in motor
synergies or the variability structure of error time series could predict the learning rate.

First of all, we found that those participants showing a higher variability of the motor
synergies also displayed a lower learning rate. In addition, participants with higher initial
bad variability levels obtained higher learning rates. Based on these results, higher bad
variability levels could be interpreted as an index of exploratory behavior in which the
participant would be looking for the right motor solutions. Thus, variability magnitude
parameters such as those obtained from the goal equivalent manifold approach, would
reflect the learners’ capacity to explore different motor configurations (i.e., synergies) until
they find the reward zones in a motor task [30,31]; that is, to find the optimal motor solution
to achieve the task goal [2]. Conversely, these results can also be interpreted as the high
levels of bad motor variability impair motor learning and should be reduced. Based on
the experimental study carried out by Cardis et al. (2018) [32], increasing motor variability
may adversely affect the ability to retain the learned solution.

Analyzing the other variability tool used in this study, even though DFA has proven
to be useful for predicting the learning rate in the error-based continuous task [1], it did not
correlate to the learning ratio in the reward-based task of this study. The results showed
that the DFA values of the fluctuations did not predict the learning rate in this reward-
based task. Previous studies have supported the use of the long-range autocorrelation
index to elicit the relevant role of the motor variability during motor error-based learning,
that is, how learners dynamically adjust their movement according to the task demands.
Nevertheless, this temporal dynamic of the outcome variations revealed by DFA does not
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seem to be a determinant index of the learners’ success to aim at the target in our reward-
based task. This could be explained by the fact that the success in error- and reward-based
tasks depends on different learning strategies that can be revealed through different tools.
The learning processes of an error-based task would mainly depend on the error sensitivity,
that is, the ability to detect variations between the desired behavior and the actual motor
outcome [33]. The relationship between the learning rate and motor variability measured
by the ratio between the good and bad variability instead of the DFA observed in this
study would support the idea that the modulation of the magnitude of motor variability
(i.e., exploring different motor solutions) is more relevant to foster learning processes in
reward-based learning tasks than enhancing error sensitivity. In spite of this rationale, it
must be pointed out that the lack of prediction capability shown by the DFA in this study
could also be related to the fact that this tool usually needs longer trial-to-trial variation
datasets to provide a reliable score [34-36].

Focusing on the goal equivalent manifold approach parameters, it must be taken
into consideration that the correlation between the variability of the motor synergies and
learning rate should be taken with caution because motor synergies variability was highly
related to the initial performance level too. Thus, the participant ‘s initial performance
level biased the relationship between motor synergies variability and learning ratio. This
is, people with higher bad variability or lower motor synergies variability would show
higher learning because they also showed poorer initial performance, and, thus, they have
larger room for improvement. A similar bias was also found by Barbado et al. (2017) using
DFA to predict the learning rate in an error-based learning task. Following Barbado et al.’s
suggestions for reducing the bias caused by the initial performance, participants were
grouped based on the linear regression between their HR in the pretest and their learning
rate. Contrary to the results observed in the correlational analyses, those participants with
initial higher motor synergies variability displayed a greater performance improvement
than those with initial lower motor synergies variability. When we reduced the effect of
initial performance effect in learning rate, we found that the participants who showed
larger good variability compared to bad variability in the pretest (i.e., Higher-GV/BV
group) also showed higher learning rate. The interpretation of these findings could be that
participants from the Higher-GV/BV group are exploring among the range of successful
motor synergy combinations to achieve the task goal. Therefore, it can be concluded
that the larger spectrum of motor configurations displayed for these participants would
help them to find the reward zone easily. It must be pointed out that the evolution of
the motor synergies variability was similar in both groups, although to a different extent.
The results found in the two groups supports those from the whole cohort. Both groups
displayed no changes in their motor synergies variability, because both good and bad
variability decreased in a proportion such that the relative difference between them did
not change [21]. Participants from the group with lower variability of the motor synergies
decreased their bad variability after training but no significant changes were found in their
good variability levels. However, participants with higher initial levels of motor synergies
variability decreased both bad and good variability. In both cases, although the changes
were not significant, an increase in the motor synergies variability could be appreciated,
which could be interpreted as a step forward to strengthen and stabilize the synergies
found by the participants to achieve the task goal [21]. Finally, after the resting period both
good and bad variability moved closer to the initial values. To the best of our knowledge,
no previous studies have addressed the evolution of the motor variability synergies after a
resting period without practice. According to the aforementioned learning stages, Latash
(2010) indicated that this increment of motor variability in the retention tests could be
related to the first stage, which could mean that participants are unlearning; however,
the performance displayed by the participants did not decrease in those retention tests.
Then, our interpretation, being aware that there is no information about the kinematic
data, is that participants went from the stabilization stage achieved right after practice to a
flexibilization of their synergies.
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5. Limitations

It is important to point out that extrapolation of the results of this study is limited.
First of all, the task studied in this work is a simple task performed in a computational
environment. Second, as mentioned in the manuscript, how the individual manipulates
motor variability to promote a faster learning rate depends on the task and the individual
features. Thus, in order to extrapolate the results, other studies using other kind of reward-
based learning tasks in a more realistic environment are needed.

6. Conclusions

Our findings showed that analysis of the motor variability synergies using the proce-
dure applied could reveal the relevant role of motor variability during motor reward-based
learning. The evolution of the motor variability synergies proposed by different authors
and related to different learning stages seems to be supported by our study, which also
provides information about the retention periods. Future studies should assess if this way
to characterize motor variability, as some other tools did, such as DFA, could also be useful
to predict motor error-based learning.
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