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Abstract: Equipping an unmanned aerial vehicle (UAV) with a mobile edge computing (MEC) server
is an interesting technique for assisting terminal devices (TDs) to complete their delay sensitive
computing tasks. In this paper, we investigate a UAV-assisted MEC network with air–ground
cooperation, where both UAV and ground access point (GAP) have a direct link with TDs and
undertake computing tasks cooperatively. We set out to minimize the maximum delay among TDs
by optimizing the resource allocation of the system and by three-dimensional (3D) deployment of
UAVs. Specifically, we propose an iterative algorithm by jointly optimizing UAV–TD association,
UAV horizontal location, UAV vertical location, bandwidth allocation, and task split ratio. However,
the overall optimization problem will be a mixed-integer nonlinear programming (MINLP) problem,
which is hard to deal with. Thus, we adopt successive convex approximation (SCA) and block
coordinate descent (BCD) methods to obtain a solution. The simulation results have shown that our
proposed algorithm is efficient and has a great performance compared to other benchmark schemes.

Keywords: mobile edge computing; UAV communication; resource allocation; 3D deployment;
air-ground cooperation

1. Introduction

In recent years, with the development of the Internet of Things (IoT) and small mobile
devices, more and more applications are employed in daily life, such as face recognition,
automatic navigation, video processing, and unmanned driving [1–4]. On the one hand,
these applications are significantly improving our quality of experience (QoE). On the other
hand, they are usually computation intensive and delay sensitive, which presents a great
challenge for the independent terminal device (TD) in dealing with large amounts of data
in a short time with limited computing capability and battery energy [5–7]. To solve this
problem, a promising mobile edge computing (MEC) solution has been proposed which
services terminal devices such as cloud computing with its ample computing resources.
Unlike traditional cloud computing, the MEC server overcomes the difficulty presented
by the fact of cloud computing servers being distant from the TDs, by being located at the
infrastructure-based edge of wireless networks in proximity to TDs [8]. By offloading some
or all computation-intensive tasks to the MEC server, the quality of computation can be
significantly improved.

There has been much research on the already mature traditional MEC system. How-
ever, MEC systems with a ground access point (GAP) have some limitations. Firstly, with
the number of TDs increasing dramatically, the density of TDs is more concentrated, which
may cause blocks in the offloading task and overload the MEC server. Secondly, each
ground access point has a certain coverage in complex environments defined by the ob-
structions of tall buildings and trees, so some TDs will be located outside of coverage and
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unable to receive MEC service. Thirdly, the fixed position of GAPs is unsuitable given the
mobility of TDs. These prominent weaknesses of a traditional ground access point force
researchers to seek a useful tool to improve the computing capacity of MEC systems, such
as unmanned aerial vehicles (UAVs) (See Figure 1).

Figure 1. Related works on UAV-assisted MEC systems. The references are in order from top to
bottom: [9–19].

As a flexible air platform with high mobility, UAVs provide a better communication
link for users and are widely used in wireless communication systems, disaster detection,
and agriculture investigation. Furthermore, a UAV equipped with a computing server can
be applied in a MEC system as an air access point. Compared with traditional ground
access points, it can greatly shorten the offloading time and be deployed more easily. In [9],
the authors minimized the total time required for the UAVs to complete the computing
tasks of users without calculation capability by joint association of TDs and UAVs and
3D deployment of UAVs. Also focused on the delay topic, the authors in [10] aimed
to minimize task completion time by scheduling, computation resource allocation, and
UAVs’ trajectories, with discussion of two offloading strategies. The authors in [11] studied
the weighted-sum energy consumption problem in a UAV-assisted MEC system by joint
task offloading and local computing design. In [12], the authors minimized the total
energy consumption of the NOMA-based MEC networks underlaying the UAV with time,
computation capacity, and UAV trajectory. The work in [13] aimed to minimize the energy
consumption of terminal devices and UAVs by joint optimizing device association, task
assignment and computing resource allocation.

The aforementioned research [9–13] investigating MEC systems only considered UAV
servers. It is notable that UAVs have better offloading links but are poor in computing with
limited computing resources compared to GAPs. Thus, to further improve the performance
of MEC systems, more and more papers have investigated the cooperation between GAPs
and UAVs. One cooperation scenario features a UAV acting as relay to deliver the com-
puting task from TDs to GAP. The authors in [14] minimized a cost function around both
energy consumption and system delay in a ground-based Internet of Things (IoT) system,
using a UAV as relay. The authors in [15] investigated a UAV-relaying-assisted MEC system
to minimize the weighted sum of transmission and hovering energy consumptions. In [16],
the authors aimed to minimize the task completion delay in a UAV-relaying-assisted MEC
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system, where the UAV not only acted as a MEC server to complete part of a computing
task, but also as relay to deliver the rest of the task to a GAP for execution.

Meanwhile, it is noted that some TDs located close to a GAP can also offload tasks
effectively without a UAV relay. Thus, there is another scenario for air–ground cooperation,
i.e., both GAP and UAV directly linked to TDs independently, with GAPs mainly servicing
the TDs near it and UAVs servicing the TDs far from the GAP. In [17], subject to binary
offloading strategy, the authors minimized the total energy consumption of UEs by jointly
optimizing uplink power control, channel allocation, and computation capacity allocation.
With a more effective partial offloading strategy, the authors in [18] aimed to minimize the
maximum delay of TDs by designing a cooperative sky-ground mobile edge computing
system, which has a significantly better performance compared to an only UAV-assisted
MEC system and ground-only MEC system. In [19], the authors proposed a weighted
computation efficiency maximization framework for MEC systems by jointly optimizing the
computation resource scheduling, bandwidth allocation, and UAV’s trajectory, where the
benefits of the proposal are more prominent when handling computation intensive latency-
critical tasks. However, [18,19] are only considered the case of one UAV and investigate
the condition that each time slot only services one TD with TDMA. Furthermore, the
fixed height restriction of the UAV limited its excellent performance, and simple channel
condition assumptions made its results inaccurate.

Motivated by previous works, in this paper, based on the ground MEC system, we
introduce UAVs as air access point to form a novel UAV-assisted MEC system with air–
ground cooperation, where UAVs and GAPs undertake computing task cooperatively.
Specifically, we aim to consistently minimize the maximum delay among TDs. To this end,
we proposed an iterative algorithm by jointly optimizing UAV–TD association, UAV hori-
zontal location, UAV vertical location, bandwidth allocation, and task split ratio. Several
advantages can be obtained by such design. First, with the introduction and deployment
design of UAVs, the service coverage and quality of a MEC system is greatly expanded.
Second, by resource allocation such as the association between TDs and UAVs, task split
radio and bandwidth allocation, a tradeoff of delay among different TDs is achieved.

The major contributions of the paper are shown as follows:

• To the best of our knowledge, our paper is the first to propose the novel framework of
a UAV-assisted MEC system with air–ground cooperation, where UAVs and GAPs
undertake computing tasks cooperatively. For further practicality, we discard the
usual simplified line-of-sight (LoS) links and adopt a more accurate probabilistic
channel [20], which is obtained by simulation and data regression methods.

• Our goal is to minimize the maximum delay among TDs. To this end, we propose
an iterative algorithm by jointly optimizing UAV–TD association, UAV horizontal
location, UAV vertical location, bandwidth allocation, and task split radio.

• To solve this mixed-integer nonlinear programming (MINLP), we adopt successive
convex approximation (SCA) and block coordinate descent (BCD) method. Meanwhile,
the coverage and complexity of the algorithm has been analysed. Besides, simulations
are conducted to test the efficiency of our proposed algorithm and to validate its better
performance compared to other benchmark algorithms.

The rest of this paper is organized as follows: The system model and the problem
formulation for a UAV-assisted MEC system are showed in Section 2. In Section 3, we
propose an efficient iterative algorithm, divide the overall optimization problem into five
subproblems, and then solve them alternately. Section 6 displays our simulation results to
demonstrate the performance of our proposed design. Lastly, in Section 5, we conclude
the paper.

2. System Model And Problem Formulation
2.1. MEC Network Model

In this paper, we consider a newly UAVs-assisted MEC system with air-ground cooper-

ation, where several GAPs and M UAVs with an index setM ∆
= {UAV1,UAV2, . . . ,UAVM}
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offer computing service for K ground TDs K ∆
= {TD1,TD2, . . . ,TDK} cooperatively, as

shown in Figure 2. All the communication nodes (TD, GAP, and UAV) are equipped with
single antennae. It is assumed that each GAP has a limited coverage without overlaps.
Thus, we can divide all the TDs into two types with the locations of GAPs and TDs known
in advance. One type is TD within the coverage of GAPs (ITD). The other type is TD outside
the coverage of GAPs (OTD). The task of ITD can be divided into two parts with a task
splitting ratio, where one part is offloaded to a GAP and the other part is offloaded to a
UAV. The OTD only completes computing tasks by offloading them to a UAV. We set the

number of ITD as N, where index is N ∆
= {TD1,TD2, . . . ,TDN}(N ∈ K). Then, OTD is

denoted by {TDN+1,TDN+2, . . . ,TDK}.

Figure 2. A UAVs-assisted MEC system with air-ground cooperation.

2.2. Channel Model

Without loss of generality, we adopt the 3D cartesian coordinate system to denote the
locations. The locations of TDs are represented by (wk, 0), k ∈ K, where wk = [xk, yk]

T ∈
R2×1 denotes the horizontal location of TDk. Similarly, GAPs’ locations are represented
by (wg, Hg), where wg = [xg, yg]T ∈ R2×1 and Hg denotes the horizontal coordinate
and height of the GAPs. UAVs’ locations are represented by (qm, zm), m ∈ M, where
qm = [xm, ym]T ∈ R2×1 and zm denote the horizontal coordinate and vertical coordinate of
UAVm, respectively.

Then the distance between TDk and its associated GAP and between TDk and UAVm
can be denoted as, respectively,

dk,g =
√

H2
g + ‖wg −wk‖2, ∀k ∈ N (1a)

dk,m =
√

z2
m + ‖qm −wk‖2, ∀k ∈ K, m ∈ M. (1b)

There are two kinds of channels in our system. The channel from TD to GAP is called
the ground channel and the channel from TD to UAV is called the air channel. It is worth
noting that all TDs have an air channel but only ITDs have a ground channel.

For complex environments with obstructions in the form of tall buildings or trees, the
ground channel is modeled using the Rayleigh fading model, where the channel power
gain can be described as

hk,g = β0d−aR
k,g ζk,g, (2)

where β0 denotes the reference channel power when the distance d0 = 1 meter, aR denotes
path loss exponent of Rayleigh channel, ζk,g denotes the Rayleigh fading coefficient subject
to the exponential distribution with unit mean.

In this paper, to allow each TD to access computing service simultaneously and
continuously, frequency division multiple access (FDMA) protocol is adopted in our system,
where each transmission channel occupies a different frequency band without overlapped
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bandwidth to avoid the interference. Then, we can get the transmission rate (bit/s) from
TDk to its associated GAP of ground channel as

rgk = Bg
k log2(1 +

phk,g

N0Bg
k
), (3)

where Bg
k denotes the ground channel bandwidth of TDk, N0 denotes the noise power

spectral density at UAV, p denotes the transmission power of TDk.
With high mobility of UAV, the air channel will appear two different states, LoS

channel state and NLoS channel state, respectively. To describe the feature of channel more
accurately, we introduce a probabilistic LoS channel model which obtained by simulation
and data regression methods [20]. Then, the probability of LoS state between TDk and
UAVm is specifically denoted by

PLoS
k,m = C3 +

C4

1 + e−(C1+C2θk,m)
, (4)

where C3 < 0, C4 > 0, C1 > 0 are the constants about specific environment, and C1 and
C2 are constants with C1 + C2 = 1, θk,m denoting the elevation angle between TDk and
UAVm, i.g.,

θk,m =
180
π

arctan(
Hm

‖qm −wk‖
). (5)

Then the transmission rate of LoS state between TDk and UAVm is denoted by

rLoSk,m = Bu
k log2(1 +

phLoSk,m

ΓN0Bu
k
), (6)

hLoSk,m = β0d−aL
k,m , (7)

where Bu
k is the air channel bandwidth of the TDk, Γ is the signal-to-noise ratio (SNR)

gap between the practical coding method and the theoretical Gaussian signaling, hLoSk,m
represents the channel power gain of LoS channel, aL represents path loss exponent of
LoS channel.

In a practical scenario, the transmitting rate of the LoS state is much greater than
the NLoS state (rLoSk,m � rNLoSk,m ) so that the NLoS state can be omitted [20]. Thus, the
final average transmission rate (bit/s) of the air channel between TDk and UAVm can be
approximately denoted by

Rk,m = PLoS
k,m rLoSk,m + (1− PLoS

k,m )rNLoSk,m

≥ PLoS
k,m rLoSk,m

∆
=
(

C3 +
C4

1 + e−(C1+C2θk,m)

)
Bu

k log2(1 +
phLoSk,m

ΓN0Bu
k
).

(8)

2.3. System Delay Model

Lk = {lk, ck} is denoted as the computing task of TDk, where lk (bit) is the size of task
data and ck (cycles/bit) is the number of CPU cycles required to deal with 1-bit of task
data. Assuming adequate computing resource of the UAV and GAP, f u and f g represent
the computing resource that UAV and GAP distribute to each computing task. Thus, we
can get the computing delay of UAV and GAP as tuk = lkck

f u and tgk = lkck
f g , respectively. It is

assumed that the transmission process and computing process of each task cannot be done
at the same time, i.e., the computing process will not begin until the transmitting process is
completed. Furthermore, the computation result takes much less time than the task input,
thus we omit the time for sending back of the result. Then, the task completion delay of
each TD is composed of transmitting delay and computing delay.
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Specifically, for the air channel, we suppose that each TD can only choose one UAV to
offload the computing task at most, which is denoted by

M

∑
m=1

ak,m ≤ 1, ∀k, (9)

ak,m ∈ {0, 1}, ∀k, m, (10)

where ak,m is a binary variable to denote the association between TDs and UAVs, which
indicates that TDk offload task to UAVm if ak,m = 1; Otherwise, ak,m = 0. Then the delay of
TDk to complete the task by offloading it to UAVm can be described as

Tk,m = ak,m(
xklk
Rk,m

+ xktuk ), ∀k, m, (11)

where xk denotes the task split ratio to UAV of TDk. Then, (1− xk) denotes the task split
ratio to its associated GAP. Furthermore, xk = 1 represents that the entire task is offloaded
to the UAV, conversely xk = 0 denotes that the entire task is offloaded to GAP.

For ground channel, because only ITD has a ground channel the delay can be de-
scribed as

Tg
k =


(
(1−xk)lk

rgk
+ (1− xk)t

g
k

)
, ∀k ∈ N ,

0, ∀k ∈ K, k /∈ N .
(12)

Finally, the total system delay is the maximum delay among TDs, which is repre-
sented by

max{Tg
k , Tk,m, ∀k, m}. (13)

2.4. Problem Formulation

In this paper, with fairness among TDs, our goal is to minimize system delay by finding
five optimal sets A = {ak,m, ∀k, m}, Q = {qm, ∀m}, Z = {zm, ∀m}, B = {Bu

k , Bg
k , ∀k},

X = {xk, ∀k}. Correspondingly, our optimization problem is formulated as follows

(P1) :

min
{A,Q,Z,B,X}

max
{∀k,m}

{Tg
k , Tk,m},

s.t.
M

∑
m=1

ak,m ≤ 1, ∀k, (14a)

ak,m ∈ {0, 1}, ∀k, m, (14b)

Hmin ≤ zm ≤ Hmax, ∀m, (14c)

θk,m =
180
π

arctan(
Hm

‖qm −wk‖
), ∀k, m, (14d)

K

∑
k=1

Bu
k ≤ Bu

max, (14e)

K

∑
k=1

Bg
k ≤ Bg

max, (14f)

0 ≤ xk ≤ 1, ∀k ∈ N , (14g)

xk = 1, ∀k ∈ K, k /∈ N , (14h)

where (14a) and (14b) are the constraints about the association between TDs and UAVs, (14c)
is the constraint of the flying height of UAV, Hmin denotes the minimum height and
Hmax denotes the maximum height, (14d) denotes the constraint of the elevation angle,
(14e) and (14f) denote the constraints of bandwidth, Bu

max and Bg
max denote the maximum
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bandwidth of air channel and ground channel, respectively, (14g) and (14h) denote the
constraint of task split radio.

However, P1 is a typical mixed-integer nonlinear programming (MINLP), which is
challenging to deal with. The reason is following, firstly, (14b) is a integer constraint,
which is difficult to solve, Secondly, Tg

k and Tk,m are not convex expression for Q and
Z. Thirdly, (14d) actually is a non-affine constraint. Finally, the maximum system delay
expression max{Tg

k , Tk,m, ∀k, m} can’t deal with directly.

3. Iterative Algorithm for Problem (P1)

In this section, to solve the difficult problem P1 effectively, we first use an auxiliary
variable ζ to denote the system delay, i.g., ζ = max{Tg

k , Tk,m, ∀k, m}, then problem P1 can
convert to P2 as ((14a)–(14h).)

(P2) : min
{A,Q,Z,B,X}

ζ

s.t. ζ ≥ Tk,m, ∀k, m, (15a)

ζ ≥ Tg
k , ∀k, (15b)

Next we adopt an efficient iterative algorithm to solve the problem P2 based on the
SCA and BCD. Specifically, we decompose the overall MINLP into five sub-problems and
convert the non-convex problem to convex problem by finding the lower bound with Taylor
expansion. Then, to solve these five problems, we use some math process like standard
solution method in [9], traditional optimizing tool CVX, and math analysis of closed-form.

3.1. UAV-TD Association Optimization

By fixing other variables {Q, Z, B, X}, we can express the UAV–TD association opti-
mization problem as (s.t. (14a), (14b), (15a), (15b).)

(P3) : min
{A}

ζ (16)

Because of the constraint of (14b), P3 is a nonconvex problem with integer variable,
which is hard to deal with. To make this problem can be solved easily, we relax the binary
variable ak,m into continuous variable, which is described as

0 ≤ ak,m ≤ 1, ∀k, m. (17)

Then, we can rewrite the optimization problem P3 as (s.t. (14a), (15a), (15b), (17))

(P3.1) : min
{A}

ζ (18)

After relaxing ak,m, we can solve P3.1 efficiently as a typical linear programming (LP)
problem, which can be solved by standard solution method [9]. We should note that ak,m
derived by solving P3.1 may violate the binary constraint due to relaxation. The recovery
method in [21] can be used to get a strict binary solution of ak,m.

3.2. UAV Horizontal Location Optimization

By fixing other variables {A, Z, B, X}, we can express UAV horizontal location opti-
mization problem as (s.t. (14d), (15a), (15b).)

(P4) : min
{Q}

ζ (19)
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Obviously the problem P4 is not a convex problem, because of the nonconvexity of
constraints of (14d), (15a). Firstly, for the non-affine constraint (14d), we can relax it to the
following form without losing the optimal solution to P4.

θk,m ≤
180
π

arctan(
zm

‖qm −wk‖
). (20)

It is noted that (20) is still a nonconvex constraint for qm, but it can be convex for
‖qm −wk‖. As is known to all that any convex function is globally low-bounded by its
first-order Taylor expansion at any point [22]. Thus, we denote vk,m as

vk,m = arctan(
zm

‖qm −wk‖
), (21)

Then, we can get the lower bound vlbk,m as

vk,m ≥ v(r)k,m −Λ(r)
k,m

(
‖qm −wk‖ − ‖q

(r)
m −wk‖

)
∆
= vlbk,m (22)

where

v(r)k,m = arctan(
zm

‖q(r)
m −wk‖

), (23a)

Λ(r)
k,m =

zm

‖q(r)
m −wk‖2 + z2

m

. (23b)

Secondly, for nonconvex constraint (15a), we relax it to

ζ ≥ ak,m(
xklk
sk,m

+ xktuk ), (24)

where
0 ≤ sk,m ≤ Rk,m. (25)

Although (15a) has been relaxed, it still a nonconvex constraint for qm. Denote

X(r)
k,m = 1 + e(−(C1+C2θ

(r)
k,m)), Y(r)

k,m = ‖q(r)
m − wk‖2 + z2

m and γk = pβ0
ΓN0Bu

k
, we can adopt

the SCA method to approximate Rk,m by its lower bound as follows using the first-order
Taylor expansion,

Rk,m ≥ R(r)
k,m −Ω(r)

k,m

(
‖qm −wk‖2 − ‖q(r)

m −wk‖2
)

− Ξ(r)
k,m

(
e(−(C1+C2θk,m)) − e(−(C1+C2θ

(r)
k,m))

)
∆
= Rlb

k,m, ∀k, m,

(26)

where the coefficients Ω(r)
k,m and Ξ(r)

k,m are given by

Ω(r)
k,m = Bu

k

(
C3 +

C4

X(r)
k,m

) γkαL/2

Y(r)
k,m
(
(Y(r)

k,m)
αL/2 + γk

) (27a)

Ξ(r)
k,m = Bu

k
C4(log2(e))

(X(r)
k,m)

2
ln(1 +

γk

(Y(r)
k,m)

αL/2
) (27b)

The proof will be demonstrated in Appendix A.
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Then, we can rewrite the optimization problem P4 as ((15b), (24).)

(P4.1) : min
{Q,Θ}

ζ (28a)

s.t. θk,m ≤
180
π

vlbk,m, ∀k, m, (28b)

0 ≤ sk,m ≤ Rlb
k,m, ∀k, m, (28c)

We can see that P4.1 is convex now for varaible Q. Thus, by the SCA method, we get
the solution of the approximation problem P4.1 which can be solved by CVX.

3.3. UAV Vertical Location Optimization

By fixing other variables {A, Q, B, X}, we can express UAV vertical location optimiza-
tion problem as (s.t. (14c), (14d), (15a), (15b))

(P5) : min
{Z}

ζ (29)

The problem P5 is not a convex problem for Z, because the nonconvexity of constraints
of (14d) and (15a). Firstly, we relax non-affine constraints (14d) to (20). It is notable that
the arctan function is a concave function for Z, but we still need to approximate vk,m by
its upper bound due to the lack of support for the function of arctan in CVX, which is
described as

vk,m ≤ v(r)k,m + Ψ(r)
k,m

(
zm − z(r)m

)
∆
= vupk,m (30)

where

Ψ(r)
k,m =

‖qm −wk‖
‖qm −wk‖2 + (z(r)m )2

(31)

Secondly, for (15a) we must similarly convert by the first-order Taylor expansion for
Rk,m to get its low bound Rld

k,m like (26), thus the process is omitted here. Then, we can
rewrite the optimization problem P5 as ( (14c), (15b) and (24).)

(P5.1) : min
{Z,Θ}

ζ (32a)

s.t. θk,m ≤
180
π

vupk,m, ∀k, m, (32b)

0 ≤ sk,m ≤ Rld
k,m, ∀k, m, (32c)

We can see that P5.1 is convex now for Z, which can be solved by CVX.

3.4. Bandwidth Allocation Optimization

By fixing other variables {A, Q, H, X}, we can express the bandwidth allocation
optimization problem as P6 (s.t. (14e), (14f), (15a), (15b))

(P6) : min
{B}

ζ (33)

P6 is convex optimization problem originally, which can be solved directly by CVX.
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3.5. Task Split Radio Optimization

By fixing other variables {A, Q, H, B}, we can express the task split radio optimization
problem as P7 ((14g), (14h))

(P7) : min
{X}

ζ (34a)

s.t. ζ ≥ ak,m(
xklk
Rk,m

+ xktuk ), ∀k, m (34b)

ζ ≥
( (1− xk)lk

rgk
+ (1− xk)t

g
k
)
, ∀k

It is worth noting that the task split radio optimization aims to balance the delay of air
channel and ground channel only for some ITDs. Thus the optimal task split is obtained by
xk(

lk
Rk

+ tuk ) = (1− xk)
( lk

rgk
+ tgk

)
, where Rk is the offloading rate of the actual selective air

channel after UAV–TD association optimization. Specifically, the overall optimal task split
is given by

x∗k =


0, ∀k ∈ N ,

M
∑

m=1
ak,m = 0,

1/rgk+ck/ f g

1/rgk+ck/ f g+1/Rk+ck/ f u
, ∀k ∈ N ,

M
∑

m=1
ak,m = 1,

1, ∀k ∈ K, k /∈ N

(35)

3.6. Convergence and Complexity Analysis

The overall proposed algorithm is displayed in Algorithm 1. First, we set the initial
value of each variable . Then we get the optimization solution of each variable iteratively
with fixing other variables. Then we obtain the ζ(r) in the r-th round and update r to
r + 1 begin next iteration. Denote η as the preconfigured tolerance parameter. Until the
ζ(r)−ζ(r+1)

ζ(r)
≤ η, the algorithm is over. For a simple analysis, from above iterative algorithm,

we can get
ζ(A(r), Q(r), Z(r), B(r), X(r))

≥ζ(A(r+1), Q(r), Z(r), B(r), X(r))

≥ζ(A(r+1), Q(r+1), Z(r), B(r), X(r))

≥ζ(A(r+1), Q(r+1), Z(r+1), B(r), X(r))

≥ζ(A(r+1), Q(r+1), Z(r+1), B(r+1), X(r))

≥ζ(A(r+1), Q(r+1), Z(r+1), B(r+1), X(r+1))

(36)

Meanwhile, it is easy to discern that a definite lower bound is available. Thus, the
convergence of Algorithm 1 is guaranteed.

The complexity of Algorithm 1 is mainly dedicated by updating of the five variables,
A, Q, Z, B, and X in five subproblems [22–25]. The computational complexity of UAV
horizontal location and UAV vertical location are computed as O

(
(KM)3.5 log 1

η

)
[26],

where η represents the iterative accuracy [27].Then, UAV-TD association, task split ratio
and bandwidth allocation problem are liner optimization originally, where the complexity
can be omitted. Thus, the overall complexity of Algorithm 1 is given as O

(
(KM)3.5 log 1

η

)
.
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Algorithm 1: Iterative algorithm for problem P1

1: Initialization: Set the UAVs’ initial horizontal location Q(0), vertical location Z(0),
task split ratio X(0), bandwidth allocation B(0); Let iteration index r=0.
2: repeat

3: Solve P3 with given {Q(r), Z(r), B(r), X(r)}, use standard solution method [9]
to find the optimal solution as A(r+1).

4: Solve P4 with known {A(r+1), Z(r), B(r), X(r)}, use CVX to find the optimal
solution as Q(r+1).

5: Solve P5 with known {A(r+1), Q(r+1), B(r), X(r)}, use CVX to find the optimal
solution as Z(r+1).

6: Solve P6 with known {A(r+1), Q(r+1), Z(r+1), X(r)}, use CVX to find the optimal
solution as B(r+1).

7: Solve P7 with known {A(r+1), Q(r+1), Z(r+1), B(r+1)}, get closed-form solution of
X(r+1).

8: Update r = r + 1

9: Until: ζ(r)−ζ(r+1)

ζ(r)
≤ η. The Algorithm is over if the fractional decrease of

the objective value is below a threshold.

4. Numerical Results

In this section, numerical results are displayed to evaluate the performance of the pro-
posed algorithm. Consider a MEC system with three GAPs, M = 3 UAVs and K = 50 TDs,
where the numbers of ITD is 20 and the numbers of OTD is 30. TDs are randomly and
uniformly distributed within a 2D interest area of 400× 400 m2 and GAPs are located at the
edge of area. Assume that the size of task data of each TD is same as {lk = 1.6× 106bit, ∀k}.
The number of CPU cycles required to deal with 1-bit of task data {ck = 100, ∀k}. The com-
puting resource of UAV and GAP distribute to each computing task is f u = 5× 108 Hz and
f g = 5× 109 Hz, respectively. The specific environment parameters about the probabilistic
LoS channel are C1 = −0.4568, C2 = 0.047, C3 = −0.63, C4 = 1.63, respectively. The initial
horizontal location of UAVs are around the center of area (200,200). The initial vertical
location of each UAV is {z(0)m = 70, ∀m}. Other system parameters are listed in Table 1.

Table 1. Parameter setting in simulation.

Description Parameter Value

Altitude of GAPs Hg 20 m
Transmit power of TDs p 0.1 w
Minimum Height of UAV Hmin 50 m
Maximum Height of UAV Hmax 100 m
Noise power spectral density N0 −169 dBm
Reference channel power β0 −60 dB
SNR gap Γ 8.2 dB
Accuracy tolerance η 10−4

Path loss exponent(LoS) αL 2.5
Path loss exponent(Rayleigh) αR 3.5
Total bandwidth for UAVs Bu

max 25 MHz
Total bandwidth for each GAP Bg

max 6 MHz

The 2D optimized deployment of UAVs and specific association between TDs and
UAVs are shown in Figure 3, where circle represents TDs, pentagram represents UAVs,
square represents GAPs, dotted line represents GAP’s coverage. It is found that three UAVs
are uniformly distributed among TDs. The corresponding color between TDs and UAVs
denotes the association (e.g., green TDs are associated by the green UAV). It is worth noting
that there are some TDs don’t have the corresponding color with UAV, which means they
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aren’t associated with any UAV and complete the computing task only by GAP. That is
because their locations are very close to GAP so that the offloading rate is large enough.
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Figure 3. 2D deployment of UAVs and association.

Figure 4 shows the 3D optimized deployment of UAVs and the association between
TDs and UAVs. The vertical location of UAVs are 70.1 m, 79.5 m, 73 m, respectively. They
all keep in medium rather than maximum or minimum height. That is because, for the
probabilistic LoS channel, a low fly height will cause a small probability of LoS state.
However, the high fly height will cause a serious path loss. Thus, the medium height finally
achieves a better offloading link.

Figure 4. 3D deployment of UAVs and association.

Figure 5 displays the task split radio of each ITD under different maximum bandwidth
of air channel. It is found that the task split radio of each ITD increases as maximum
bandwidth of UAVs increases. That is because, more available bandwidth of UAVs can
improve the offloading rate of air channel. Thus, ITD prefers to offload more task to UAV
to reduce the task completion delay. Compared with each ITD, we can obtain that the
task split radio of ITD is according to the distance to its associated GAP generally. The
ITD which far from its associated GAP offloads more task to UAV and those close to GAP
offloads less task to UAV.
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Figure 5. Task split radio of each ITD with maximum bandwidth of air channel.

Figure 6 shows the bandwidth allocation of each TD, where the blue bar denotes
the bandwidth of air channel and orange bar denotes the bandwidth of ground channel.
Combined with Figure 5, we can know that some ITDs such as ITD2, ITD3, and ITD4 mainly
offload tasks by air channel but the air channel only occupies a small portion of bandwidth
compared with the ground channel, which causes the air channel to have better offloading
capacity then the ground channel. Meanwhile, we can obtain that the bandwidth mainly
allocated to OTDs, especially for the OTDs far away from UAVs such as TD46, TD48, and
TD49. This is because the OTD only can complete tasks via the air channel thus occupying
more bandwidth.
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Figure 6. Bandwidth allocation of each TD.

To validate the performance of our proposed algorithm, we compare it with four
other benchmarks in Figures 7 and 8; They are, without bandwidth allocation optimization,
i.g., the bandwidth of each TD is equally divided; without task split radio optimization,
i.g., task split radio of each ITD is fixed as xk = 0.6; without vertical location optimization,
i.g., the fly height of each UAV is fixed at 70m; without horizontal location optimization,
i.g., the horizontal location of UAVs are obtained by the method in [13]. It is dividing the
clusters of TDs by using K-means method and then setting the centroid of the clusters as
the horizontal location of UAVs. We can obtain that the system delay of all the algorithms
decreases as the number of UAVs increases in Figure 7. Figure 8 shows system delay under
different number of TDs. Meanwhile, the delay of our proposed algorithm is always kept
at a minimum, which validates its better performance.
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Finally, we show our proposed algorithm convergence versus iteration in Figure 9. It
is found that the system delay decreases with iteration and the algorithm can converge in
about 30 iterations. The quick convergence speed guarantees that our algorithm can be
executed in a short time, and thus is feasible in a practical situation.
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Figure 9. Convergence of proposed algorithm.
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5. Discussion

Unlike in previous works, our paper presents significant novelty for the following
reasons: (1) Channel model: most previous works adopt simple assumption of channel
like LoS and Richan channel. To make results more accurate, we adopt a new probabilistic
channel [20], which is obtained by simulation and data regression methods. (2) Offloading
strategy: previous works mainly adopt a binary offloading strategy. Some works adopt a
more advanced partial offloading strategy, where a TD can offload tasks to GAP and UAV
servers via task splitting. We consider a more comprehensive scenario: According to the
coverage of GAP, the OTD adopts a binary offloading strategy and the ITD adopts a partial
offloading strategy.

Correspondingly, we formulate a novel UAV-assisted MEC system with air–ground
cooperation, where UAVs and GAPs undertake computing tasks cooperatively. All the
TDs get computing service simultaneously and continuously. Thanks to high mobility
and flexibility of UAVs with a MEC server, the performance of the MEC system can be
improved. Specifically, we aim to consistently minimize the maximum delay among TDs.
To this end, we proposed an iterative algorithm by jointly optimizing UAV–TD association,
UAV horizontal location, UAV vertical location, bandwidth allocation, and task split ratio.
However, the overall problem is a MINLP, which is hard to directly deal with.

Compared with other works, we propose a different and effective algorithm by SCA
and BCD to decompose the overall problem into five sub-problems. It is generally difficult
to find the optimal solution for a nonconvex problem. Thus, SCA provides an approximate
and feasible solution of nonconvex problem, which is less complex and has higher conver-
gence speed. BCD is a traditional method to solve multivariable optimization problems. It
decomposes an overall complex problem into separate sub-problems and then solves each
sub-problem alternately and individually. Specifically, UAV–TD association problem is a
nonconvex problem with integer variables, and we use a standard solution method in [9]
to solve it. UAV horizontal location and UAV vertical location problem is also nonconvex
problem, we propose an approximate solution, where the non-convex problem is converted
to a convex problem by finding the lower bound using Taylor expansion. And then we solve
them by the traditional optimization tool CVX. For task split radio problem, we use math
analysis to get the closed-form solution, which can greatly reduce the algorithm complexity.

From the results, we can obtain that our novel MEC system with air–ground coop-
eration is meaningful. First, it is obvious that the high mobility of UAVs strengthens the
coverage of the MEC system compared with the ground-only MEC systems of previous
works. Second, with the location of TDs and GAPs known in advance, the results have
shown many significant and instructive parameters regarding MEC systems in detail, in-
cluding: the association between UAVs and TDs, the deployment of UAVs (horizontal
location and vertical location), bandwidth allocation of each TD, which can guide the MEC
system design in practice. Finally, the results have shown the effectiveness of our proposed
algorithm compared with other benchmark schemes, which proves each optimization
variable is meaningful and important. The results of our novel MEC system can be applied
in many scenarios in real life such as for multiple devices in a wide area requiring facial
recognition or automatic navigation simultaneously and continuously with a low delay.

There are still many interesting research directions that can be executed in our future
work by expanding the results of this paper. Such as (i) The device-to-device (D2D) link of
the OTD; (ii) The energy consumptions of TD and UAV; (iii) Multi-antennas technique of
GAP and UAV; (iv)Reconfigurable intelligence surface (RIS) technique.

(i) D2D technique: D2D link is a direct communication mode between different devices.
In our system model, ITD can offload the task to GAP and UAV server by task split radio but
OTD can only offload the task to the UAVs. However, the computational resource offered
by UAVs is limited, which may not be sufficient for the OTD for the delay-sensitive tasks.
By D2D link, OTD can offload the task to nearby TD. Thus, OTD have more offloading
choice and pressure of UAV is reduced.
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(ii) The energy consumption of TDs and UAVs: In our system model, we aim to
minimize the maximum delay among TDs in a novel multi-UAV assisted MEC system. We
don’t consider the energy consumption of TDs and UAVs, which can also be feasible in some
scenarios which pursue an extremely low delay regardless of energy consumption cost,
such as the works [9,10,18] in our paper. However, there is some research which focuses on
the endurance of both TDs and UAVs, which investigates the minimization of the weighted
sum of transmission and hovering energy consumption. Thus, to improve our system
model applicability, minimizing delay with the constraint of the energy consumption of
UAVs and TDs will be important in future work.

(iii) Multi-antenna technique: We assume all the communication nodes (TD, GAP, and
UAV) are equipped with a single antenna. Because we mainly focus on the analysis of
communication link delay. Single antennae will simplify the analysis process. However a
multi-antenna technique has better performance in terms of energy consumption, signal
transmission and reception, and improving the channel capacity. Some related work
like [15] has adopted a multi-antenna technique in UAV-assisted MEC systems, such a
scenario is worthy of investigation in future work [28].

(iv) RIS technique: RIS is a two-dimensional surface composed of a large number of
passive units arranged mostly in subwavelength inter-element spacing with the property of
manipulating the electromagnetic waves, such as scattering, reflection, and absorption. It
can intelligently reconfigure the wireless communication environment, so as to significantly
improve the performance of wireless communication networks. The combination of RIS
and UAV-assisted MEC system can improve the quality of the communication channel and
strengthens the service coverage.

6. Conclusions

In this paper, we studied a novel framework of MEC networks with air–ground coop-
eration, where several GAPs and UAVs offer service for TDs cooperatively. Considering
TD fairness, a joint optimization problem of UAV–TD association, UAV horizontal location,
UAV vertical location, bandwidth allocation, and task split ratio was formulated. In order
to solve this MINLP, we proposed an alternating iterative algorithm based on successive
convex approximation and the block coordinate descent methods. Finally, the simulation
results validated the effectiveness of the proposed algorithm.
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Appendix A

For any convex function g(x, y), we adopt first-order Taylor expansion with the known
point x0, y0, then we can get

g(x, y) ≥g(x0, y0) + g
′
x(x0, y0)(x− x0)

+ g
′
y(x0, y0)(y− y0)

(A1)
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Then, we set g(x, y) = (C3 +
C4
x ) log2(1 + γ

y ), which is an obviously convex function
when x > 0, y > 0 and constant γ>0, C3>0, C4>0. Thus, we can obtain the form of low
bound as (26).
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