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Abstract

Oscillations in electrical activity are a characteristic feature of many brain networks and display a wide variety of temporal
patterns. A network may express a single oscillation frequency, alternate between two or more distinct frequencies, or
continually express multiple frequencies. In addition, oscillation amplitude may fluctuate over time. The origin of this
complex repertoire of activity remains unclear. Different cortical layers often produce distinct oscillation frequencies. To
investigate whether interactions between different networks could contribute to the variety of oscillation patterns, we
created two model networks, one generating on its own a relatively slow frequency (20 Hz; slow network) and one
generating a fast frequency (32 Hz; fast network). Taking either the slow or the fast network as source network projecting
connections to the other, or target, network, we systematically investigated how type and strength of inter-network
connections affected target network activity. For high inter-network connection strengths, we found that the slow network
was more effective at completely imposing its rhythm on the fast network than the other way around. The strongest
entrainment occurred when excitatory cells of the slow network projected to excitatory or inhibitory cells of the fast
network. The fast network most strongly imposed its rhythm on the slow network when its excitatory cells projected to
excitatory cells of the slow network. Interestingly, for lower inter-network connection strengths, multiple frequencies
coexisted in the target network. Just as observed in rat prefrontal cortex, the target network could express multiple
frequencies at the same time, alternate between two distinct oscillation frequencies, or express a single frequency with
alternating episodes of high and low amplitude. Together, our results suggest that input from other oscillating networks
may markedly alter a network’s frequency spectrum and may partly be responsible for the rich repertoire of temporal
oscillation patterns observed in the brain.
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Introduction

Oscillations in electrical activity are observed in many brain

networks, including the hippocampus [1,2], prefrontal cortex [3]

and visual cortex [4,5], and occur in various frequency bands,

ranging from fast gamma (40–80 Hz) to ultra-slow delta (0.1–

1 Hz) [6,7]. Network oscillations as revealed in extracellular field

recordings are produced by the periodic and synchronized firing of

large number of cells [8,9,10] and arise as a result of interacting

populations of excitatory and inhibitory cells [8,11,12]. Oscilla-

tions have been linked to cognitive functions, such as attention

[13,14,15], temporal binding [4,16,17], learning [6,18], working

memory [19,20,21] and memory consolidation [22].

Ongoing oscillations display a rich repertoire of dynamical

patterns [23]. The same neuronal network can express multiple

oscillation frequencies at the same time [23,24,25], or the

frequency can fluctuate over time, with distinct frequencies

appearing intermittently (Figs. 1a, b) [26]. In addition, the

oscillation amplitude can fluctuate, with episodes of high

amplitude alternating irregularly with episodes of low amplitude

[3,26,27,28]. The origin of these complex oscillation patterns is

unclear, but interactions between cortical layers may contribute.

Different cortical layers often produce distinct oscillation

frequencies. For example, in association cortex, gamma and beta

rhythms are generated in different cortical layers [23]. In the

prefrontal cortex (PFC), layer 3/5 consistently oscillates at a higher

frequency than layer 6 [26]. A similar distribution of oscillation

frequencies occurs in visual cortical areas V1 and V2 [26].

Cortical layers are typically strongly interconnected with each

other [29,30,31], but it remains poorly known how inter-network

connections between oscillatory networks affect oscillation fre-

quency and pattern [32].

Here, we investigated the impact of inter-network connections

on oscillation frequency and pattern, examining whether these

connections could account for complex temporal dynamics, such

as coexistent frequencies and amplitude fluctuations, as observed

in the PFC [26]. Most model studies on interacting oscillatory

networks do not systematically explore inter-network connectivity,

do not consider interactions between networks with different

oscillation frequencies (but see [33]), or use mean field approaches

to describe neural activity (e.g., [34,35,36,37,38]).

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e100899

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0100899&domain=pdf


To investigate how one network can influence the rhythmic

activity in another network, we built two model networks, each

consisting of excitatory and inhibitory cells. One network was

tuned to produce relatively slow oscillations on its own, and the

other one was tuned to generate fast oscillations. We then

systematically explored how adding uni-directional connections

from the slow to the fast network or from the fast to the slow

network affected the oscillatory activity in the fast or the slow

network, respectively. We show that this afferent input can

dramatically change the frequency spectrum in the receiving

network and thereby generate a wide range of complex temporal

patterns of oscillations similar to those observed in the PFC.

Methods

To investigate how one network can influence the rhythmic

activity in another network, we built two model networks in

NEURON [39], each composed of a population of 80 excitatory

(E) cells and a population of 20 inhibitory (I) cells (Fig. 1c). In

general, a network of interconnected E and I cells can generate

rhythmic changes in electrical activity [40]. The E cells activate

the I cells, which in turn suppress the E cells, leading to periodic

states of more or less synchronized spiking activity, both in the E

population and in the I population. The amplitude or power of

this oscillatory activity is determined by the number of synchro-

nously firing cells. The oscillation frequency is determined by the

average time between successive states of synchrony.

By selecting appropriate values for the IPSC decay constant of

the inhibitory GABAA channel [2,26,40] (see section Networks),

we tuned one network to produce relatively slow oscillations (about

20.4 Hz; this network is referred to as the slow network) and the

other one fast oscillations (about 32.4 Hz; this network is referred

to as the fast network). Note that these frequencies are non-

harmonics of each other. They fall well into the range of

frequencies reported for the hippocampus [41,42,43] and PFC

[3,26]. The difference in oscillation frequency is also similar to that

observed between different subnetworks of the PFC [3,26].

In addition to the connections within the slow and the fast

network, one network also projected connections to the other

network. The network that received input connections from the

other network is referred to as the target network; the other

network is called the source network. To keep the number of

different inter-network connectivity schemes manageable, we did

not include reciprocal connections between the two networks. By

analysing the firing dynamics in the target network for a wide

range of connectivity schemes, we investigated whether and how

the source network perturbed the oscillatory activity in the target

network and how this perturbation depended on the strength and

pattern of connections from the target to the source network. The

source code of the model will be made publicly available in the

ModelDB database (http://senselab.med.yale.edu/modeldb).

Cells
Both E and I cells were defined as one-compartment,

conductance-based models, with a length and diameter of

20 mm. They contained the Hodgkin-Huxley Na+ and K+

channels, responsible for action potential generation, as well as

leakage channels. The change in membrane potential V (in mV)

was given by

C
dV

dt
~ICDC{gKn4(V{EK){gNam3h(V{ENa){gL(V{EL)

{gGABA(V{EGABA){gAMPA(V{EAMPA)

where t is time in ms; C~10{6 F/cm2 is the membrane

capacitance; gK~800 pS/mm2 and EK~{100 mV are the

Figure 1. Distinct oscillation frequencies appearing intermittently in time, and schematic representation of model networks. a.
Wavelet of EEG recordings in the frontal zone of the human brain, showing two interspersed, non-harmonic frequencies (17.760.8 Hz and
22.960.8 Hz; white arrows) in the beta range. Color indicates power of oscillations. When one of the frequencies has high power, the other oscillation
frequency is absent or has low power. Adapted from [26] (Fig. 12 therein). b. Intracranial field recordings in the medial prefrontal cortex of awake rats
show similar dynamics. The two main frequencies are 15.860.3 Hz and 2261.7 Hz (white arrows). Adapted from [26] (Fig. 12 therein). c. Schematic
representation of the two model networks, each consisting of a population of excitatory cells (e, E) and a population of inhibitory cells (i, I). The
network generating slow oscillations is labelled with lower case letters, and the network producing fast oscillations is labelled with upper case letters.
In each network, the inhibitory cells projected among each other and to the excitatory cells. Likewise, the excitatory cells projected among each other
and to the inhibitory cells. In addition, both cell types received external input in the form of a constant depolarizing current (CDC). Furthermore, the
cells of one network projected to the cells of the other network (not shown). The different inter-network connectivity schemes studied are shown in
Fig. 2.
doi:10.1371/journal.pone.0100899.g001
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maximal conductance and reversal potential of the K+ channels;

gNa~1000 pS/mm2 and ENa~50 mV are the maximal conduc-

tance and reversal potential of the Na+ channels; and gL~1 pS/

mm2 and EL~{67 mV are the conductance and reversal

potential of the leakage channels. Each cell received synaptic

input from other cells, with gAMPA and EAMPA the synaptic

conductance and reversal potential of the AMPA channels; and

gGABA and EGABA the synaptic conductance and reversal

potential of the GABAA channels (for parameter values, see

section Networks). In addition, each cell was stimulated by an

external input in the form of a constant depolarizing current

ICDC(see section External drive).

The dynamics of the gating variables n, m and h (collectively

denoted by z) of the Na+ and K+ channels were given by

dz

dt
~az(V )(1{z){bz(V )z

with az(V ) and bz(V ) the voltage-dependent opening and closing

rate constants. For the n, m and h variables, these functions were

an(V )~0:032(Vz52)=(1{ exp ({0:2(Vz52)))

bn(V)~0:5 exp ({0:025(57zV ))

am(V )~0:32(54zV )=(1{ exp ({0:25(Vz54)))

bm(V )~0:28(27zV )=( exp (0:2(Vz27)){1)

ah(V )~0:128( exp ({0:056(Vz50)))

bh(V)~4=(1z exp ({0:2(Vz27)))

All parameter values were as in [44], and were the same for E and

I cells. The only difference between E and I cells was that E cells

projected to their target cells with excitatory glutamatergic AMPA

synapses, and I cells with inhibitory GABAA synapses.

Networks
The connectivity structure within each network was created by

assigning to every cell a certain probability to connect to any other

cell in the network. In addition, cells from the source network

connected with a certain probability to any other cell in the target

network.

Within each network, excitatory (E) cells were connected to

inhibitory (I) and other E cells with probabilities PEI~Pei~0:65
and PEE~Pee~0:3, respectively. I cells were connected to E and I

cells with probabilities PIE~Pie~0:6 and PII~Pii~0:55,

respectively. The first and the second letter in a subscript refer

to the presynaptic cell and the postsynaptic cell of the connection,

respectively. The upper and lower case letters indicate fast and

slow network, respectively. A connection consisted of a single

synapse with a synaptic conductance as described below.

The connectivity structure within each network was chosen on

the basis of the following considerations. First, the use of

connection probabilities prevents unrealistic all-to-all connectivity

[45]. Second, the connection probabilities should be high enough

to create a globally connected network rather than a number of

isolated subnetworks. Third, the oscillations should be generated

by a so-called PING (Pyramidal Interneuron Network Gamma)

mechanism [40]. In this mechanism, which underlies the

generation of most beta and gamma oscillations in the brain, the

E cells (pyramidal cells) activate the I cells (interneurons), which in

turn suppress the E cells, for a length of time that depends on the

strength and the decay time of the inhibitory (i.e., GABAA)

synaptic conductance. Once inhibition onto the E cells has

subsided, the E cells can become active again, and the cycle

repeats itself. Thus, oscillations are generated not by intrinsically

oscillating cells (‘‘pacemakers’’) but by synaptic interactions within

a network. The PING mechanism depends on strong connectivity

from E to I cells, strong connectivity from I to E cells, and, to

promote synchronous firing, connectivity from I to I cells [40].

The probabilities for the formation of connections between the

two networks were based on the probabilities within each network,

as follows: for the connections from inhibitory to excitatory cells,

PiE~PIe~0:15Pie; for the connections from excitatory to

excitatory cells, PeE~PEe~0:15Pee; for the connections from

inhibitory to inhibitory cells, PiI~PIi~0:15Pii; and for the

connections from excitatory to inhibitory cells, PeI~PEi~0:15Pei.

For both excitatory and inhibitory synapses, the time course of

the synaptic conductance was given by a mono-exponential

function. For the excitatory AMPA synapses, the maximal

conductances were gEE~gee~geE~gEe~40 pS/mm2 and

gEI~gei~geI~gEi~24 pS/mm2, with reversal potential

EAMPA~0 mV. For the inhibitory GABAA synapses, the

maximum conductances were gIE~gie~giE~gIe~8 pS/mm2

and gII~gii~giI~gIi~40 pS/mm2, with reversal potential

EGABA~{80 mV.

Oscillation frequency is influenced by the decay time constant of

the inhibitory GABAA conductance (i.e., the IPSC decay constant,

tI) [2,26,40]. We chose tI,slow~6:8 ms for the slow network and

tI,fast~3:5 ms for the fast network. In combination with the

strength of the maximal GABAA conductance, which was the

same in the slow and the fast network (see above), this resulted in

an oscillation frequency of about 20.4 Hz for the slow network in

isolation and a frequency of about 32.4 Hz for the fast network in

isolation. The IPSC decay constant of the inhibitory connections

from the source to the target network was taken the same as the

IPSC decay constant of the inhibitory connections within the

source network. The decay time constant of the AMPA

conductance was tE~2 ms. The synaptic delay for both excitatory

and inhibitory synapses was 1 ms [46].

External drive
Each excitatory and inhibitory cell in both the slow and the fast

network received a constant depolarizing current ICDC[8],

representing tonic cholinergic input necessary to induce the

oscillations [12,47] that are generated by the reciprocal interac-

tions between the E and I cells.

Cholinergic input has been shown to cause a sustained

depolarizing response [48] that, as we do here, can be mimicked

by applying a non-specific, depolarizing current to the cells [12].

The amplitude of ICDC varied among cells and was randomly

drawn from a uniform distribution in the intervals [3.8–6.3] pA for

the inhibitory population in both networks and [10.1–11.3] pA for

the excitatory population in both networks. The values of the

currents were based on results from [8,49] and were fixed for the

duration of the stimulation.

Connectivity schemes between networks
We considered all possible feed-forward connectivity schemes

between the two networks (Fig. 2). The left 468 block of Fig. 2

shows the connectivity schemes in which the slow network (cells

labelled by lower case letters: e, i) projects to the fast network

(upper case letters: E, I). The right 468 block shows the schemes in

which the fast network projects to the slow network. In each

connectivity scheme, the synaptic strength of one type of

connection (shown in red) was varied systematically (see below),

Connections between Oscillatory Neuronal Networks
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whereas the strengths of all other connection types were kept fixed.

Each column in Fig. 2 comprises what we call a connectivity class,

in which the connection type whose synaptic strength was varied is

considered in eight different connectivity schemes of the fixed

connections. A connectivity class is also labelled with a lower or

upper case letter depending on whether the slow or the fast

network, respectively, is the source network. Recall that, because

the connectivity from the source to the target network was created

by connection probabilities, not all target cells may receive

connections from the source network. The set of connected cells,

however, was the same for all connectivity schemes.

In each of the 64 connectivity schemes, we considered ten

different synaptic strengths (conductances) of the variable connec-

tion, obtained by multiplying the default strength by a conduc-

tance factor Cf = [0.01, 0.05, 0.5, 0.8, 1.5, 3.0, 7.0, 10.0, 15.0,

20.0]. In each of these 10664 = 640 simulation conditions, we

recorded the activity of all cells in both networks for 40 s.

Analysing network dynamics
Network dynamics was analysed separately for the four

populations in the model: the e and the i population of the slow

network, and the E and the I population of the fast network. We

analysed the dynamics by means of firing-rate histograms, Fourier

analysis and wavelet analysis. Because the activity profiles of the

excitatory and the inhibitory population turned out to be very

similar, we show only results from the excitatory populations.

Firing-rate histograms
To describe the network activity in each of the populations, we

constructed firing-rate histograms by counting spikes in time bins

of 6 ms. This bin size relates to a sample frequency of about

167 Hz, much higher than the oscillation frequencies in our

simulations. Because this bin size practically eliminated the

occurrence of more than one spike per time bin per cell, the

number of spikes was equal to the number of active cells per time

bin. Whilst the source network produced a robust and unper-

turbed oscillation, the activity in the target network was the

outcome of the interaction between its own oscillation and

oscillatory input from the source network.

Fourier analysis
The fast Fourier transform of the activity in each cell population

(four cell populations: the excitatory and inhibitory populations in

the target and source networks) was computed on the basis of the

Figure 2. The connectivity schemes between the two model networks. In the slow network, the excitatory and inhibitory populations are
labelled with lower case letters (e, i) and in the fast network with upper case letters (E, I). Each column (a–d, A–D) comprises what we call a
connectivity class, consisting of eight different connectivity schemes. The strength of the connectivity type shown in red was varied in the
simulations. A connectivity class is labelled with a lower or upper case letter depending on whether the slow or the fast network, respectively, is the
network projecting to the other network. (See further Methods.)
doi:10.1371/journal.pone.0100899.g002
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firing-rate histograms (of 40 s of activity). To smoothen the

histograms, we first convolved them with an alpha function

f (t)~a2te{at, where a~0:15 and t is in 6 ms time units (the bin

size); f (t)was evaluated for five consecutive time bins. The

convolved signal was used as input for the Welch’s periodogram

Matlab algorithm. For each cell population, we identified the

components in the fast Fourier transform that were local maxima;

the maximum of these components is then the peak frequency of

that particular cell population. In the figures, the oscillation

frequencies in the target network, as revealed by the Fourier

analysis, are indicated by blue discs. The diameters of the blue

discs indicate the power of the frequency components in the

excitatory population of the target network; only frequency

components are shown whose power was larger than 30% of the

peak power in the excitatory population of the source network.

The oscillation frequencies in the source network are indicated by

red dots (of fixed size), which show the location of the base

frequency and the first harmonic, but not their power. The green

arrow points to the base frequency of the source network.

Wavelet analysis
To analyse how the power (amplitude) of the oscillations varied

over time, we performed a wavelet analysis using the Torrence

algorithm [50] implemented in MatLab, with the convolved firing-

rate histogram as input. A standard Morlet function was used with

a frequency range of 0.01–70 Hz and 0.1 Hz scaling windows.

The y-axis of the wavelet plots, in most cases running from 0 to

50 Hz, was chosen so as to depict the frequencies around the

frequencies of the slow and fast networks (20.4 and 32.4 Hz,

respectively).

Some definitions
The base frequency of a network oscillation is defined as the

number of periodic states of synchronous cell firing in one second

(i.e., the conventional physical definition). The first harmonic of

the oscillation, as visualized in the Fourier spectrum, corresponds

to a firing pattern in which the synchronous states occur at a

frequency of twice the base frequency. By induction, the nth

harmonic frequency is defined as (nz1)|f , where n.0 is an

integer and f is the base frequency. Likewise, a subharmonic

frequency is defined as a frequency that can be written as

(1=n)|f , where n.1 is an integer.

Results

We considered two networks and investigated how feed-forward

connections from one network (the source network) to the other

network (the target network) affected the activity in the latter. In

Fig. 3, we first demonstrate that each network in isolation

generated a stable oscillation at a given frequency. Because the

networks had different IPSC decay constants, one network had an

oscillation frequency of 20.4 Hz (the slow network; Figs. 3a–c) and

the other one a frequency of 32.4 Hz (the fast network; Figs. 3d–f).

The oscillations were caused by the interactions between the

excitatory and inhibitory cells and were driven by the constant

depolarizing currents (CDCs) provided to all the cells (see Fig. 1c

and Methods).

Fig. 3 also shows that the activity of one network could

markedly influence the activity in the other network when the

networks were connected (Figs. 3g–i). In this example, the

excitatory cells of the slow network (in this case, the source

network) projected to the excitatory cells of the fast network (the

target network) with synapses that were 10 times stronger than the

excitatory synapses within each network (i.e., the conductance

factor Cf~10; see Methods). With this connection strength, the

slow network completely overruled the rhythm of the fast network.

The fast network could no longer express its own rhythm and

displayed only the base frequency and first harmonic of the slow

network.

To investigate systematically how the influence of the source

network on the oscillatory activity in the target network depended

on the pattern and strength of the connections from source to

target network, we considered all possible feed-forward connec-

tivity schemes between the two networks (Fig. 2). For each

connectivity scheme, we varied the strength of one connection

type, while the strengths of all other connection types were kept

fixed.

Impact of source network on oscillation frequency in
target network

As will be described in more detail below, we found that for high

inter-network connection strengths, the source network could

completely impose its rhythm onto the target network. Interest-

ingly, the slow network was in general more effective at imposing

its rhythm onto the fast network than the other way around. For

lower inter-network connection strengths, multiple oscillation

frequencies, i.e., the own frequency of the target network and

the own frequency of the source network, could coexist in the

target network, especially when the slow network acted as source

network.

The slow network imparts its rhythm onto the fast
network especially when it has strong excitatory
connections to the excitatory or inhibitory cells of the
fast network

We first investigated the impact of the oscillatory activity of the

slow network on the oscillatory activity of the fast network. Thus,

the slow network acted as the source network and the fast network

as the target network.

In connectivity class a (Fig. 4), in which the strength of the eE

connections was varied, the peak frequency of the fast network

gradually shifted to the first harmonic of the slow network for

increasing eE connection strength (Fig. 4a1). For connection

strengths Cf§3, also the base frequency of the slow network

appeared in the fast network. In the presence of iI connections

(Fig. 4a2), the base frequency of the slow network already

appeared for low connection strength. With eI connections also

included (Fig. 4a3), the frequency of the fast network gradually

shifted to the first harmonic of the slow network, but only for the

highest eE connection strength did it become locked to the base

frequency of the slow network. With additional iE connections

(Figs. 4a5–a8), the fast network slowly moved to the first harmonic

of the slow network as the eE connection strength increased, while

the base frequency of the slow network was already present for low

connection strengths. For lower eE connection strengths and in the

presence of iE connections, the base frequency of the slow network

and a frequency close to the base frequency of the fast network

could coexist (Figs. 4a5, a7, a8).

In connectivity class b (Fig. 5), in which the strength of the eI

connections was varied, the fast network initially maintained its

base frequency for low eI connection strengths (Fig. 5b1). For

increasing strength (Cf§1:5), the fast network jumped to the base

frequency of the slow network and got entrained into this

frequency and its first harmonic. Adding eE connections

(Fig. 5b2) did not change this pattern. In the other connectivity

schemes (Figs. 5b3–b8), the base frequency of the slow network

already appeared for lower eI connection strengths. In some

Connections between Oscillatory Neuronal Networks
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connectivity schemes (Figs. 5b4, b6, b8), the base frequency of the

slow network and a frequency close to the base frequency of the

fast network could coexist for low or intermediate connection

strengths.

In the other two connectivity classes from the slow to the fast

network (classes c and d; Figs. S1 and S2), the slow network could

also impart its rhythm onto the fast network, although less

effectively. Moderate to high iE connection strength brought the

base frequency of the slow network into the fast network (Fig. S1),

but generally with lower power than for connectivity classes a and

b. In addition, a frequency component close to the base frequency

of the fast network could remain in the fast network even for high

connection strengths (Figs. S1c4, c5). Also high iI connection

strengths forced the fast network to oscillate at the slow base

frequency and/or its first harmonic (Fig. S2), but again with lower

power than for connectivity classes a and b. In some cases, the fast

network was still able to additionally express its own base

frequency (Figs. S2d7, d8).

In conclusion, the strongest entrainment of the rhythm of the

fast network to that of the slow network occurred when excitatory

cells of the slow network projected to excitatory or inhibitory cells

of the fast network (Figs. 4 and 5, respectively). Both the slow base

frequency and its first harmonic could appear in the fast network.

Locking of the rhythm in the fast network to the frequency of the

slow network was also possible when inhibitory cells of the slow

network projected to excitatory or inhibitory cells of the fast

network (Figs. S1 and S2, respectively), although the power was

generally low. In many connectivity schemes, especially for low

Figure 3. Oscillatory activity in the slow and the fast network when they are unconnected or connected. Shown are the Fourier
transform (a, d, g), wavelet transform (b, e, h) and raster diagram of cell firing (c, f, i) of the excitatory population in either the slow or the fast
network. Color in the wavelet transforms indicates power of oscillation. The raster diagrams depict the firing times (indicated by dots). a–c. Activity of
the slow network in isolation. The Fourier transform shows peaks at the base frequency (20.4 Hz) and at the first and second harmonics. Owing to the
highly synchronized activity (making the signal effectively a comb function), the Fourier transform produced peaks at the harmonics, but there were
no cells that actually fired at these frequencies (see panel c). d–f. Activity of the fast network in isolation. The Fourier transform shows peaks at the
base frequency (32.4 Hz) and the first harmonic. g–i. Activity of the fast network when the excitatory cells of the slow network projected to the
excitatory cells of the fast network (eE connection) with conductance factor Cf~10 (see Methods). With this connection strength, the slow network
managed to impose its rhythm onto the fast network, in which the base frequency (20.4 Hz) of the slow network and its first harmonic were strongly
expressed. Since there were no connections from the fast to the slow network, the activity of the slow network was not different from that in the
unconnected situation.
doi:10.1371/journal.pone.0100899.g003
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connection strengths, the fast network could maintain its own

frequency and at the same time express the frequency of the slow

network.

Mechanism underlying the entrainment of the fast
network to the rhythm of the slow network

As mentioned, the slow network could impart its rhythm onto

the fast network when it had strong excitatory connections to the

excitatory cells of the fast network (Figs. 4, 6a). Excitatory cells

from the slow network provide strong excitation to the excitatory

population of the fast network, recruiting excitatory cells to fire at

the rhythm of the slow network and, via connections from

excitatory to inhibitory cells within the fast network, also

enhancing the activity in the inhibitory population at a frequency

of the slow rhythm, which then in turn inhibits the excitatory

population.

The entrainment of the fast network to the rhythm of the slow

network with strong excitatory connections from the slow network

directly onto the inhibitory cells of the fast network (Fig. 5) occurs

through a similar mechanism but then without the intervention of

the fast network’s excitatory population. Compared with excitato-

ry inter-network connections, strong inhibitory connections from

the slow to the fast network (Figs. S1, 6c) imposed the rhythm of

the slow network with lower power, mainly because inhibition also

reduces the overall activity in the fast network (Fig. 6c). In

addition, there are fewer inhibitory than excitatory inter-network

connections because the inhibitory population is smaller than the

excitatory population.

For lower inter-network connection strengths, the base

frequencies of the slow and the fast network could coexist in the

fast network. In Fig. 6e, for example, both frequencies were

expressed in an alternating manner. This might reflect some sort of

interference, since each time after a cluster of four synchronized

firing states, with within-cluster intervals of around 30 ms (the fast

frequency), the next cluster occurred with an interval of around

50 ms (the slow frequency).

The fast network imparts its rhythm onto the slow
network especially when it has strong excitatory
connections to the excitatory cells of the slow network

Next, we studied the impact of the oscillatory activity of the fast

network on that of the slow network. Thus, now the fast network

acted as the source network and the slow network as the target

network.

In connectivity class A (Fig. 7), in which the strength of the Ee

connections was varied, the peak frequency of the slow network

moved quite abruptly to the base frequency of the fast network for

Cf§7:0 (Fig. 7A1). When also Ii connections were included

(Fig. 7A2), the power in the slow network became very low as the

Ee connection strength increased until the connection strength was

1.5. The other transition patterns were the same (Fig. 7A3) or

more complex (Figs. 7A4–A8) than in Fig. 7A1. In Fig. 7A6, for a

large range of Ee connection strengths, the base frequency of the

Figure 4. The eE connections from the slow to the fast network can impose the slow rhythm onto the fast network already at low
connection strengths. Lower case letters (e, i) label the excitatory and inhibitory populations in the slow network, and upper case letters those in
the fast network (E, I). The strength (conductance factor) of the eE connections (red arrow in connection scheme) is varied in the different
connectivity schemes. The blue discs indicate the oscillation frequencies in the fast network; their diameters depict the power. The red dots show the
base frequency and the first harmonic of the slow network, without indicating power. The green arrow points to the base frequency of the slow
network. In all connectivity schemes, for high eE connection strengths, the fast network became frequency locked to the rhythm of the slow network,
at its base frequency and/or at the corresponding first harmonic. For lower connection strengths, the base frequency of the slow network and a
frequency close to the base frequency of the fast network coexisted in the fast network (e.g., a7, a8).
doi:10.1371/journal.pone.0100899.g004
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fast network coexisted with a frequency that was slightly lower

than the base frequency of the slow network. In Fig. 7A7, as in

Fig. 7A2, the power in the slow network became very low for low

and intermediate Ee connection strengths.

In connectivity classes B and C (Figs. S3 and S4), in which

respectively the Ei and Ie connection strengths were varied, the

fast network was generally not able to impose its rhythm onto the

slow network, and in many cases strongly inhibited the oscillatory

activity in the slow network. Even for low Ei connection strengths,

the fast network could strongly reduce the oscillation power in the

slow network (Fig. S3). In all connectivity schemes of class B, the

fast network was not able to impose its rhythm onto the slow

network for high Ei connections strengths. Only in some

connectivity schemes did entrainment to the fast network occur

for relatively low connection strengths (Figs. S3B3, B8). In one

connectivity scheme (Fig. S3B8), the base frequency of the fast

network could coexist with a frequency that was slightly lower than

the base frequency of the slow network. Also in connectivity class

C, the fast network strongly reduced the oscillation power in the

slow network (Fig. S4), even for low Ie connection strengths, and

was hardly able to impose its rhythm onto the slow network. Two

different frequencies could occasionally coexist (Figs. S4C6, C8).

In connectivity class D (Fig. S5), in which the strength of the Ii

connections was varied, the fast network could in most connec-

tivity schemes shift the oscillation frequency in the slow network to

the fast base frequency for high Ii connection strength, albeit with

varying power. In some connectivity schemes, the base frequency

of the fast network could coexist with a frequency that was lower

than the base frequency of the slow network (Figs. S5D7, D8).

In conclusion, entrainment of the rhythm in the slow network to

the frequency of the fast network was observed only when

excitatory cells of the fast network projected to excitatory cells of

the slow network (Fig. 7) or when inhibitory cells of the fast

network projected to inhibitory cells of the slow network (Fig. S5),

although in the latter case with low power. When no entrainment

occurred, the main effect of the fast network was that it strongly

suppressed the oscillatory activity in the slow network. For low

connection strengths, patterns with multiple frequencies, in which

the slow network simultaneously expressed its own frequency and

the frequency of the fast network, also occurred, but less

extensively than when the slow network projected to the fast

network.

Mechanism underlying the entrainment of the slow
network to the rhythm of the fast network

Why is the fast network in general less capable of implanting its

rhythm on the slow network than the other way around? In order

for the fast network to impose its rhythm onto the slow network, it

must induce the cells in the slow network to fire at a higher

frequency, which requires strong enough excitation both to

overcome the extensive hyperpolarization due to the long IPSC

and to exceed the firing threshold. In contrast, in order for the

slow network to impose its rhythm onto the fast network, any extra

inhibition, either directly via excitatory input from the slow

network to the inhibitory cells of the fast network (Fig. 5) or

indirectly via excitatory input from the slow network to the

excitatory cells of the fast network (Fig. 4), can already diminish

the firing frequency in the fast network. In other words, it is easier

to inhibit a depolarized cell than to cause a hyperpolarized cell to

fire.

The fast network could impose its rhythm onto the slow network

when it had strong excitatory connections to the excitatory cells of

the slow network (Fig. 7, 6b). Strong excitatory connections from

the fast network directly onto the inhibitory cells of the slow

Figure 5. The eI connections from the slow to the fast network can impose the slow rhythm onto the fast network already at low
connection strengths. In all connectivity schemes, the fast network oscillated at the base frequency of the slow network (and its first harmonic) for
high eI connection strength. For lower strengths, two different frequencies could coexist (b4, b6, b8).
doi:10.1371/journal.pone.0100899.g005
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Figure 6. The effect of inter-network connections on firing pattern. Shown are, for different connectivity schemes, the Fourier transform and
the raster diagram of cell firing in the excitatory population of the target network. The conductance factor Cf indicates the relative strength of the red
connection (see Methods). Panels a–f show connectivity schemes a2, A2, c2, B2, a8 and B8, respectively (see Fig. 2). In a–d, the source network
completely imposed its rhythm onto the target network, whereas in e and f two different non-harmonic frequencies could coexist. In c and d,
increased inhibition in the target network due to strong iE or Ei connections reduced the power of oscillatory activity in the target network.
doi:10.1371/journal.pone.0100899.g006
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network (Fig. S3), however, increased the amount of inhibition,

thereby strongly reducing the oscillatory activity in the slow

network (Fig. 6d). For lower inter-network connection strengths,

two different non-harmonic frequencies could coexist in the slow

network. In Fig. 6f, for example, a fraction of the cells constantly

fired at a higher frequency.

Impact of source network on temporal oscillation
patterns in target network

In the previous sections, we showed that the source network

could change the frequency spectrum in the target network, but

not whether frequency and amplitude might also vary over time.

Using wavelet analysis, we found that the source network could

induce a large variety of temporal patterns of oscillatory activity in

the target network, ranging from patterns in which multiple

frequencies were almost continually expressed to those in which

the co-expressed frequencies appeared intermittently in time or in

which single or multiple frequencies fluctuated in amplitude. The

examples described in the next sections are representative of the

different types of temporal patterns observed in the target network.

Continual or alternating expression of two non-harmonic
oscillation frequencies

Fig. 8 shows a situation in which two different frequencies, the

base frequency of the slow network (source network) and the base

frequency of the fast network (target network), occurred almost

concurrently in the fast network. In addition to the base

frequencies, the fast network continually expressed a subharmonic

of the slow base frequency.

Fig. 9 shows two cases in which also two different frequencies

were expressed in the fast network, the base frequency of the slow

network and the base frequency of the fast network, but in which

the frequencies clearly appeared in an alternating manner. When

one frequency had high power, the other frequency was strongly

reduced in power or was absent. The episodes in which either of

the two frequencies was the dominant frequency were longer in

Fig. 9e than in Fig. 9b. Occasionally, both frequencies occurred

almost simultaneously (e.g., around t = 16.1 and 16.5 s in Fig. 9b)

with low power. The alternating expression of the two frequencies

results from interference between the two frequencies. The cells in

the fast network continually sense both the base frequency of the

fast network and the base frequency of the slow network, and

alternately lock to either the fast or the slow rhythm.

Temporal fluctuations in oscillation power
Fig. 10 shows two cases in which only one main frequency was

present in the target network but with varying power over time. In

the first case (Figs. 10a–c) the slow network was the target network,

and in the second case (Figs. 10d–f) the fast network acted as

target. In both cases, the power of the frequency in the target

network fluctuated irregularly, with episodes of high power

alternating with episodes of low power (Figs. 10b, e). The

amplitude or power of a particular oscillation frequency is

determined by the number of synchronously firing cells at that

frequency. As can be seen by comparing Figs. 10e and f, episodes

of low power in the wavelet (e.g., around t = 28.5 s) correspond to

episodes of desynchronized firing.

Figure 7. The Ee connections from the fast to the slow network can impose the fast rhythm onto the slow network, especially at
high connection strengths. The blue discs now indicate the oscillation frequencies in the slow network; their diameter depicts the power. The red
dots show the base frequency and the first harmonic of the oscillatory activity in the fast network, without indicating power. The green arrow points
to the base frequency of the fast network. For high Ee connection strength, the slow network became fully entrained to the rhythm of the fast
network. For intermediate Ee connection strengths, some connectivity schemes (e.g., A6) exhibited an activity pattern in which two different
oscillation frequencies coexisted.
doi:10.1371/journal.pone.0100899.g007
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Fig. 11 shows a situation in which again two frequencies, the

base frequency of the slow network (source network) and the base

frequency of the fast network (target network), coexisted in an

alternating fashion in the fast network. However, more so than in

the cases shown in Fig. 9, each frequency also fluctuated in power

during the episodes that it was the dominant frequency. For

example, from about t = 33.7vs to t = 33.9 s, the base frequency of

the slow network was the only frequency component in the

network, but its power was not constant over time (Fig. 11b).

What is the cause of fluctuations in oscillation power? In a

previous study [51], we have shown that in a single network, action

potentials from areas external to the network and impinging onto

the inhibitory cells can disrupt synchronous firing. Since oscillation

amplitude is proportional to the number of simultaneously firing

cells, reduced synchrony gives rise to a decrease in oscillation

amplitude (power). This desynchronization effect of the external

action potential input competes with the tendency of the

interacting excitatory and inhibitory cells to drive the network

back to synchrony, causing alternating episodes of high-amplitude

oscillations (high power) and low-amplitude oscillations (low

power). In the two-network model studied here, the external

action potential input is provided by the source network, which

can likewise induce amplitude fluctuations. Amplitude fluctuations

in ongoing oscillations are ubiquitous and have been observed in

Figure 8. Continual expression of coexistent oscillation frequencies. Shown are the Fourier transform (a), wavelet transform (b) and raster
diagram of cell firing (c) from the excitatory population of the target network (the fast network). The inset in a shows the connectivity scheme from
the slow to the fast network (see Fig. S1c8), in which the iE connection had Cf~7. The fast network co-expressed its own fast base frequency
(32.4 Hz) and the base frequency of the slow network (20.4 Hz and corresponding harmonic and subharmonic frequencies). The power (amplitude) of
both frequencies did not vary strongly over time.
doi:10.1371/journal.pone.0100899.g008

Figure 9. Alternating expression of coexistent oscillation frequencies. Shown are the Fourier transform (a, d), wavelet transform (b, e) and
raster diagram of cell firing (c, f) from the excitatory population of the target network (the fast network). The insets in a and d show the connectivity
schemes from the slow to the fast network (see Figs. 4a5 and S1c4, respectively), in which the eE connection (a) had Cf~0:8 and the iE connection
(d) had Cf~0:5. For both connectivity schemes, the base frequency of the fast network (32.4 Hz) and the base frequency of the slow network
(20.4 Hz) appeared intermittently in the fast network. In b, the frequency switched faster than in e. When either frequency component was present,
its power remained relatively constant.
doi:10.1371/journal.pone.0100899.g009
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the intact brain as well as in cortical slices for many frequency

bands [27,28,52].

Comparison with experimental data on alternating
expression of oscillation frequencies

Our results suggest that interacting oscillatory networks could,

at least partially, be responsible for the rich repertoire of oscillation

patterns observed in the brain. Fig. 1 reveals distinct oscillation

frequencies appearing intermittently in time in the human brain

(Fig. 1a) and rat prefrontal cortex (Fig. 1b). Another example of

alternating frequencies in rat PFC is given in Fig. 12, which shows

similar dynamics to that generated by our model networks in

Figs. 9b and 11b. In Fig. 12, the two frequencies mostly alternate,

but occasionally occur simultaneously (e.g., around t = 5.5 s). In

the PFC, fast oscillations are primarily found in layer 3/5, whereas

slow oscillations occur predominantly in layer 6 [26]. In cortical

layer 5, episodes of both slow and fast oscillations are present. The

experimental data suggest the presence of two local feedback

networks located in layer 3 and layer 6 that each oscillate at their

own frequency [26]. The interactions between these two networks

may lead to the alternating expression of frequencies observed in

layer 5.

Figure 10. Expression of a single oscillation frequency with strong fluctuations in power. Shown are the Fourier transform (a, d), wavelet
transform (b, e) and raster diagram of cell firing (c, f) from the excitatory population of the target network (the slow network in a–c and the fast
network in d–f). The inset in a shows the connectivity scheme from the fast to the slow network (see Fig. S4C2), in which the Ie connection had
Cf~0:5. In the time interval shown, the slow network expressed its own base frequency (20.4 Hz) but with strong fluctuations in power. The inset in
d shows the connectivity scheme from the slow to the fast network (see Fig. 5b2), in which the eI connection had Cf~7. The fast network expressed
the base frequency of the slow network with strong fluctuations in power.
doi:10.1371/journal.pone.0100899.g010

Figure 11. Alternating expression of coexistent oscillation frequencies with fluctuations in power. Shown are the Fourier transform (a),
wavelet transform (b) and raster diagram of cell firing (c) from the excitatory population of the target network (the fast network). The inset in a shows
the connectivity scheme from the slow to the fast network (see Fig. S1c5), in which the iE connection had Cf~1:5. The base frequency of the fast
network (32.4 Hz) and the base frequency of the slow network (20.4 Hz) appeared more or less intermittently in the fast network. When either
frequency component was present, its power was not stable over time (e.g., the slow base frequency between t = 33.7 s and t = 33.9 s).
doi:10.1371/journal.pone.0100899.g011
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Discussion

Brain networks capable of generating oscillations are typically

strongly connected to each other [23], but the impact of these

connections on oscillatory activity is not well known [32]. We

created two model networks, each producing a different oscillation

frequency on its own, and investigated systematically the influence

of inter-network connections on oscillation frequency and pattern.

Either the slowly oscillating network projected to the fast

oscillating network (i.e., the slow network acted as source network

and the fast network as target network), or the fast oscillating

network projected to the slowly oscillating network.

For high inter-network connection strengths, the source network

could completely impose its rhythm on the target network. In

general, the slow network was better able to impart its rhythm

onto the fast network than the other way around. The strongest

locking of the oscillation frequency in the fast network to the

frequency of the slow network occurred when excitatory cells of

the slow network projected to excitatory or inhibitory cells of the

fast network. The fast network could most strongly impose its

rhythm on the slow network when its excitatory cells projected to

the excitatory cells of the slow network. In situations where no

entrainment to the fast frequency took place, the fast network

greatly suppressed the oscillatory activity in the slow network.

For lower inter-network connection strengths, multiple oscilla-

tion frequencies, i.e., the own frequency of the target network and

the own frequency of the source network, could coexist in the

target network, especially when the slow network acted as source

network. Interestingly, the target network exhibited a wide range

of temporal patterns: the target network could express multiple

frequencies at the same time, alternate between distinct oscillation

frequencies, or express only a single frequency but with alternating

episodes of low and high power. Intermediate patterns were also

possible, in which two frequencies in turn were the dominant

frequency and each frequency fluctuated in power when it was

dominant.

In general, networks that generate oscillations by means of

interacting excitatory and inhibitory cells (PING mechanism) have

a tendency to maintain oscillation frequency even in the face of

small perturbations [40]. In the two-network constellation, the

input from the source network delays neuronal firing (when the

slow network is the source network) or advances neuronal firing

(when the fast network is the source network) in the target network.

The effect of this disruption competes with the tendency of the

target network to maintain its own base frequency. With strong

connections from the source to the target network, the oscillating

input from the source network overrules the base frequency of the

target network, and the target network will oscillate at the

frequency of the source network. With weak inter-network

connections, the cells in the target network continually sense both

the base frequency of the source network and the base frequency

of the target network, and can alternately lock to either frequency.

To obtain a better theoretical understanding of network entrain-

ment and coexistence of frequencies, one could analyze the phase

delays and advances in firing that occur in the target network as a

result of the perturbations due to the input from the source

network (see also [51]).

The choice of oscillation frequencies for the fast and the slowly

oscillating network was based on frequencies reported for the

hippocampus [41,42,43] and the PFC [3,26], as well as on the

difference in oscillation frequency observed between layer 3/5 and

layer 6 of rat PFC [3,26]. Although we did not systematically

analyse other oscillation frequencies, preliminary tests indicate that

our main results are not critically dependent on the precise choice

of frequencies as long as the difference in oscillation frequency

between the two networks is not too large. Relevant in the choice

of oscillation frequencies is whether the source network can

interfere with the target network, and whether the target network

can recover from a perturbation caused by the source network. If

the target network (high frequency) rapidly recovers (i.e., resumes

its own rhythm) before the next perturbation from the source

network (low frequency) arrives, one may not expect any ongoing

interference between rhythms. For instance, in a test case it took

about 3–4 oscillation cycles in the fast network to recover from a

perturbation caused by the source network. In such a situation, the

source frequency should not be lower than about four times the

target frequency.

We did not consider reciprocal connections between the slow

and the fast network. In the connectivity schemes we analysed,

either the slow network projected connections to the fast network

or the fast network projected connections to the slow network.

Already with this restriction, the number of possible connectivity

schemes (Fig. 2), together with the number of different connection

strengths tested, leads to a very large number of simulation

conditions. Pilot experiments indicated that with reciprocal

connections, whichever connections were the strongest, those

from the slow to the fast network or from the fast to the slow

network, were the dominant connections. Thus, also with

reciprocal connections, the uni-directional connectivity schemes

may be useful in predicting the effect of connection type and

strength on oscillatory activity.

Each of the two networks was composed of 80 excitatory cells

and 20 inhibitory cells. In our previous work [51], in which we

considered only a single network but with the same composition as

the networks used here, we found that increasing the total number

of cells in the network ten-fold, while maintaining the values of all

other parameters and the proportion of excitatory and inhibitory

cells, did not affect the results. Although network size may have an

effect on oscillation frequency [53], we do not expect that our

conclusions critically depend on network size.

The connection strength from the source to the target network

was varied by changing the excitatory or inhibitory synaptic

conductance. When an excitatory or inhibitory population of the

source network was connected to an excitatory or inhibitory

population of the target network, not all the cells of the respective

populations were connected, but only a fraction (see Methods).

Figure 12. Alternating expression of two coexistent oscillation
frequencies in rat PFC. Wavelet transform of extracellular field
potential in layer 5 of rat PFC slice. Two different non-harmonic
frequencies, around 7 Hz and 13 Hz, alternate as dominant frequency
but are occasionally expressed simultaneously (e.g., around t = 5.5 s).
The figure was not published before but is based on data collected in
[26].
doi:10.1371/journal.pone.0100899.g012
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Fig. S6 illustrates that this fraction also had an impact on the

ability of the source network to influence the dynamics in the

target network (see further Text S1).

Our study may stand as a useful reference point for future

computational studies using more complex neurons (e.g., dendritic

morphology, ion channel composition), different network constel-

lations (e.g., reciprocal connectivity) or other oscillation mecha-

nisms (e.g., interneuron network gamma, or ING, without direct

involvement of excitatory cells; [40]). Although altering the

neurons or networks could potentially modify some of our detailed

findings, we expect that the mechanisms by which oscillations

influence each other in our simulated networks are quite robust—

being dependent on the interference of different rhythms and the

interaction between neurons with different IPSC decay con-

stants—and would also play a role in more complex neuronal or

network implementations.

Relatively few model studies have considered interacting

oscillatory networks. In a model consisting of two layer 5 cortical

columns each containing a population of excitatory and inhibitory

cells, Bush and Sejnowski [35] found, in line with our results, that

synchrony between the oscillations in both columns required

connections from the excitatory cells of each column to the

inhibitory cells of the other column. However, they did not

systematically analyse all inter-columnar connection schemes or

the effect of connection strength and, moreover, did not consider

the situation where each column generated a different oscillation

frequency. Tiesinga et al. (2001) [12] studied carbachol-induced

transitions between oscillations of different frequencies in the

hippocampus. Their simulations revealed delta oscillations inter-

spersed with gamma oscillations, as well as theta oscillations

interspersed with gamma oscillations, which emerged from a

heterogeneous population of pyramidal (excitatory) cells: a strongly

and a weakly interconnected subpopulation, where only the latter

received projections from the (inhibitory) interneurons. Their

study was not concerned with interactions between networks that

on their own oscillated at a different frequency. Ainsworth et al.

(2011) [33] built a computational model of the different gamma

frequencies expressed in layer 2/3 and layer 4 of rat primary

auditory cortex. They showed that the pattern of interlaminar

connections may help stabilize frequency bifurcation caused by

increased excitatory drive to this cortical region. Although several

other authors have also studied systems of coupled oscillatory

networks (e.g., [34,36,37,38], each network is typically represented

by a very few cells or else the mean field dynamics of the

populations of excitatory and inhibitory neurons are described. As

a consequence, firing synchrony between cells and hence

oscillation power (amplitude) and frequency modulation cannot

be investigated.

Imposing source frequency onto target network
As mentioned, we found that the source network could impose

its rhythm on the target network for high inter-network connection

strength. In the hippocampus, interactions between oscillating

networks may explain the change in frequency when connections

from CA3 to CA1 are disrupted. In isolation, the CA1 expresses

oscillations at a higher frequency than when the input from CA3 is

intact [41,54]. The CA3 and CA1 can independently generate

oscillations [41], but the CA3 may impose its rhythm onto the

CA1 via connections from CA3 to CA1. The frequency of

hippocampal oscillations is determined by GABAA receptors,

whose subunits are differentially expressed throughout the

hippocampal circuitry. With connections from CA3 to CA1

intact, the a2-containing GABAA receptors in CA3 appear to

determine the oscillation frequency in both CA3 and CA1 [43].

Without input from the CA3, the oscillation frequency in the CA1

may be driven by the faster a1-containing GABAA receptors

expressed in the CA1.

Cortical oscillations have been postulated to play a role in the

temporal binding of information [4,16,17]. According to this

hypothesis, sensory neurons encoding different features of an

object may synchronize their firing so as to indicate that their

activity represent the same object. During motor maintenance

behavior, for example, synchronized beta oscillations may bind

spatially distributed sensory and motor representations [55].

During memory tasks, both oscillation power and coherence

between hippocampal regions CA3 and CA1 are enhanced [43].

Our results suggest that slow, rather than fast, oscillations may be

particularly well suited for synchronizing activity between cortical

areas (see also [56]). Our study, as well as other modeling and

experimental studies [41,42,46], also emphasizes the importance

of strength and type of inter-network connectivity in achieving

synchronization between neuronal networks. Indeed, impaired

connectivity, as in neurological disorders such as schizophrenia,

leads to abnormal neural oscillations and synchrony [57].

Expression of two non-harmonic oscillation frequencies
Many intermediate situations between the temporal patterns

presented here (Figs. 3h, 8–11) were found, but the examples

shown clearly illustrate the range of complex temporal dynamics

that can arise when one oscillating network connects to another

oscillating network with a different oscillation frequency. In most

temporal patterns in which two frequencies were co-expressed,

frequencies alternated and/or fluctuated in power. Patterns such

as those in Fig. 8, in which two frequencies were almost

continually expressed, were relatively scarce.

Interestingly, the temporal dynamics of our model network

shown in Figs. 9b and 11b, with the alternating expression of two

distinct, non-harmonic oscillation frequencies, is qualitatively

similar to the dynamics observed in layer 5 of rat PFC (Fig. 12).

This suggests that the dynamics in the PFC may arise from the

interaction between local subnetworks that each generate their

own oscillation frequency. Indeed, layer 3/5 consistently oscillates

at a higher frequency than layer 6, while layer 5 shows alternating

episodes of slow and fast oscillations [26]. If we translated the

connectivity scheme of Figs. 9b and 11b to the PFC situation, it

would suggest that layer 6 pyramidal neurons project to layer 5

pyramidal neurons with moderate connection strength. Addition-

ally, layer 5 pyramidal neurons would receive innervation from

layer 6 interneurons.

What are the potential functional roles of the alternating

expression of multiple oscillation frequencies? If the cortex makes

use of different frequencies to process different aspects of incoming

information, then activity may need to be kept separate in order to

minimize interference. However, the cortex must at the same time

possess ways of combining the information in these frequencies

(see [23]). If in the two-network constellation, the slow oscillation

encoded other information than the fast oscillation, then during

episodes when both oscillations occur simultaneously in the target

network, information contained in the slow and fast oscillations

could be processed in parallel, whereas during episodes when

either the slow or the fast oscillation is present, information could

be processed separately (see also [26]). For example, in the PFC,

layer 3/5, which generates fast oscillations, has been hypothesized

to modulate the amount of alertness, whereas layer 6, which

produces slow oscillations, may control the thalamic input to the

PFC. Episodes during which both oscillation frequencies are

simultaneously present in layer 5 may reflect parallel processing of

both information streams [26].
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Induction of temporal fluctuations in oscillation power
As we have shown here, input from another oscillating network

can not only change the frequency spectrum or cause the

alternating expression of multiple frequencies in the target

network, but also induce irregular fluctuations in oscillation power

even when only a single frequency is expressed in the target

network (Fig. 10). Fluctuations in oscillation power (amplitude) of

ongoing oscillations, with irregular transitions between episodes of

high- and low-amplitude oscillations, have been observed in many

frequency bands and brain regions: in acute slices of rat prefrontal

cortex [26], in alpha/beta oscillations in acute hippocampal slices

[52], in theta/alpha oscillations in human EEG [28], and in alpha

oscillations in human EEG [58]. Together with our previous

findings [51] (see also [59]), this study suggests that amplitude

fluctuations may arise from a temporary decrease in firing

synchrony caused by the interference between network-generated

oscillations and external input; the external input can come either

in the form of random spike trains [51] or in the form of oscillating

activity from another network (this study).

Episodes during which oscillation power (amplitude) is high

reflect time periods of synchronized firing. Since synchronized

firing between cells is important for Hebbian and spike-timing-

dependent synaptic plasticity (STDP), high-amplitude episodes

provide favorable conditions for altering synaptic strength. As we

have shown here, afferent input from other oscillating networks

can induce alternating episodes of high- and low-amplitude

oscillations, thus modulating periods of learning and memory

formation. In addition, afferent input can lead to the alternating

expression of distinct frequencies, thereby determining during

which frequencies synaptic strengths can change.

Experimental testing of model results
Our model results on the impact of afferent oscillatory input on the

frequency spectrum and temporal patterns of network oscillations,

such as the alternating expression of multiple frequencies, could be

tested experimentally in cortical or hippocampal slices cultured on

multi-electrode arrays (MEAs). MEAs enable the recording of field

potentials as well as the delivery of electrical signals with any desired

temporal pattern. Thus, it can be tested how stimulating the network

with oscillatory input, of a different frequency from that of the

network’s ongoing oscillations, changes the network’s oscillation

frequency and pattern. Alternatively, in the PFC, in which we

hypothesized that the interaction between local subnetworks with

different oscillation frequencies may lead to alternating expression of

multiple frequencies, the strength of inter-network connections may

be anatomically or pharmacologically modulated and the effects of

these manipulations on oscillation pattern monitored. Yet another

way to test our model predictions is to equalize the intrinsic oscillation

frequencies in the PFC subnetworks by prolonging the IPSC decay in

the slowest oscillating network by applying the GABAA-receptor

modulator zolpidem [2,60].

Supporting Information

Figure S1 The iE connections from the slow to the fast network

can impose the slow rhythm onto the fast network, albeit with

moderate power. In all connectivity schemes, the fast network

oscillated at the base frequency of the slow network for high iE

connection strength. In addition, a frequency component close to

the base frequency of the fast network could remain in the fast

network even for high connections strengths (e.g., c4).

(TIF)

Figure S2 The iI connections from the slow to the fast network

can impose the slow rhythm onto the fast network, albeit with

moderate power. For moderate to high iI connection strengths,

input from the slow network forced the fast network to oscillate at

the base frequency (and/or its first harmonic) of the slow network.

States with two different oscillation frequencies also occurred (d7,

d8).

(TIF)

Figure S3 The Ei connections from the fast to the slow network

strongly reduce oscillation power in the slow network. In all

connectivity schemes, for high Ei connection strength, the input

from the fast network strongly reduced the power of the oscillatory

activity in the slow network, and was not able to entrain the slow

network to the fast network. For low connection strengths, some

entrainment to the fast network could occur (e.g., B3, B8) together

with the presence of another frequency component (B8).

(TIF)

Figure S4 The Ie connections from the fast to the slow network

strongly reduce oscillation power in the slow network. In all

connectivity schemes, for high Ie connection strength, the input

from the fast network strongly reduced the power of the oscillatory

activity in the slow network, and was not able to entrain the slow

network to the fast network. Patterns with two different

frequencies appeared in some connectivity schemes (e.g., C6,

C8) for low Ie connection strengths.

(TIF)

Figure S5 The Ii connections from the fast to the slow network

can impose the fast rhythm onto the slow network, albeit with

moderate power. For high Ii connection strength, the fast network

could move the slow network to the base frequency of the fast

network (D1, D4, D5, D7, D8). Patterns with two different

frequencies appeared in some connectivity schemes (e.g., D7, D8)

for low Ie connection strengths.

(TIF)

Figure S6 Effect of the number of connections from source to

target network on the oscillatory activity in the target network.

(P1–P4) Connectivity schemes from the slow to the fast network.

(P5–P8) Connectivity schemes from fast to the slow network. Of

the connection type depicted in red, the synaptic conductance was

fixed at the indicated value of Cf, but the number of connected

cells of that connection type was varied by changing its connection

percentage. Entrainment of the target network to the source

network occurred only for sufficiently high connection percentages

(P1–P5), not at all (P6), or only for certain connection percentages

(P7, P8). Once entrainment was established, the power of the

frequency in the target network did (P1, P4, P5) or did not (P2, P3)

strongly increase with connection percentage.

(TIF)

Text S1 Number of connections from source to target network

also influences oscillation frequency in target network.

(DOC)
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