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Background: Previous observational studies have shown that circulating selenium levels
are inversely associated with ischemic stroke (IS). Our aims were to evaluate the causal
links between selenium levels and IS, and its subtypes by Mendelian randomization (MR)
analysis.

Methods: We used the two-sample Mendelian randomization (MR) method to determine
whether the circulating selenium levels are causally associated with the risk of stroke. We
extracted the genetic variants (SNPs) associated with blood and toenail selenium levels
from a large genome-wide association study (GWAS) meta-analysis. Inverse variance-
weighted (IVW) method was used as the determinant of the causal effects of exposures on
outcomes.

Results: A total of 4 SNPs (rs921943, rs6859667, rs6586282, and rs1789953)
significantly associated with selenium levels were obtained. The results indicated no
causal effects of selenium levels on ischemic stroke by MR analysis (OR = 0.968, 95%
CI 0.914–1.026, p = 0.269). Meanwhile, there was no evidence of a causal link between
circulating selenium levels and subtypes of IS.

Conclusion: The MR study indicated no evidence to support the causal links between
genetically predicted selenium levels and IS. Our results also did not support the use of
selenium supplementation for IS prevention at the genetic level.
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INTRODUCTION

Ischemic stroke (IS) is one of the leading causes of death worldwide and a major cause of
serious long-term disability (Campbell et al., 2019). Although IS mortality has been declining
globally over the past 2 decades, the number of IS incidents, IS survivors, IS-related deaths, and
overall disability-adjusted life years (DALY) lost remains significant and increases year by year
(Krishnamurthi et al., 2013). Therefore, early identification of the subjects with a high risk of
developing or relapsing IS is of great importance. In addition, the benefit of effective
medication for IS (i.e., alteplase) is time-dependent, which limits the wide application of
alteplase practice (Phipps and Cronin, 2020). The major challenge of developing new anti-
stroke drugs is the presence of the blood–brain barrier and blood circulation gaps, as well as the
complexity of signal transduction processes and inflammatory response (Amani et al., 2017;
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Saxton and Sabatini, 2017). Moreover, fast metabolization
clearance from blood circulation and poor transport across
the blood–brain barrier hinder the efficacy of most central
venous system medications (Amani et al., 2017; Amani et al.,
2019). All in all, further investigation of risk factors of IS and
targeted therapy strategies is warranted.

The major modifiable risk factors of IS include hypertension,
diabetes mellitus, hyperlipidemia, and smoking (Go et al., 2014;
Feigin et al., 2016). In addition, some trace elements, particularly
essential trace elements, have been reported to be associated with
IS (Zecca et al., 2004; Scheiber et al., 2014). Selenium is one of the
essential trace elements involved in human physiological
processes, metabolism, antioxidant defense, immune
regulation, and so on (Burk et al., 2014). The main functions
of selenoproteins, the main functional form of selenium, in the
neural cells are modulation of neurogenesis, regulation of Ca2+

channels, and maintenance of the redox balance (Cardoso et al.,
2015). Reported in vitro studies show that selenium protects
mitochondrial functional performance, stimulates mitochondrial
biogenesis, and reduces infarct volume after focal cerebral
ischemia, through an autophagy-dependent mechanism
(Mehta et al., 2012).

Evidence from observational studies indicated that circulating
selenium levels were inversely correlated with certain
cardiovascular outcomes with a possible U-shaped association,
and beneficial effects against IS were found in IS patients as well
(Flores-Mateo et al., 2006; Stranges et al., 2010; Rees et al., 2013).
However, results from clinical trials were controversial.
Specifically, reports of the Selenium and Vitamin E Cancer
Prevention Trial (SELECT) and Nutritional Prevention of
Cancer Trial (NPC) found no beneficial effects on the
incidence and mortality of coronary heart disease and stroke
(Stranges et al., 2006; Lippman et al., 2009). In addition, results
from a population-based survey revealed that blood selenium
concentration might be inversely associated with the prevalence
of stroke, and the relationship was non-linear (Hu et al., 2019).
However, due to selection bias and reverse causation, the
association between selenium levels and the risk of IS may be
overestimated. In addition, whether selenium had different
impacts on IS subtypes remains unclear. Mendelian
randomization (MR), which uses genetic variants as
instrumental variables, is a powerful method for inferring
causal links between exposures and outcomes. MR analysis
uses genetic variants associated with the selenium levels, as the

FIGURE 1 |Main assumptions of the Mendelian randomization study of selenium levels and ischemic stroke. IS, ischemic stroke; LVS, large-vessel atherosclerosis
stroke; CES, cardio-embolic stroke; SVS, small-vessel occlusion stroke.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7826912

Fang et al. Selenium and Ischemic Stroke

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 2 |Mendelian randomization analysis of the causal effects of selenium levels on ischemic stroke. A total of 4 SNPs significantly associated with selenium
levels were obtained. MR, Mendelian randomization; IS, ischemic stroke; SNP, single-nucleotide polymorphism; OR, odds ratio; CI, confidential interval; IVW, inverse
variance-weighted; RAPS, robust adjusted profile score; BWMR, Bayesian weighted Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy
residual sum and outlier; MR-LASSO, Mendelian randomization least absolute shrinkage and selection operator; LVS, large-vessel atherosclerosis stroke; CES,
cardio-embolic stroke; SVS, small-vessel occlusion stroke.
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random allocation in randomized controlled trials, to determine
the causal effect of the selenium levels on IS, and vice versa
(Davies et al., 2018). Since the genes are randomly allocated at
conception, genetically predicted selenium levels are not
associated with any potential confounders. In addition,
random allocation at birth can also avoid the bias caused by
reverse causation, as other factors, like disease status cannot affect
the genes (Davies et al., 2018). MR analysis was established by
three main assumptions (Emdin et al., 2017). First, instrumental
variables were significantly associated with the exposure. Next, no
links between instrumental variables and confounders were
identified. Last, the impact of instrumental variables on
outcome was only via exposure (Figure 1). Therefore, MR
analysis could overcome the limitations of observational
studies and provide insights into the association between
selenium and IS. And our aims were to evaluate the causal
links between selenium levels and IS and their subtypes by
MR analysis.

MATERIALS AND METHODS

Data Sources
The genetic variants associated with selenium levels were
obtained from a large genome-wide association study (GWAS)
meta-analysis of blood selenium (n = 5,477) and toenail selenium
(n = 4,162) levels in people of European ancestry (Evans et al.,
2013; Cornelis et al., 2015). The genetic variants associated with
IS were obtained from a large GWAS by the MEGASTROKE
consortium with 34,217 cases and 406,111 controls (Malik et al.,
2018). Based on the Trial of ORG 10172 in Acute Stroke
Treatment (TOAST) classification, all IS cases could be further
divided into large-vessel atherosclerosis stroke (LVS, n = 4,373),
cardio-embolic stroke (CES, n = 7,193), and small-vessel
occlusion stroke (SVS, n = 5,386) (Adams et al., 1993; Malik
et al., 2018). To perform bidirectional MR analysis, the GWAS of
the blood selenium level was used as the outcome dataset (Evans
et al., 2013).

Sample overlap was calculated in percentages by dividing the
number of participants in the GWAS of selenium levels by the
number of participants in the respective cohorts in the GWAS of
IS and its subtypes (Evans et al., 2013; Cornelis et al., 2015;
Malik et al., 2018). An acceptable level of population overlaps
between selenium and IS and its subtypes GWAS datasets was
0.22–0.63%.

Selection Criteria of Genetic Variants
We selected genetic variants associated with selenium levels,
IS of all causes, LAS, CES, and SVS at genome-wide
significance (p < 5 × 10−8) as instrumental variables. Then
linkage disequilibrium was tested among the preliminarily
selected single-nucleotide polymorphisms (SNPs), and those
with r2 > 0.01 in the 1000 Genome Project of Europeans were
excluded. The proportion of variance (R2) in the selenium
levels explained by the selected genetic variants was
calculated using the following formula: R2 = 2 × β2 × (1-
EAF) × EAF, where β represents the estimated effect of the

genetic variant and EAF represents the effect allele frequency
(Palmer et al., 2012). In addition, F-statistic was calculated
using the following formula: F = R2 × (N-k-1)/k (1-R2), where
R2 represents the proportion of variance explained by the
genetic variants, N represents the sample size, and k
represents the number of included SNPs (Palmer et al.,
2012). The SNPs with an F-statistic <10 were considered
weak instruments and were excluded from the MR analysis
(Burgess et al., 2011).

Then, the corresponding genetic variants were obtained from
the dataset of outcomes (IS or selenium). If selenium-associated
SNPs were not available in the outcome datasets, then a proxy
SNP in linkage disequilibrium (r2 > 0.9) was searched online
(https://ldlink.nci.nih.gov/) as replacement and used in the
further analysis.

All genetic variants were searched in the PhenoScanner V2
database to assess whether those variants were significantly
associated with the risk factors for IS and its subtypes (Kamat
et al., 2019).

Statistical Analysis
All analyses were conducted by R software (version 4.0.3)
with R packages TwoSampleMR, MRPRESSO, and
MendelianRandomization (Yavorska and Burgess, 2017;
Hemani et al., 2018; Verbanck et al., 2018). The estimated
effect for blood and toenail selenium levels was presented as
Z-score units per effect allele (Evans et al., 2013; Cornelis
et al., 2015). Therefore, the Z-score was converted to β and
standard error values by the formulas described previously
(Kho et al., 2019). The inverse variance-weighted (IVW)
method was used as the determinants of the causal effects
of exposures on outcomes (Hemani et al., 2018). We also
performed MR-Egger, simple median, weighted median,
simple mode, weighted mode, robust adjusted profile score
(RAPS), Bayesian weighted Mendelian randomization
(BWMR), Mendelian randomization pleiotropy residual
sum and outlier (MR-PRESSO), and Mendelian
randomization least absolute shrinkage and selection
operator (MR-LASSO) methods (Bowden et al., 2015;
Bowden et al., 2016; Hartwig et al., 2017; Verbanck et al.,
2018; Zhao et al., 2020). Sensitivity tests including the
heterogeneity test (Cochrane’s Q test), pleiotropy test
(MR-Egger intercept test), and leave-one-out test were
performed (Bowden et al., 2015). Bonferroni correction
(corrected p = 0.05/X/Y, where X represents the number of
exposures and Y represents the number of outcomes) was
used for multiple comparisons.

Power Calculation for Bidirectional
Mendelian Randomization Analyses
Statistical power for the bidirectional MR analyses was
calculated by mRnd (Brion et al., 2013). The minimum
effect estimates of selenium levels required to achieve a
power of 80% based on the sample size of the outcome
datasets and the R2 by the IVs were calculated and is given
in Supplementary Table S1.
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RESULTS

The Causal Effects of Selenium Levels on
Ischemic Stroke
A total of 4 SNPs (rs921943, rs6859667, rs6586282, and
rs1789953) significantly associated with selenium levels were
obtained (Table 1). The 4 SNPs explained 5.9% of the variance
in the selenium levels, and the corresponding F-statistic was
about 151.8. Then, we used PhenoScanner V2 to find whether
horizontal pleiotropy existed in the 4 SNPs (Kamat et al., 2019).
We found that rs6586282 was significantly associated with
plasma homocysteine levels, and rs921943 was associated
with height. In MR analysis, the IVW method indicated no
causal effects of selenium levels on IS of all causes (OR = 0.968,
95% CI 0.914–1.026, p = 0.269), LVS (OR = 1.015, 95% CI
0.881–1.170, p = 0.835), CES (OR = 1.031, 95% CI 0.922–1.154,
p = 0.591), and SVS (OR = 0.984, 95% CI 0.861–1.124, p = 0.811)
(Supplementary Table S2 and Figure 2). Heterogeneity tests
indicated no heterogeneities of the genetic variants for IS of all
causes (p = 0.626), LVS (p = 0.472), CES (p = 0.259), and SVS

(p = 0.293) (Supplementary Table S3), and pleiotropy tests
indicated no pleiotropy of the genetic variants for IS of all causes
(p = 0.896), LVS (p = 0.874), CES (p = 0.669), and SVS (p =
0.802) (Supplementary Table S3). Leave-one-out analysis
indicated that the results were still powerful and stable even
if they excluded any single SNP (Supplementary Figure S1).
Likewise, excluding the effect of rs6586282 did not significantly
change the results of MR analysis (Supplementary Figure S1).
Altogether, our results indicated no causal effects of selenium
levels on IS and its subtypes by MR analysis.

The Causal Effects of Ischemic Stroke on
Blood Selenium
To further explore the association between the blood selenium
level and IS and its subtypes, we further performed bidirectional
MR analysis to estimate the causal effects of IS and its subtypes on
blood selenium level. Overall, 9, 4, and 4 SNPs significantly
associated with IS of all causes, LVS, and CES were obtained,
respectively (Supplementary Table S2). No SNPs significantly

TABLE 1 | SNPs significantly associated with selenium levels and included in the MR study.

SNP Nearby
gene

Ch E/O allele EAF N β SE Z-score p-value R2

rs921943 DMGDH 5 T/C 0.29 9,639 0.295 0.022 13.14 1.90 × 10−39 0.0358
rs6859667 HOMER1 5 T/C 0.96 9,639 −0.360 0.052 −6.92 4.40 × 10−12 0.0099
rs6586282 CBS 21 T/C 0.17 9,639 −0.160 0.027 −5.89 3.96 × 10−9 0.0072
rs1789953 CBS 21 T/C 0.14 9,639 0.162 0.029 5.52 3.40 × 10−8 0.0063

SNP, single-nucleotide polymorphism; MR, Mendelian randomization; Ch, chromosome; SE, standardized error; E/O, effect or other; EAF, effect allele frequency.

TABLE 2 | MR results of the effect of IS and its subtypes on selenium levels.

SNP Nearby Gene Ch. E/O Allele EAF N Exposure Outcomea

β SE p β SE p

IS of all causes
rs2758612b PMF1-BGLAP 1 T/C 0.645 440,328 0.065 0.011 3.68 × 10−9 NA NA NA
rs34311906b ANK2 4 C/T 0.402 440,328 0.065 0.011 1.07 × 10−8 NA NA NA
rs2634074b RP11-119H12.3 4 T/A 0.212 440,328 0.094 0.012 5.90 × 10−15 0.018 0.037 0.620
rs2066864 FGG 4 A/G 0.245 440,328 0.063 0.012 3.51 × 10−8 0.036 0.034 0.296
rs11242678 RP11-157J24.2 6 T/C 0.255 440,328 0.072 0.011 2.70 × 10−10 0.031 0.034 0.358
rs2107595 HDAC9 7 A/G 0.167 440,328 0.088 0.013 2.33 × 10−11 −0.034 0.041 0.412
rs473238 WTAPP1 11 T/C 0.133 440,328 0.083 0.015 1.65 × 10−8 0.057 0.046 0.215
rs3184504 SH2B3 12 T/C 0.472 440,328 0.078 0.010 1.23 × 10−14 −0.002 0.029 0.957
rs4942561 LRCH1 13 T/G 0.759 440,328 0.066 0.012 1.77 × 10−8 −0.039 0.033 0.247
LVS
rs7610618b SIAH2 3 T/C 0.013 150,765 0.845 0.149 1.44 × 10−8 NA NA NA
rs2107595 HDAC9 7 A/G 0.168 150,765 0.236 0.032 1.44 × 10−13 −0.034 0.041 0.412
rs10820405 LINC01492 9 G/A 0.815 150,765 0.181 0.033 4.51 × 10−8 −0.083 0.038 0.027
rs476762b MMP3 11 A/T 0.133 150,765 0.201 0.035 1.22 × 10−8 −0.056 0.043 0.189
CES
rs146390073b RGS7 1 T/C 0.022 211,763 0.669 0.120 2.20 × 10−8 NA NA NA
rs2466455 RP11-119H12.3 4 T/C 0.783 211,763 −0.299 0.022 2.75 × 10−41 0.018 0.037 0.626
rs6838973 RP11-119H12.3 4 T/C 0.434 211,763 −0.108 0.020 3.58 × 10−8 −0.014 0.029 0.628
rs12932445 ZFHX3 16 C/T 0.181 211,763 0.176 0.025 6.88 × 10−13 −0.017 0.044 0.696

CES, cardio-embolic stroke; Ch, chromosome; E/O, effect/other; EAF, effect allele frequency; IS, ischemic stroke; LVS, large vessel atherosclerosis stroke; MR, mendelian randomization;
NA, not applicable; SE, standard error; SNP, single nucleotide polymorphism.
arepresented blood selenium level here.
bnot included in the MR analysis.
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associated with SVS were identified. After testing for linkage
disequilibrium, 7, 2, and 3 SNPs significantly associated with IS
of all causes, LVS, and CES remained, respectively (Table 2;
Supplementary Tables S2–S4). By using the IVWmethod, our

results indicated no causal effects of IS of all causes (OR =
0.920, 95% CI 0.622–1.360, p = 0.674), LVS (OR = 1.105, 95%
CI 0.620–1.976, p = 0.732), and CES (OR = 0.962, 95% CI
0.787–1.176, p = 0.706) on the blood selenium level
(Supplementary Tables S2–S4 and Figure 3). Sensitivity
analysis indicated heterogeneities in the analysis of LVS
(p = 0.027) and blood selenium level (Table 3). No
heterogeneities were identified in the analysis of IS of all
cause (p = 0.352) or CES (p = 0.692) (Table 3). The
pleiotropy test indicated no pleiotropy (IS of all causes: p =
0.404; CES: p = 0.672) among the genetic variants (Table 3).
Leave-one-out analysis indicated that the results of our
analysis were powerful (Supplementary Figure S2).
Altogether, our results indicated no causal effects of IS and
its subtypes on the blood selenium level by MR analysis.

FIGURE 3 |Mendelian randomization analysis of the causal effects of ischemic stroke on blood selenium levels. A total of 6, 2, and 3 SNPs significantly associated
with IS of all causes, LVS, and CES were obtained in the reverse Mendelian randomization analysis. MR, Mendelian randomization; IS, ischemic stroke; SNP, single-
nucleotide polymorphism; OR, odds ratio; CI, confidential interval; IVW, inverse variance-weighted; RAPS, robust adjusted profile score; BWMR, Bayesian weighted
Mendelian randomization; MR-PRESSO, Mendelian randomization pleiotropy residual sum and outlier; MR-LASSO, Mendelian randomization least absolute
shrinkage and selection operator; LVS, large-vessel atherosclerosis stroke; CES, cardio-embolic stroke; SVS, small-vessel occlusion stroke.

TABLE 3 | Sensitivity analysis of ischemic stroke and selenium levels.

Pleiotropy Heterogeneity

Intercept p-value Q p-value

Exposures
IS of all causes 0.124 0.404 4.426 0.352
LVS − − 4.887a 0.027
CES 0.027 0.672 0.157 0.692

IS, ischemic stroke; LVS, large vessel atherosclerosis stroke; CE, cardio-embolic stroke.
aby inverse variance weighted method.
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DISCUSSION

By bidirectional MR analysis based on the summarized data of the
GWAS, we found that neither selenium levels were causally
associated with IS and its subtypes nor IS and its subtypes
were causally associated with selenium levels. The results of
our analysis were robust with multiple statistical methods,
such as heterogeneity test, pleiotropy test, and leave-one-out
analysis.

To our knowledge, the present study is the first study to
investigate the causal links between selenium levels and IS and its
subtypes by using the bidirectional MR method. Previously, the
association between selenium levels and IS was controversial and
not well investigated. Prior studies have revealed the potential
protective role of selenium in cardiovascular disease. In a
case–control study with more than 1,000 Chinese subjects,
lower concentrations of selenium were associated with a
higher risk of IS (Wen et al., 2019). The inverse association
between selenium levels and prevalence of IS was also observed in
American subjects (Hu et al., 2019). Nevertheless, Wu et al.
(2021) revealed no association between baseline serum
selenium levels and stroke in a cohort study (Wei et al., 2004).
In a meta-analysis including 12 observational studies, circulating
selenium levels were inversely associated with the risk of stroke
(Ding and Zhang, 2021). However, in a subgroup analysis, the
negative association of selenium levels and stroke was confirmed
in the retrospective study group, but not in the prospective study
group (Ding and Zhang, 2021). Therefore, the association
between selenium levels and IS was controversial and not well
investigated. Studies which demonstrated the association between
selenium levels and IS with different etiologies were rare.
Mironczuk et al. (2021) reported a higher copper-to-selenium
ratio in CES patients but a relatively low copper-to-selenium ratio
in SVS patients.

The association between selenium levels and stroke is
complicated. Selenium is an essential trace element of the
human body and shows antioxidant activity by scavenging free
radicals (Fang et al., 2002). In the rodent IS model, pretreatment
of selenium had significant protective effects on the activity of
catalase, superoxide dismutase, and glutathione peroxidase
(Ansari et al., 2004). In addition, selenium pretreatment
significantly improved hypoxia/ischemia-induced neuron death
and reduced infarction volume by alleviating oxidative stress and
maintaining mitochondrial function (Mehta et al., 2012).
However, the beneficial effect of selenium could be attenuated
or even eliminated because of the increasing inflammation and
oxidative stress caused by stroke (Ding and Zhang, 2021).
Moreover, excess blood selenium concentration (130–150 μg/L)
might be associated with minimal mortality (Rayman, 2012).

Gender differences could be a reason for the null finding. Hu
et al. (2021) reported a negative association between selenium
levels and the first stroke in males but not in females. Different
sources (plasma, whole blood, diet, and environment) of selenium
used in different studies could be another reason for the null
finding and the discrepancy between the present and previous
studies (Hu et al., 2017; Merrill et al., 2017; Hu et al., 2019; Wen
et al., 2019; Xiao et al., 2019; Hu et al., 2021). Then, regarding the

effect of IS on selenium levels, lower selenium levels were
observed among acute IS patients in a retrospective study
(Angelova et al., 2008). But our analysis provided no evidence
of causal effects of IS on selenium levels. Wu et al. (2021) reported
genetically predicted selenium levels were negatively causally
associated with total cholesterol and low-density lipoprotein
cholesterol, which were risk factors for IS (Diener and
Hankey, 2020). Furthermore, selenium was reported to be
positively correlated with systemic arterial function (Chan
et al., 2012). Because previous studies reported non-linear
association (including J-shaped and U-shaped) between
selenium levels and stroke, the links between selenium levels
and IS are rather complicated and still need further investigation
(Bleys et al., 2008; Hu et al., 2017; Hu et al., 2019; Hu et al., 2021).

Given the antioxidant activity of selenium and selenoproteins,
selenium supplementation was proposed as a potential strategy
for the prevention of multiple disorders, like IS, osteoarthritis,
rheumatoid arthritis, hypothyroidism, and prostate cancer
(Sanmartin et al., 2011). Regarding stroke, selenium
supplementation directly into the brain induced the expression
of antioxidant glutathione peroxidase 4, which further inhibited
the ferroptosis of neurons in a brain hemorrhage model (Alim
et al., 2019). In a clinical trial of 29,584 Chinese people, the group
receiving selenium supplements for a period of 5 years had a
reduction in stroke mortality (9%), but no statistical significance
was identified (Mark et al., 1998). Through a secondary analysis
of the Nutritional Prevention of Cancer Trial, Stranges et al
demonstrated no beneficial effect of selenium supplementation
on stroke or cardiovascular disease incidence (Stranges et al.,
2006). By bidirectional MR analysis, our results did not support
the effectiveness of selenium supplementation in the prevention
of IS and its subtypes at the genetic level. Given the impact of
selenium levels on blood lipids and arterial function (Chan et al.,
2012; Wu et al., 2021), the efficacy of selenium supplementation
in subjects with hyperlipidemia or atherosclerotic lesions needed
further investigation.

There were some limitations to our study. First, only subjects
with European ancestry were included in the MR analysis. The
prevalence and incidence of IS vary with ethnicity and so do the
proportions of the subtypes of IS (Kim and Kim, 2014). Studies
of Western populations indicated CES was the most common
subtype of IS, while studies in Asian countries reported a higher
prevalence of LVS than CES (Kolominsky-Rabas et al., 2001;
Tsai et al., 2013). And the ethnicity differences among the SNPs
associated with selenium levels also exist (Supplementary Table
S5). Therefore, the results of this study needed further validation
in Asian or African people. Second, despite including the genetic
variants significantly associated with selenium levels from the
largest GWAS of selenium levels, only 4 SNPs were finally
included in MR analysis. While the 4 SNPs explained
approximately 5.9% of the variance of selenium levels and
the F-statistic of each SNP was more than 10. Therefore,
more genetic variants associated with selenium levels, both
blood and toenail selenium levels, need to be identified in the
future. Third, pleiotropy, which is inevitable in MR analysis,
may overestimate the effect of the exposure on the outcome. To
eliminate the impact of pleiotropy as much as possible, we
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sought to identify potential pleiotropic SNPs before the MR
analysis. By PhenoScanner, we found one SNP significantly
associated with homocysteine. In addition, we performed a
pleiotropy test by MR-Egger intercept, and no pleiotropy was
found in the present study. Fourth, regarding outcome datasets
of selenium levels, only blood selenium levels were used in the MR
analysis. So, the causal effects of IS and its subtypes on toenail
selenium levels are still unclear. Last, although our analysis
suggested no effectiveness of selenium supplementation for
patients with IS at the genetic level, large randomized controlled
trials are needed to investigate the efficacy and safety of selenium
supplementation for IS patients.

CONCLUSION

In conclusion, our bidirectional MR study provides no evidence
to support the causal links between genetically predicted selenium
levels and IS. Our results also did not support the use of selenium
supplementation for IS prevention at the genetic level. Clinical
trials with high quality and large sample size are warranted to
further elucidate the underlying association between selenium
levels and IS and the clinical benefit of selenium supplementation
for the prevention of IS.
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