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Abstract

Implicit in the k–means algorithm is a way to assign a value, or utility, to a cluster of points. It

works by taking the centroid of the points and the value of the cluster is the sum of distances

from the centroid to each point in the cluster. The aim in this paper is to introduce an alterna-

tive way to assign a value to a cluster. Motivation is provided. Moreover, whereas the k–

means algorithm does not have a natural way to determine k if it is unknown, we can use our

method of evaluating a cluster to find good clusters in a sequential manner. The idea uses

optimizations over permutations and clusters are set by the cyclic groups; generated by the

Hungarian algorithm.

1 Introduction

Cluster analysis is one of the most important problems within the data sciences. Identifying

groups of similarity from among a data set has multiple applications. The common approach

to determining a cluster from a data set is via the minimization of an objective function once

the number of clusters has been set a priori. A comprehensive review is provided in [1, 2], for

example. Another recent review of clustering algorithms is given in [3] with an emphasis on

comparisons between the competing approaches.

Generally, clustering methods fall into one of three classes:

1. Model–based approaches. Mixture models are used to model the data and with statistical

estimation of the parameters of the model; which include the number of components in

the mixture, the number of clusters alongside the density used to estimate each cluster are

available.

2. Partitioning–based approach. Here a given number of clusters is pre–defined and the data

are optimally partitioned into this number of groups via some objective function.

3. Tree–based approach. From a given cluster; either new clusters are formed from these (top

down) or these clusters are tied together into a smaller set of clusters (bottom–up). It must

be pointed out that there is no natural termination to this approach and hence the appropri-

ate number of clusters remains elusive.
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The algorithm we are proposing in this paper is tree–based, also known as hierarchical clus-

tering, and bottom up, also known as agglomerative clustering. For a review, see, for example,

[4].

Starting with as many clusters as data points, these algorithms merge clusters until all data

elements belong to the same cluster. At each step the two clusters which are separated by the

least distance are combined. The distance is known as the linkage function; for example

dðSj; SkÞ ¼ min
x2Sj;y2Sk

dðx; yÞ

where d(x, y) is the natural, usually Euclidean, distance between elements x and y, and S
denotes a cluster. The tree–based approaches are popular due to the visual appeal of a dendo-

gram. However, the problem after the tree is constructed, is to determine the best cluster; see

[5].

However, rather than methodically combining nearest clusters to produce the tree, we use a

new utility function, which we introduce later, to combine clusters. The idea is that the new

clusters are represented by the cyclic groups of an optimal permutation between elements.

This permutation is described later. The basic idea is that the value assigned to the cluster by

the cycle permutation minimizes the walking distance to reach each element of the cluster

once. This provides a natural stopping rule for the further combination of clusters.

To motivate our utility or value for a cluster, we discuss one of the most popular clustering

approaches, k–means; see [6] for one of the original papers on this algorithm, which is the

most common unsupervised learning algorithm in data science. More recent contributions to

k–means include the paper [7] which modifies the traditional algorithm to merge any two clus-

ters with centroids which are close to each other. To describe the algorithm; if k, the number

of clusters is known, the aim is to minimize over non–empty sets (S1, . . ., Sk), the union of

which is {1, . . ., n}, the function

OðS1; . . . ; SkÞ ¼
Xk

j¼1

X

i2Sj

dðcj; xiÞ; ð1Þ

where cj is the centroid of points in Sj and d denotes a measure of distance between points; for

example, the square of the Euclidean distance is the most common. The centroid cj is generally

provided by the Fréchet mean; i.e.

cj ¼ arg min
c

X

i2Sj

dðc; xiÞ:

Of course, if the distance is Euclidean, as is commonly assumed in the literature, then the cen-

troid could be the usual mean. Implicit in the k–means algorithm is the assignment of

vðSÞ ¼
X

i2S

dðc; xiÞ ð2Þ

as a utility value of a cluster S with centroid c and cluster members (xi)i 2 S. In fact, as far as we

have been able to ascertain, there is no competing idea for the valuation of a cluster. The basis

of the present paper is an alternative valuation of a cluster; indeed, this is the main contribu-

tion of our paper. We introduce our new value for a cluster in section 2.

Hence, we adopt the basic idea of agglomerative clustering, but use a value assignment to a

cluster to achieve this, which is different to that used in centroid approaches, such as k–means.

Whereas the distance based approach to agglomerative clustering and k–means do not provide
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a general optimal cluster (a tree of clusters for the former and a fixed k for the latter), our

hybrid approach provides an optimal cluster, as the tree has a natural stopping point.

The basic k–means algorithm needs refinement when k is unknown, and there is no recog-

nized single procedure for determining k and a corresponding set of k clusters. Rather, a two–

step process is implemented whereby first an optimal choice for k is found, which is non–triv-

ial, and then k–means is implemented with this choice of k. The most popular approach is the

elbow method; see [8]. This implements a number of k–means algorithms for a range of k and

then selects that value for which the graph presents an elbow looking shape, based on the over-

all sum of squares of points. Alternative strategies include the gap statistic; [9].

Other approaches to clustering popular within the machine learning community are Bayes-

ian mixture models; in particular, the mixture of normal model;

pðxÞ ¼
X

l¼1:k

wl k Nðxjml; s
2Þ: ð3Þ

Here N stands for the normal density function, the (wlk) are weights which sum to 1, the (μl)
are the location parameters and σ2 the common variance. Finally, k represents the number of

clusters though each must be well represented by a normal density otherwise k will be overesti-

mated. In fact, overestimation is a serious concern for this type of model. The model falls

within Bayesian nonparametric methodology; see, for example, [10]. A nice paper looking at

k–means from a Bayesian nonparametric perspective is the one by [11]; see also [12]. However,

a problem with modeling the data is that a cluster is required to conform to a simple model,

such as the normal. It is well known that estimating the number of clusters is difficult, based

on the estimation of the parameters. See [13, 14].

Combinations of types of data are also problematic for establishing a centroid and therefore

a procedure which works solely using distances between data points to value a cluster is attrac-

tive. Our valuing approach to a cluster avoids the use of a centroid. Given this motivation, in

our paper, we introduce a sequential algorithm which provides clustering with an unknown

number of clusters and which can be seen as a development of the k–means and elbow algo-

rithms in that the number of clusters is non–increasing and converges as the iterations prog-

ress. Each iteration can reduce the number of clusters, while never increases, so there is

guaranteed convergence to a fixed number. As the algorithm proceeds the record is kept of

which points are within each cluster.

The remainder of the paper is as follows: in Section 2 we present our idea for assigning a

value to a cluster, and in section 3 we describe the algorithm for obtaining the number and ele-

ments of the clusters. This involves an optimization routine over permutations within each

iteration and relies on the Hungarian algorithm. In Section 4 we present a number of illustra-

tions. When our algorithm matches the number of clusters from alternative algorithms with a

chosen cluster size, such as k–means, the clusters are effectively the same. Hence, in Section

4.5 we focus on comparing our number of clusters with ideas based on common strategies

including the “elbow”, “gap” and “silhouette” methods. Finally, Section 5 concludes with a dis-

cussion and some idea for future work.

2 Valuing a cluster

Our alternative to (2) for assigning a value to a cluster S is given by

uðSÞ ¼ min
s2A

X

i2S

dðxi; xsðiÞÞ ð4Þ

where A is the set of permutations on S which have a single cycle. For example, if |S| = 3, then a
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σ 2 A could be σ(1) = 2, σ(2) = 3 and σ(3) = 1. So u(S) is the shortest walk to reach each point

in S once only; starting and ending at one of the points. We also see this as a natural value for a

cluster. It is the minimum distance to journey to all the points once and return to the original

starting point. To us it seems this is a more natural way to define a cluster, though as with all

utilities, there is no available proof of any kind it is superior or optimal compared to (2).

The best we can do is highlight a case where the value (4) is natural and yet for the same

case the value (2) is not. So here we compare the two metrics for evaluating the value of a clus-

ter S. When |S| = 2, the values are the same; being the Euclidean distance between the two

points. On the other hand, to see clearly the differences involved, consider a cluster involving a

set of 6 points as the vertices of a symmetric hexagon. See Fig 1. The left figure describes the

value of u(S) with arrows going round the perimeter of the hexagon; whereas the right figure

describes the value of v(S), with the arrows emanating from the centroid to the vertices.

To provide some mild criticism of the v(S) in (2), consider now a cluster with points at the

vertices of a perfect square with sides of length a. Then u(S) = 4a and vðSÞ ¼ 2a
ffiffiffi
2
p

. Now sup-

pose we move two of the points so that there are two points on each of the two diagonally

opposite vertices. This will present a clearly different cluster than before where each point is at

a vertex. Now uðSÞ ¼ 2a
ffiffiffi
2
p

, a smaller value to before, as clearly the cluster has become more

condensed. On the other hand, the new value for v(S) remains at 2a
ffiffiffi
2
p

; yet as we have men-

tioned, the two clusters are quite different. To see this point made with Fig 1, if we move all six

points to one of two vertices opposite each other, the value of the cluster used by the k–means

algorithm; i.e. v(S), stays the same. On the other hand, our value of the cluster u(S) is reduced,

as it should be.

There are alternative ways to assign a utility to a cluster which avoids the notion of a cen-

troid; a big advantage in general metric spaces, and one such recent idea appears in [15]. To

describe this value of a cluster consider O = {x1, . . ., xn} to be a finite set of points, and let S be

a proper subset of O. A value to cluster S is written as γ(S). The value is based on the metric d

Fig 1. Left figure is u(S) and right figure is v(S).

https://doi.org/10.1371/journal.pone.0255174.g001
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and the notion of the measure of cohesion between two points x and y in O defined to be

gðx; yÞ ¼
1

n

X

z2O

dðx; zÞ þ
1

n

X

z2O

dðy; zÞ � K=n2 � dðx; yÞ;

where

K ¼
X

z1 ;z22O

dðz1; z2Þ:

It is interpreted as a “binding” force between two points and satisfies some key properties such

as being symmetric, γ(x, x)� 0, γ(x, x)�maxy2O γ(x, y). Then

gðSÞ ¼
X

x;y2S

gðx; yÞ:

If we define d(A, B) = ∑x2A,y2B d(x, y) then

gðSÞ ¼ 2ð1 � jSj=nÞðjSj=nÞ dðS; S0Þ � ðjSj=nÞ2dðS0; S0Þ � ð1 � jSj=nÞ2dðS; SÞ:

That this is the explicit value assigned to a cluster follows from the objective function to be

optimized for setting the clusters being

QðS1; . . . ; SKÞ ¼
XK

k¼1

gðSkÞ:

The concern about such utilities is that it is easy to confirm that γ(S0) = γ(S). Hence, if 3 clusters

are sought, it is not 3 utilities which come into play; since if S1 and S2 are two clusters, with

arbitrary utility, the third set S3 = O − S1 − S2 must have utility γ(S1 [ S2, S1 [ S2). This connec-

tion arises due to the value of a cluster ultimately depending on O which can be deemed as

inappropriate.

3 The Hungarian clustering algorithm

In this section we provide an overview and then a detailed description of the proposed

clustering algorithm which uses (4). To describe an iteration, suppose we start with k clusters

SðkÞ ¼ ðS1; . . . ; SkÞ, having the k centroids CðkÞ ¼ ðc1; . . . ; ckÞ. Hence, Sj \ Sl = ; for j 6¼ l and

[kj¼1
Sj ¼ f1; . . . ; ng. The output of one iteration of the algorithm will be k0 � k clusters, say

S0ðk0Þ ¼ ðS0
1
; . . . ; S0k0 Þ, with corresponding centroids C0ðk0Þ, and where each S0j is a union of

known clusters from SðkÞ.
To detail the algorithm, first define

Z ¼

P
j<ldðcj; clÞ
kðk � 1Þ

ð5Þ

to be half the average distance between the k centroids. This choice will be explained and moti-

vated later. Then define the objective function to be minimized as

OðsÞ ¼
Xk

j¼1

½dðcj; csðjÞÞ þ Z1ðsðjÞ ¼ jÞ�; ð6Þ

where the minimization is over all permutations σ on {1, . . ., k}. A detailed description of the

optimization procedure is given in Section 3.
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The optimal σ, say ŝ, is a product of cycles of permutations. Thus, ŝ will have a number of

cycles, or orbits, which are upper bounded by k, and denote this number of cycles by k0. Each

cycle will form the new clusters; hence we obtain S0ðk0Þ. The algorithm is repeated until k0 = k;

i.e. ŝ is the identity permutation.

For example, if k = 6 and the clusters are denoted by sets S1, . . ., S6, and ŝ ¼ ð1Þð5; 2; 3Þð6; 4Þ,

then k0 = 3, with the new clusters givenby S0
1
¼ S1, S0

2
¼ S2 [ S3 [ S5 and S0

3
¼ S4 [ S6.

The motivation for the algorithm is to cluster centroids by putting together those which are

sufficiently close compared to the penalty term η. So, for example, if all inter–centroid dis-

tances are greater than η then the algorithm will stop. Hence, the penalty term is crucial.

3.1 Setting η
Our choice of η is motivated by the work of [15] who consider relative distances between

points. Given points S = {c1, . . ., ck}, they consider the relative distance between points ci and

cj, and j 6¼ i, as

RDðcikcjÞ ¼ dðci; cjÞ � k� 1
X

l2S

dðci; clÞ:

The relative distance from a random point to a point cj is defined as

RðcjÞ ¼ k� 1
X

l2S

RDðcjkclÞ:

The cohesion measure between points ci and cj is

gðci; cjÞ ¼ RDðcjÞ � RDðcikcjÞ

and satisfies a number of key conditions listed in Proposition 4 of [15]. The cohesion measures

determines how suited ci and cj are to be in the same cluster. So ci and cj are cohesive if γ(ci,
cj)�0 which can be understood as a “binding force” between the points.

On the other hand, the self cohesion for point cj is given by

gðcj; cjÞ ¼
2

k

Xk

l¼1

dðcj; clÞ �
1

k2

Xk

l;m¼1

dðcl; cmÞ:

We take η to be an average of these self cohesions; to see exactly what average note that

Xk

j¼1

gðcj; cjÞ ¼ k� 1
Xk

i¼1

Xk

j¼1

dðcj; ciÞ:

Due to the symmetry of d we divide by 2, to avoid double counting, and we have a loss of one

degree of freedom due to the relative notion of the measure; i.e. so we take the average as

Z ¼
1

2ðk � 1Þ

Xk

j¼1

gðcj; cjÞ

which becomes

Z ¼

Pk
i¼1

Pk
j¼1
dðci; cjÞ

2kðk � 1Þ
;

and which is (5). Clearly, the smaller the value, the better a cluster are the set of points.
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This provides, unlike existing agglomerative clustering algorithms, an automatic stopping

rule. A set of points will not be clustered into any further separate clusters when

Z <min
s2C

1

k

Xk

i¼1

dðci; csðiÞÞ

where C is the set of permutations on {1, . . ., k} with a single cycle. That is, the average self

cohesion is more attractive than the corresponding average of distances associated with any

permutation with a single cycle.

3.2 Motivation for O(σ)

We provide a motivation by taking a new look at the k–means algorithm. Suppose we have n
points, x1:n, and want to put them into k� n categories. The k–means approach minimizes

OðS1; . . . ; SkÞ ¼
Xk

j¼1

X

i2Sj

dðcj; xiÞ ¼
Xk

j¼1

vðSjÞ:

where cj ¼
P

i2Sj
xi=jSjj: In other words, the “value” of a cluster S with centroid c is given by

(2). The smaller the value for v, the better the cluster, and this choice of v is easy to understand.

On the other hand, we use a different value for a cluster; i.e. (4). However, while the k–

means approach does not extend naturally to an optimization problem over k; our approach

with values based on u(S) does. That is, now with σ a permutation on {1, . . ., k}, we want to

minimize

lðS1; . . . ; Sk; kÞ ¼
Xk

j¼1

X

i2Sj

dðxi; xsjðiÞÞ

where σ = (σ1, . . ., σk) are the permutation cycles within σ. This will also yield a k.

In practice, as with the k–means algorithm, the algorithm behind minimizing O(σ); i.e. (6),

is quite straightforward and implemented recursively. From k clusters, the next iteration pro-

vides a new set of clusters of size k0 � k, via the cycles of ŝ, which minimizes the total sum of

traveling distance accumulated from the distances between the points in a cycle. In other

words, we are minimizing over all k0 and S0,
P

j¼1:k0DðS
0
jÞ, where DðS0jÞ are the internal dis-

tances between the elements within S0j.
We understand this to be a perfect recursive notion for improving on a clustering to a

smaller degree. Of course, this could result in k0 = k since the “distance” from a cycle with a sin-

gle point is given by η; the explanation of which has just been provided. See Algorithm 1.

Algorithm 1: Sequential clustering
Set SðkÞ and CðkÞ and N = 0;
while N = 0 do
Minimize OðsÞ ¼

Pk
j¼1
½dðcj; csðjÞÞ þ Z 1ðsðjÞ ¼ jÞ�;

if k0 < k then
Get S0ðk0Þ and C0ðk0Þ from ŝ, SðkÞ and CðkÞ;

else
N = 1

end
end
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3.3 Implementation: The Hungarian algorithm

The key to the implementation of the sequential clustering is the Hungarian algorithm; see

[16]. The input consists of a k × k matrix with non–negative elements. Typically the algorithm

it is used to solve an assignment problem; namely the rows consist of “workers” and the col-

umns consist of “tasks”. The entry in the (i, j)th position would represent the amount in dollars

the ith worker would charge on task j, written as d(i, j). Clearly, the objective for the manager

would be to make the worker–task assignments to minimize costs and hence is looking for a

permutation σ minimizing ∑i=1:n d(i, σ(i)). There are n! possible permutations. However, the

procedure it uses to find the optimal solution means it runs in order of time n3. For us the

costs of assignments are distances and the optimal permutation yields, or can be decomposed,

into permutation cycles, also known as “orbits”. See, for example, [17]. It is these orbits which

form the new set of clusters.

Here, we describe the implementation of our algorithm in the clustering context for gener-

ating the mapping σ; i.e. for minimizing O(σ). Let us assume initially that we are given a k × k
symmetric matrix of distances such that the diagonal distance entries are not zero but equal

to some given value defined as η. We are then focusing on the assignment problem which

addresses the optimal match which in our case is a permutation σ for a given set of compo-

nents k. Note, we are not looking for the permutation of the type σ = σ−1 as required by [18] in

a non–bipartite matching context; and see, for example, [19] for a comprehensive review of

various uses of optimal matching in statistics.

Our optimisation problem can be solved with the aid of linear programming algorithms; in

fact a particular version of such algorithms is the Hungarian method which finds the optimal

solution in a polynomial time of order O(k3). Such an algorithm is carried out as a four step

procedure as follows, with M being the distance matrix i.e. Mi,j = d(i, j):
This implies that the computation cost of our clustering iterations are manageable and as k

deceases the convergence will be achieved with increased speed see [20]. In particular, our cal-

culations are carried out in R (https://www.r-project.org/) and the key packages for perform-

ing the optimization for the cross matching is based on the function Solve_LSAP which

implements the Hungarian algorithm. For more on the Hungarian algorithm, see Algorithm 2

and [21]. The overall algorithm proceeds as described in Algorithm 3.

Algorithm 2: Hungarian algorithm
Step 1 Subtract the minimum value from each row of M (so in each row
the mimimal value will be zero)
Step 2 Subtract the minimum value from each column of M (so in each
column the minimal value will be zero)
Step 3 Draw the least number of possible lines going through the rows
and columns that have the 0 entries. Let this number of lines be m.
if m = k then
The optimal matching is reached and is represented by the corre-

sponding zeros;
else
(Generate additional zeros);
Find the smallest entry not covered by any line and substract this

entry from each row that isn’t crossed out, and then add it to each
element that is crossed out twice in the lines;
Go back to Step 3

end
Algorithm 3: Overall algorithm

Step 1 Start with the original distance matrix M of n × n elements;
Step 2 Given the distance matrix M of size k × k, run the Hungarian
algorithm on M to obtain σ;
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Step 3 For this σ retrieve the k0 permutation cycles and the new intra–
cluster–distance matrix M0;
Step 4 Repeat Steps 2 and 3 until k0 = k.

4 Numerical examples

In this section we present a number of numerical illustrations; involving three real data sets,

and two simulated data sets. These include both Euclidean and non–Euclidean spaces.

4.1 Old Faithful data

This dataset is known in the literature; see e.g. [22]. Some background: Old Faithful is a geyser

in Yellowstone National Park. The geyser erupts, which lasts a certain amount of time, and

then an interval of quiet until the next eruption. The data consists of consecutive pairs of dura-

tion and intervals of eruptions. There are in total 272 data points of bivariate data and we

apply the clustering algorithm to these points.

The algorithm converged after 5 iterations as shown in the Fig 2; note that the plots for iter-

ation 5 and 6 are the same. Hence, the number of clusters chosen by the algorithm is 4.

We also run a k–means algorithm in R for four clusters. A visual comparison is given in Fig

3 which confirms that both methods generate essentially similar clusters despite optimizing on

different loss functions. Further, [23], with their Bayesian model, achieve a posterior distribu-

tion which has a mode at 4 clusters. Hence, our algorithm performs extremely well when and

is consistent with alternative approaches described in the literature.

4.2 Galaxy data

This data set has been extensively studied from a clustering context with a modeling frame-

work using models of the type (3); see, for example, [10]. These models tend to overestimate

the number of clusters; see [14]. On the other hand, when the issues with using the mixture

model are adequately taken into account, to prevent the overestimation, the number of clusters

has been reliably estimated at three; see [24] and [25]. Three is precisely the number of clusters

we obtain using our sequential algorithm. The sequence of clusterings is presented in Fig 4.

4.3 Simulated data

In a first example we simulate 450 random data points around 5 centers in two dimensions

with coordinates C1 = (0, 0), C2 = (1, 3), C3 = (3, 3), C4 = (3, 1), and C5 = (0, 1.5) and a choice

of perturbation standard error 0.3. As seen in Fig 5 our algorithm performs well as it picks the

correct number of clusters (five in our example) with visibly correct locations.

For a second example we consider data on a unit sphere. They are projected normal ran-

dom variables with different means, each mean indicating a different cluster. In Fig 6 the simu-

lated data are shown with one group of size 50 and the other of size 40. The distance used is

the arc length and the cluster averages are calculated using the standard mean operation with

the co–ordinates on the sphere; i.e. extrinsic means. Starting with 90 clusters, iteration one

produces 42 clusters; iteration two produces 20; iteration three 9; iteration four has 5; and the

final one has 2 clusters, which separates out the two groups perfectly.

4.4 Landmark data

One of the key advantages of the algorithm is that we rely only on the distance matrix. Such a

feature is preferred especially in non–Euclidean spaces. For example, the shape spaces of land-

mark data are naturally defined as Riemannian manifolds of non negative curvature. Note that
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Fig 2. A number of the iterations with current clusters for the Old Faithful data set. The final number of clusters is four.

https://doi.org/10.1371/journal.pone.0255174.g002
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Fig 3. A comparison of the clustering in Fig 2 with the K-means output for four clusters.

https://doi.org/10.1371/journal.pone.0255174.g003
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Fig 4. A number of the iterations with current clusters for the Galaxy data set. The final number of clusters is three.

https://doi.org/10.1371/journal.pone.0255174.g004
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the additional requirement in the iterative implementation of our algorithm is that we need to

update, at each step, the distance matrix with those of the intra–cluster distances. In this exam-

ple, we will use the Riemannian shape distance between the corresponding Procrustes means

which are a version of the centroid (Fréchet) means for the sample shapes. In the following,

consider a classic data set in the shape literature. This is the rats data of [26], which consists of

skull observations of 18 individual rats when they are 7, 14, 21, 30, 40, 60, 90 and 150 days old.

So in total we have 144 individual skull observations. See Fig 7 for a biological explanation of

the 8 landmarks.

We want to explore whether there is any natural clustering the shapes of the skulls depend-

ing on the age. Note that in order to extract the shape coordinates one can rescale, relocate and

rotate each configuration so that two given landmarks are fixed to two pints. See for example

the two fixed landmarks to points (−1/2, 0) and (1/2, 0) in the right figure in Fig 8.

Fig 5. A number of the iterations with current clusters for the simulated data set. The final number of clusters is five—the

correct number.

https://doi.org/10.1371/journal.pone.0255174.g005
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The relevant calculations for obtaining quantities such as the Riemannian shape distances

and Procrustean means are carried out by utilising the R-package shapes. Our algorithm for

these 144 shapes observed at eight time points, produces five clusters we represent them as

color coded in Fig 8.

Since the shape change is more pronounced at the early stages, the shapes observations for

ages from 7 to 40 days old, are split into three clusters. However the shape observations for the

later stages of 60, 90, and 150 days (blue coloured) are considered as one cluster. This makes

sense as the shapes of the skulls changes more at the early growth stages. As it can be seen from

the graphical output we could not see any visual evidence of this clustering in the landmark

Fig 6. Data set on unit sphere.

https://doi.org/10.1371/journal.pone.0255174.g006
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space (right plot in Fig 8). However the plot of the first two principal component scores, in tan-

gent space approximation of the shape space seem to support the clustering choice. This is

because due to the nature of the shape metric, such Euclidean (landmark) coordinates cannot

immediately display any visible clustering.

4.5 Comparison with number of clusters

The k–means type algorithms where the number of clusters need to be specified, or hierarchi-

cal algorithms which end with a single cluster, require additional procedures to set the number

of clusters when unknown. There are a number of techniques; including the most common

“elbow” method. This computed the within cluster sum of squares (WSS) as a function of k
and looks for the integer value for which the subsequent value does not reduce the WSS suffi-

ciently. Other ideas which we will compare with include the “silhouette”, which measures

how well each point lies within its cluster, and see [27] for details. Also we consider the “gap”

Fig 7. Locations of the eight landmarks.

https://doi.org/10.1371/journal.pone.0255174.g007

Fig 8. Clustering of the rats data. Left plot: the coordinates of the first two principal components in the tangent space; Right plot: Landmarks represented

by symbols and colours based on the clusterings.

https://doi.org/10.1371/journal.pone.0255174.g008
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method, which provides the cluster structure most removed from the random uniform distri-

bution; see [9].

These methods for determining the number of clusters uses the function fviz-nbclust and

can be found in the R package “factoextra”. It computes the appropriate number of clusters for

Fig 9. Data set with 5 clusters and σ2 = 0.2.

https://doi.org/10.1371/journal.pone.0255174.g009
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a variety of algorithms, k–means, k–medoids, and hierarchical k–means, though we focus

solely on the k–means.

The set up for the simulation study involves data sets in 2 dimensions, where the number

of clusters is known to be 5. To generate the datasets we fix 5 points, those set in section 4.3,

and we generate a number of observations from each of the 5 locations using independent

bivariate normal random variables with variance σ2. We focus in particular on datasets

which are biased; i.e. there is a difference in the sizes of clusters as 180, 80, 110, 60, and 20,

respectively. See Fig 9 for an illustration of a dataset; the 5 cluster centres are indicated with a

cross. The correct number of clusters was obtained in 8 iterations of the Hungarian cluster-

ing algorithm.

We kept the same number of elements per cluster and generated the data via 5 normal dis-

tributions and changed the variance, labelled as σ2, of the data for each cluster. So the larger

the σ is the larger is the cluster overlap. Over multiple runs we take the average number of clus-

ters for each approach, and the average number of clusters is reported in Table 1. That the

average is a number is due to the fact that every run, out of 50, always returned the same num-

ber of clusters.

We notice that as the perturbation variance σ rises, the correct number of clusters is found

by the Hungarian clustering algorithm, while the gap and silhouette methods fail, and underes-

timate the correct number of clusters. For the run times, taking the σ2 = 0.1 case, the Hungar-

ian algorithm took 0.56 seconds to run 8 iterations starting with 450 observations. The gap

method took 1.05 seconds using the clusGap function, the silhouette method took 0.03 seconds

using fviz-nbclust.

For a real dataset, we also investigate the number of clusters for the “US arrests” data set,

which the above mentioned package use in their documentation. In fact, the silhouette and

gap criteria (as well as elbow) find 4 clusters for this data set. See Fig 10.

Our Hungarian algorithm, however, suggests 7 clusters; see Fig 11. In light of the simulation

study this is not surprising, as we have highlighted the point that these methods seem to under-

estimate the number of clusters. Our method provides three additional clusters; Florida (clus-

ter number 5), Alaska (cluster number 2) and (Missisipi, South Carolina, North Carolina)

(collectively cluster number 7) as in the middle plot. This choice is supported in the the 3–

dimensional plot where the third principal component is included; see Fig 12.

5 Discussion

At the heart of our clustering approach is the idea of the permutation acting on an objective

function over clusters and numbers of clusters. The cyclic groups determine the number and

the elements of the clusters. The objective function is evaluated using our value of clusters,

which includes one for a single point. Even though it is a hierarchical algorithm, it is quite dif-

ferent to alternatives which do not operate with a specific objective function. The main differ-

ence is that our algorithm provides a natural stopping rule; i.e. when the permutation becomes

the identity permutation.

Table 1. The average number of clusters by after adding noise to the five centres with various σ.

σ2 0.1 0.2 0.3 0.4 0.5

Hungarian 5. 5 5 5 7

Gap 5 5 4 3 2

Silhouette 5 4 4 2 2

https://doi.org/10.1371/journal.pone.0255174.t001
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Fig 10. US arrests clusterings from the hierarchical k-means algorithm and the gap method.

https://doi.org/10.1371/journal.pone.0255174.g010
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Fig 11. US arrests clustering from the Hungarian algorithm; there are 7 clusters.

https://doi.org/10.1371/journal.pone.0255174.g011
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The intra–cluster–distance matrix is an important component in our approach. If the data

are Euclidean then these distances can be easily calculated as the distance of the corresponding

means in the usual sense. However, if the data were in some general non–Euclidean metric

space then we replace these distances with those of the corresponding Fréchet means for each

cluster. Alternatively, we could use the distance between clusters as the minimal pairwise

Fig 12. Supporting evidence of 7 clusters for the US arrests data based on view with 3 principal components.

https://doi.org/10.1371/journal.pone.0255174.g012
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distance between different clusters, or the maximal pairwise distance, or perhaps more reason-

ably the average pairwise distance between the clusters. To see this explicitly, if the number of

current clusters is k, we minimize

Xk

j¼1

fdðSj; SsðjÞÞ þ Z1ðsðjÞ ¼ jÞg

over all permutations on {1, . . ., k}. We rely on the distance d as being the distance between

centroids of the clusters (Sj). We coud equally consider an alternative when the computing of

the centroid is problematic due to a non–Euclidean space. For example, we could use a dis-

tance from hierarchical algorithms, such as

dðSj; SlÞ ¼ mini2Sj;i02Slfdðxi; xi0 Þg:

Other popular distances include the avarage distance between the two clusters; i.e.

dðSj; SlÞ ¼

P
i2Sj; i02Sl

dðxi; xi0 Þ

jSjj jSlj
;

and the maximum distance,

dðSj; SlÞ ¼ maxi2Sj;i02Slfdðxi; xi0 Þg:

Such algorithms would clearly be accelerating the standard hierarchical clustering algorithm,

allowing for more mergers of clusters than one per iteration. We could also consider adapting

the η to be cluster specifi; i.e. we minimize

Xk

j¼1

fdðSj; SsðjÞÞ þ uðSjÞ1ðsðjÞ ¼ jÞg

where u(S) is given by (4) if |S|> 1 and is η if |S| = 1.

In future work we will look at further examples in non–Euclidean spaces, such as spaces of

phylogenetic trees; see [28], for example.
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