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Computer-aided diagnosis (CAD) has advancedmedical image analysis, while large languagemodels
(LLMs) have shown potential in clinical applications. However, LLMs struggle to interpret medical
images, which are critical for decision-making. Here we show a strategy integrating LLMs with CAD
networks. The framework uses LLMs’ medical knowledge and reasoning to enhance CAD network
outputs, such as diagnosis, lesion segmentation, and report generation, by summarizing information
in natural language. The generated reports are of higher quality and can improve the performance of
vision-based CADmodels. In chest X-rays, an LLM using ChatGPT improved diagnosis performance
by 16.42 percentage points compared to state-of-the-art models, while GPT-3 provided a 15.00
percentage point F1-score improvement. Our strategy allows accurate report generation and creates
a patient-friendly interactive system, unlike conventional CAD systems only understood by
professionals. This approach has the potential to revolutionize clinical decision-making and patient
communication.

Large Language Models (LLMs), such as OpenAI’s GPT series1, are
advanced artificial intelligence systems that have demonstrated remarkable
results innatural languageprocessing2.Trainedonvast amounts of text data,
LLMs have the potential to revolutionize various industries, including
marketing, education, and customer service. Notably, in the medical
domain, LLMs like ChatGPT3 have showcased their potential as valuable
tools for providing medical knowledge and advice. For example, ChatGPT
has successfully passed part of the US medical licensing exams, illustrating
its capacity to augment medical professionals in delivering care4. Some
recent studies5,6 have primarily investigated the potential application of
LLMs in medical education. However, despite their impressive progress in
natural language processing, LLMs’ ability to understand visual information
in computer vision tasks remains a challenge. Addressing this limitation is
crucial, especially in the medical field, where medical images play a sig-
nificant role in supporting clinical decisions.

Focusing on the visual aspect, medical image computer-aided diag-
nosis (CAD) networks have achieved significant success in supporting
clinical decision-making processes in the medical field7–12. These networks
leverage advanced deep learning algorithms to analyzemedical images, such
as X-rays, CT scans, and MRIs, and then provide valuable insights to sup-
port clinical decision-making. Unlike LLMs, CAD networks have been

designed specifically to handle the complexities of visual information in
medical images, making them well-suited for tasks such as disease
diagnosis13, lesion segmentation14, and report generation. These networks
have been trained on large amounts ofmedical image data, allowing them to
learn to recognize complex patterns and relationships in visual information
that are specific to the medical field.

In recent advancements, Vision-Language Models (VLMs) have
become a significant trend, capitalizing on the ever-increasing capabilities of
LLMs. Notably, CLIP15 has pioneered the integration of visual and language
information into a unified feature space and achieved promising perfor-
mance in various downstream tasks. This paradigmhas beenwidely applied
to Chest X-rays16 and Pathology images17. Frozen18 further extends these
capabilities by fine-tuning an image encoder to serve as soft prompts for the
language model, enhancing its interpretability of visual data. Additionally,
Flamingo19 and Med-flamingo20 introduce cross-attention layers into the
LLM architecture, enabling the direct incorporation of visual features and
pre-training these layers on more than 100M image-text pair. BLIP-221

aligns the frozen visionmodel and textmodel in a two-stagemannerwith its
proposed Q-Former. In the first stage, the frozen vision model is aligned
with the proposed Q-Former via learnable queries. Then, Q-Former serves
as a bridge between vision and language models in the second stage. In this
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way, the pre-trained vision and text model are well aligned, enabling
impressive performance on several downstream tasks. LLaVA22, on the
other hand, performs image-text alignment more concisely. They add
several fully connected layers after the visionmodel, aiming to project visual
tokens into the latent space of language tokens. ImageBind23 learns a joint
embedding across six different modalities - images, text, audio, depth,
thermal, and inertial data. The alignment and fusion of these modalities
enable tasks including cross-modal retrieval, composing modalities with
arithmetic, and cross-modal detection and generation.

The aim of this paper is to provide a scheme that bridges current LLMs
andCADmodels. In this scheme,namelyChatCAD, the image isfirst fed into
multiple networks, i.e., an image classificationnetwork, a lesion segmentation
network, and a report generation network as depicted in Fig. 1a. The results
produced by classification or segmentation are a vector or a mask, which
cannotbeunderstoodbyLLMs.Therefore,we transformthese results into the
text representation form as shown in the middle panel of Fig. 1. These text-
form resultswill then be concatenated together as a prompt “Refine the report
based on results fromNetworkA andNetwork B” for the LLM. The LLM then
summarizes the results from all the CAD networks. As the example in this
figure, the refined report combines the findings from all three networks to
provide a clear and concise summary of the patient’s condition, highlighting
the presence of pneumonia and the extent of the infection in the left lower
lobe. In this way, the LLM could correct errors in the generated report based
on the results fromCADnetworks.As shown inFig. 2, experiment shows that
our scheme could improve the diagnosis performance score of the state-of-
the-art report generation methods by 16.42% points. A major benefit of our
approach is the utilization of LLM’s robust logical reasoning capabilities to
combine various decisions from multiple models provided by multiple
vendors. This allows us to update CAD model individually. For instance, in
response to an emergency outbreak such as COVID-19, we can add a
pneumonia classification model (differentiating between community-
acquired pneumonia and COVID-1924) using very few cases without affect-
ing the other models.

Another advantage of LLMs to CADmodels is that their extensive and
robust medical knowledge can be leveraged to provide interactive

explanations and medical advice as we illustrate in Fig. 1b. For example,
based on an image and generated report, patients can inquire about
appropriate treatment options (left panel) or define medical terms such as
“airspace consolidation” (middle panel). Or with the patient’s chief com-
plaint (right panel), LLMs can explain why such a symptom happens. In this
manner, patients can gain a deeper understanding of their symptoms,
diagnosis, and treatment more efficiently. It can efficiently help patients to
reduce consultation costs with clinical experts. As the performances of CAD
models and LLMs become increasingly improved and these models can be
jointly trained in the future, the proposed scheme has the potential to
improve the quality of radiology reports and enhance the feasibility of online
healthcare services.

Results
Diagnostic accuracy of generated reports
In this paper, we evaluate the performance of the combination of a report
generation network (R2GenCMN25) and a classification network
(PCAM26). The result is compared to the baseline R2GenCMN25,
CvT2DistilGPT227, and PCAM26. On the basis of clinical importance and
prevalence, we focus on five kinds of observation. Three metrics, including
precision (PR), recall (RC), and F1-score (F1), are reported in Table 1.

The strength of our method is clearly shown in Table 1. It has obvious
advantages in RC and F1, and is only weaker than R2GenCMN in terms of
PR. Our method has a relatively high Recall and F1-score onMIMIC-CXR
dataset. For all five kinds of diseases, both CvT2DistilGPT2 and
R2GenCMN show inferior performance to ourmethod concerning RC and
F1. Specifically, their performances on Edema and Consolidation are rather
low. Their RC values on Edema are 0.468 and 0.252, respectively, while our
method achieves the RC value of 0.626 based on GPT-3. The same phe-
nomenon can be observed in Consolidation, where the first two methods
hold the values of 0.239 and 0.121 while ours (GPT-3) drastically outper-
forms them, with the RC value of 0.803. The R2GenCMN has a higher PR
value compared to ourmethodon three offive diseases.However, the cost of
R2GenCMN’s high performance on Precision is its weakness in the other
twometrics,which can lead to biased report generation, e.g., rarely reporting

Fig. 1 | ChatCAD: anAI-assistedmedical diagnosis and advice system. aOverview
of our proposed strategy. The image is processed by various networks to generate
diverse outputs, which are then transformed into text descriptions. The descriptions,
served as a link between visual and linguistic information, are combined as inputs to

a large language model (LLM). With its ability to reason and its knowledge of the
medical field, the LLM can provide a condensed report. b Interactive explanations
and medical advice from ChatCAD.
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any potential diseases. At the same time, our method has the highest F1
among all methods, and we believe it can be the most trustworthy report
generator. The other strength of our method lies in its scaling performance.

It isworthnoting that our proposedChatCADframework significantly
outperforms both R2GenCMNand PCAM. This superior performance can
be attributed to ChatGPT’s advanced reasoning capabilities, which effec-
tively synthesize information from multiple sources to produce a more
comprehensive and accurate report. We believe this phenomenon further
underscores the superiority of ChatCAD and demonstrates its considerable
potential for clinical applications. It would also be beneficial to explain the
results from the perspective of continual learning to provide deeper insights
for our readers.UnlikeR2GenCMNandPCAM,whichare trained solely on
the MIMIC-CXR and CheXpert datasets respectively, ChatCAD benefits
from sequential learning on MIMIC-CXR, CheXpert, and additional
datasets used to train the large language model (as shown in Table S1
in Supplementary). This large language model acts as a general interface,
integrating knowledge from these diverse datasets while avoiding cata-
strophic forgetting. In summary, the improvements in accuracy of Chat-
CAD over the baselines could be attributed to both the enhanced
methodology and the broader access to training data.

Qualitative analysis on prompt designs
Theprocess ofChatCAD, as shown inFig. 1a, is a straightforwardprocedure
consisting of the following steps: Firstly, examination images, such as X-
rays, are inputted into pre-trained CAD models to obtain results. These
results are then transformed, often in tensor format, into natural language.
Next, language models are employed to summarize the findings and
establish a conclusion. Additionally, the results obtained from the CAD
models are utilized to facilitate a conversation regarding symptoms, diag-
nosis, and treatment. In order to investigate the impact of prompt design on
report generation, we have developed prompts, which are depicted in Fig. 3.

Reports generated from Prompt #2 and Prompt #3 are generally
acceptable and reasonable in most cases as one can observe in Fig. S1 and
Fig. S2 in Supplementary. “Network A” is frequently referenced in the
generated reports. Some prompt tricks, e.g., “Revise the report based on
results fromNetwork A but without mentioning Network A”, can be applied
to remove itsmention.Wedonot utilize these tricks in current experiments.

Performance of ChatCAD using different LLMs
Different from ChatGPT, which can only be accessed via online request,
language models such as LLaMA can be used and fine-tuned in local com-
puters without data privacy issues. To evaluate generalizability of ChatCAD

and also to validate its potential value in clinical practice, we have experi-
mented with a range of LLMs, including LLaMA-1, LLaMA-2, and several
others. The results of our experiments are presented in Table 2, which
compares F1-scores of different LLMs, including general-purpose models,
specialized medical models, and OpenAI’s GPT variants. As indicated in the
table, there are notable variations in performance across different conditions
and model architectures, providing valuable insights into the suitability of
eachmodel for theChatCADframework. It is noteworthy thatGPT-3 (175B)
does not achieve the best performance according to themacro-average of F1-
score, which means that a smaller LLM such as LLaMA-2 (13B) is capable
enough to assist the process of diagnosis following our proposed ChatCAD.

SinceGPTmodels are continuously updated,wehere also demonstrate
the evolving capabilities of LLMs within the ChatCAD framework. We
include the latest available versions, namely GPT-3.5 Turbo and GPT-4,
released in November 2023. The results of ChatCAD using different GPT
models, denoted by different model generations and release dates, are
presented in the bottom of Table 2.

Although the F1-scores for the latest GPT-3.5 Turbo model suggest a
slight decrease in performance on average compared to its larger pre-
decessors, it is still comparable to the best the open source model (LLaMA-2
as shown in Table 2) and offers several practical advantages. Notably, it is
smaller, costs less, and responds faster. TheGPT-3.5 Turbo’s lower F1-scores
relative to its larger GPT-3 andGPT-3.5 counterparts can be attributed to its
design optimization for increased speed and cost-effectiveness. These opti-
mizations involve a reduced parameter count, whichmay curtail themodel’s
capacity to intricately process the detailed information such as medical data.
Furthermore, the model’s tuning may favor responsiveness over the specia-
lized depth needed for medical report generation. Despite this, GPT-3.5
Turbo remains a viable option for applications where efficiency and afford-
ability takeprecedence, and the trade-off inperformancemightbe considered
acceptable for certain real-world scenarios.

In the case of GPT-4, our experiments have indicated a noticeable
enhancement in performance compared to all previous models, including
theGPT-3 family. This improvementmay stem fromseveral advancements.
• The improved performance of GPT-4 can be attributed to a refined

trainingdataset, including informationuntilApril 2023 (theoldones in
the 8th and 9th rows of Table 2 have some knowledge cutoff at Sept
2021), allowing formore current and specializedmedical content to be
leveraged in generating clinical reports.

• Additionally, GPT-4 should have more advanced capability in
following complex instructions, a feature that translates into more
precise and format-specificmedical image report generation.OpenAI’s

Fig. 2 | Performance evaluation of large language models in medical diagnosis. a F1-score comparison on 5 observations. b The diagnosis accuracy of different LLMs.
c The histogram of report length. Different color denotes different LLMs.
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release blog says, “GPT-4 Turbo performs better than our previous
models on tasks that require the careful following of instructions, such
as generating specific formats.”

• Moreover, the adoption of a novel mixture of experts architecture
contributes to this increased accuracy, as it allows the model to effi-
ciently manage a range of tasks by drawing on specialized subsets of
knowledge. This architectural innovation supports GPT-4’s ability to
deliver more contextually relevant and clinically accurate reports,
reflecting the latest advancements in language model design.

Qualitative evaluation of generated reports
In a clinical setting, there are more aspects than the above-mentioned
classificationmetrics that need to be evaluated. As a result, we have carefully
developed an experimental pipeline to evaluate clinical reports generated by
our proposed ChatCAD from two perspective: conciseness and appro-
priateness. Conciseness is vital to ensure the report being succinct and
focused, avoiding extraneous details that may detract from the primary
clinical message. Appropriateness measures whether the content is relevant
and clinically pertinent to the case at hand. These aspects are crucial for
clinicians who rely on precise and targeted information to make informed
decisions quickly.

Incorporating the experimental pipeline demonstrated in Supplemen-
tary Information into our study design (Fig. S3), we have structured an
experiment where each clinical expert is asked to evaluate 100 individual
cases. These cases are constructed from theMIMIC-CXR dataset, with each
image being paired with two types of reports: one generated by ChatCAD
and another authored by a radiologist. The reports, coupled with their
respective images, are merged and shuffled to ensure that each expert’s
assessment is unbiased and based solely on the quality of the reports con-
cerning themedical images.Wehave instituteda 5-point Likert scale system
(as demonstrated in Fig. S4 in Supplementary), to quantify the evaluations
systematically. This scale will range from 1 (significantly lacking), 2 (needs
improvement), 3 (adequate), 4 (above average), and 5 (exemplary), allowing
experts to provide a nuanced assessment of each report’s conciseness and
appropriateness. The experts will offer both quantitative rating and quali-
tative feedback for each report.

The experimental results of an experienced radiologist are selected and
displayed inFig. 4. Fromtheperspectiveof report conciseness, there remains
a significant gap between the diagnostic reports generated by AI and those
written by real doctors. Among 50 generated reports, 33 received evalua-
tions of 3 or below, while 17 received a rating of 4, indicating that the
majority ofAI-generated reports still lack fluency. In contrast, the fluency of
the real reports is notablyhigher,withmore reports receiving a ratingof 4 for
fluency. Regarding the metric of appropriateness, ChatCAD demonstrated
surprisingly impressive performance. From Fig. 4a, b, we can observe that
the vast majority of AI-generated reports (39) received a rating of 4, a
quantity even higher than the number of real reports (32). This highlights
the advantage of ChatCAD proposed in this paper in terms of report gen-
eration. Considering conciseness, ChatCAD-generated reports scored
3.40 ± 0.67, while human-written reports obtained 3.48 ± 0.58. ChatCAD
demonstrates impressive performance on appropriateness (3.84 ± 0.65),
showing superior performance to human-written reports (3.58 ± 0.64).

We also demonstrate results of the identification task in Fig. 4c, f. Two
subjects with different levels of exposure to AI techniques were asked to
discriminate AI-generated reports from samples presented to them. Sub-
jects with less exposure to AI showed a notable difficulty in distinguishing
AI-generated reports, achieving only a 55% accuracy. This suggests a lower
capability in discerning between human- and AI-generated content when
compared to thosewithmore familiaritywithAI technology. In contrast, the
subject with more experience in AI achieved a 73% accuracy, showcasing a
clearer ability to discriminate between human-generated and AI-generated
reports. The precision, recall, and F1-scores were notably higher as well,
indicating more robust capacity in differentiating between the two sources.
This can be further evidenced by the visualization in Fig. 4c, revealing the
potential of AI-generated reports in practical clinical scenarios.T
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In summary, our experimental evaluation, as shown in Fig 4, has
provided us with quantitative data on the conciseness and appropriateness
of ChatCAD-generated reports compared to human-authored ones. While
AI-generated reports may lack a degree of the linguistic fluidity typically
found in human reports (evidenced by a lower conciseness score), theyhave
demonstrated a high degree of appropriateness (p = 0.022 with paired t-

test). Remarkably, theAI-generated reports received higher appropriateness
scores than human-written reports in a significant number of cases.

This evidence suggests thatAI-generated reports,with their traceability
and consistency, could complement the work of human radiologists,
potentially mitigating issues related to experience variability, stress, and
fatigue.Wewill expand upon this discussion in ourmanuscript to highlight

Fig. 3 | Prompt designing. Three different prompt designs were proposed to bridge between tensor and text.

Table 2 | Comparison of F1-scores by different large language models (LLMs)

Open-source Model #Para Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Average

✓ LLaMA 42 7B 0.467 0.280 0.395 0.480 0.674 0.459

✓ LLaMA 42 13B 0.439 0.390 0.385 0.550 0.681 0.489

✓ LLaMA-2 43 7B 0.594 0.453 0.457 0.622 0.780 0.581

✓ LLaMA-2 43 13B 0.570 0.556 0.443 0.628 0.795 0.598

✓ Ziya44 13B 0.538 0.466 0.393 0.611 0.764 0.554

✓ ChatGLM 45 6B 0.556 0.340 0.373 0.559 0.746 0.515

✓ Mistral 46 7B 0.610 0.388 0.353 0.604 0.791 0.549

✗ GPT-31 175B 0.587 0.593 0.447 0.578 0.749 0.591

✗ GPT-3.51 175B 0.627 0.534 0.440 0.636 0.787 0.605

✗ GPT-3.5-Turbo1 20B 0.615 0.497 0.388 0.609 0.738 0.570

✗ GPT-41 220Bx8 0.639 0.551 0.465 0.621 0.790 0.613

Best results are indicated in bold.

Fig. 4 |Qualitative experimental results from an experienced expert. a–cAre from
an experienced clinical expert with limited experience using LLMs. While (d), (e),
and (f) are from a trainee with extensive experience using LLMs. aConciseness score
comparison. b Appropriateness score comparison. c Confusion matrix from a
subject with limited experience in AI, showing its performance in determining

whether the report was generated by ChatCAD. d Conciseness score comparison.
e Appropriateness score comparison. f Confusion matrix from a subject with
extensive experience in AI, showing its performance in determining whether the
report was generated by ChatCAD.
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how the integration of AI in radiological reporting could not only augment
the radiologist’s capabilities but also introduce an element of standardiza-
tion and reliability that is less susceptible to human factors.

Howmodel size affect report quality
In this section, we compare the performance of different LLMs for report
generation. OpenAI provides four different sizes of GPT-3 models
through its publicly accessible API: text-ada-001, text-babbage-001 (1.3
billion parameters), text-curie-001 (6.7 billion parameters), and text-
davinci-003 (175 billion parameters). The smallest text-ada-001 can not
generate meaningful reports and is therefore not included in this
experiment. We report the F1-score of all observations in Fig. 2b. It is
noteworthy that languagemodels struggle to performwell in clinical tasks
when their model size is limited. The diagnostic performances of text-
babbage-001 and text-curie-001 are subpar, as demonstrated by their low
average F1-scores over five observations compared with the last two
models. The improvement in diagnostic performance is evident in text-
davinci-003, whose model size is hundreds of times larger than that of
text-babbage-001. On average, text-davinci-003’s F1-score is improved
from 0.471 to 0.591. The ChatGPT is slightly better than text-davinci-003,
achieving the improvement of 0.014, and their diagnostic abilities are
comparable. Thedetails can be observed inTable 3.Overall, the diagnostic
capability of languagemodels is proportional to their size, highlighting the
critical role of the logistic reasoning capability of LLMs. In our experi-
ments, it can be observed that more capable models generally produce
longer reports as shown in Fig. 2c. At the same time, nearly 40% of reports
generated by text-babbage-001 and nearly 15%of reports from text-curie-
001 have no meaningful content.

Interactive and understandable CAD
A major advantage of our approach is the utilization of LLM to combine
various decisions from multiple CAD models. This allows us to fine-tune
each CAD model individually and ensemble them incrementally. For
instance (c.f. Fig. 5a), in response to an emergency outbreak such as
COVID-19, we can add a pneumonia classificationmodel that differentiates
between community-acquired pneumonia and COVID-19 infection. This
process requires very few data and thus is very flexible. For example, 28 used
204 COVID-19 cases and reached 90% points diagnosis accuracy. The final
report will then highlight the effectiveness of our approach in improving the
overall accuracy and reliability of CAD systems, as well as its potential for
rapid adaptation to emerging situations such as disease outbreaks. By
leveraging LLM, we can seamlessly integrate new models and adjust the
weighting of each model to achieve optimal performance.

TheproposedChatCADalsooffers several benefits, including its ability
to utilize LLM’s extensive and reliable medical knowledge to provide
interactive explanations and advice. As shown in Fig. 5e, f, two examples of
the interactive CAD are provided, with one chat discussing pleural effusion
and the other addressing edema and its relationship to swelling.

Through this approach, patients can gain a clearer understanding of
their symptoms, diagnosis, and treatment options, leading to more efficient
and cost-effective consultations with medical experts. As language models
continue to advance and become more accurate with access to more
trustworthy medical training data, ChatCAD has the potential to sig-
nificantly enhance the quality of online healthcare services.

Discussion
In this paper, we explore a framework, ChatCAD, introducing LLMs in
CAD. The proposed method, however, still has limitations to be solved.

First, LLM-generated reports are not human-like in a certainway. LLM
is likely to output sentences like “Network A’s diagnosis prediction is
consistentwith thefindings in the radiological report”or “Thefindings from
Network A’s diagnosis prediction are supported by the X-ray”. This is
reflected in natural language similarity metrics when we compare them to
our baseline method. ChatCAD improved the diagnosis accuracy but
dropped theBLEUscore29.Wedidn’t provide the networkwith the patient’s
major complaint due to unavailability of such data, which may differ from
practical scenarios. We believe the LLMs can process more complex
information than what we currently provide. Better datasets and bench-
marks are needed.

In the ChatCAD framework, addressing data privacy is paramount,
especially when handling sensitive clinical data. While the framework
leverages GPT models for enhanced decision support, it is designed with
strict adherence to data protection and privacy laws, such as HIPAA in the
United States, GDPR in the European Union, and other relevant regula-
tions. Personal patient data, including identifiable information and clinical
details, are not uploaded or processed by the GPTmodels unless specifically
designed and ensured to be compliant with all legal requirements. The
system can be configured to work with de-identified data, minimizing the
risk of any data breach. Additionally, any interaction with the model,
especially in a clinical setting, is usually conducted within secure, encrypted
channels, and all data handling protocols are rigorously defined to uphold
confidentiality and privacy. It’s crucial that any deployment of such tech-
nology is accompanied by thorough risk assessments, compliance checks,
and continuous monitoring to adapt to the evolving landscape of data
privacy and security.

Our experiments demonstrate the significant impact of language
model size on diagnostic accuracy. Larger, more advanced LLMwith fewer
hallucination phenomena30 may improve the accuracy and report quality
further.However, the role of vision classifiers has not yet been explored, and
additional research is necessary to determine if models such as ViT31 or
SwinTransformer32, which boast larger parameters, can deliver improved
results. On the other hand, LLMs can also be used to help the training of
vision models, such as correcting outputs of vision models using related
medical knowledge learned in LLMs.

An important limitation is that the CheXbert model is not 100%
accurate. The CheXbert model, which we employed to convert ChatCAD-
generated text reports into class labels for quantitative evaluation, was
initially trainedonhuman-written reports.Althoughour initial experiments
didnot reveal significant errors,we acknowledge that the stylistic differences
between ChatCAD-generated content and human-authored reports could
potentially impact the performance of learning-based labeling tools such as
CheXbert. As such, we emphasize the necessity for more sophisticated
labeling mechanisms and robust evaluation methods to support the inte-
gration of LLMs into actual clinical practice.

While LLMs have excelled in various natural language understanding
tasks, it remains uncertain whether existing architectures of LLMs can
employ inductive, deductive, and abductive reasoning skills, which is
crucial for practical applications in clinical workflows. This question has
raised considerable interest33–37. References34,35 argue that LLMspossess few-

Table 3 | F1-score comparison of different-size LLMs

Model Size Cardiomegaly Edema Consolidation Atelectasis Pleural Effusion Average

text-babbage-001 ~1.3B 0.350 0.479 0.418 0.471 0.639 0.471

text-curie-001 ~6.7B 0.529 0.451 0.369 0.515 0.674 0.508

text-davinci-003 ~175B 0.587 0.593 0.447 0.578 0.749 0.591

ChatGPT ~175B 0.627 0.534 0.440 0.636 0.787 0.605

Best performance are indicated in bold.
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shot logical reasoning capabilities. In contrast37, discovers that while
ChatGPT and GPT-4 generally perform well on specific benchmarks, their
performance noticeably deteriorates when faced with new or out-of-
distribution datasets. Reference36 extensively test ChatGPT andGPT-4 on a
variety of reasoning benchmarks, and find that they can be easily misled by
human instructions. This highlights the lack of robustness in LLMs
regarding user doubts and suggests a limited depth of knowledge
understanding.

Moreover, the specifics of this paper have not been discussed with any
clinical professionals, and therefore it still lacks rigor inmanyplaces.Wewill
need to collaborate with clinical experts and conduct further research to
ensure accuracy and reliability.

Methods
Dataset and implementation
In this paper, we evaluate the performance of a report generation on the
MIMIC-CXR dataset38, which is a large-scale public dataset including chest
x-ray images and free-text radiology reports. At the same time, the classi-
fication network here refers to the PCAM26, which is trained on CheXpert
dataset39. Note that CheXpert is a large public dataset for chest radiograph
interpretation, consisting of 224,316 chest radiographs of 65,240 patients.
Our report generation network is R2GenCMN25 which is trained on the
MIMIC-CXR.

The reports from the LLMs are tested on the official test set of the
MIMIC-CXR dataset. In particular, 300 cases are randomly selected,

Fig. 5 | Extensibility, knowledge integration, and interactivity of ChatCAD sys-
tem. a ChatCAD can seamlessly integrate new CADmodels. b–d Leveraging LLM's
comprehensive medical knowledge base to offer dynamic explanations and tailored
advice. e, f Two examples showcasing the interactive CAD capabilities of our fra-
mework in conjunction with ChatGPT. In (e), the blue text represents a follow-up

task concerning the fluid observed in the x-ray image, while the green text pertains to
the relationship between an individual’s health condition and pleural effusion. In (f),
the blue text focuses on the topic of swelling and its underlying causes, while the
green text presents a follow-up question regarding how lungs impact the circulatory
system of fluids.
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including 50 cases of Cardiomegaly, 50 cases of Edema, 50 cases of Con-
solidation, 50 cases of Atelectasis, 50 cases of Pleural effusion, and 50 cases
with no findings. The evaluation is performed using the open-source library
CheXbert40. It takes text reports as input and generates multi-label classifi-
cation labels, each corresponding to one of the 14 pre-defined thoracic dis-
eases, for every report. We hence extract predicted and ground-truth labels
and compute metrics based on comparison between these extracted labels.

The LLMs are updating constantly to include more new knowledge
and events, leading to the improvement of their reasoning capability. The
GPT-3 model used in this paper is text-davinci-003 which was released by
OpenAI on Feb. 2023 based on InstructGPT41. Themaximum length of the
output sentences is set to 1024 and the temperature is set to 0.5. The
ChatGPT3 model used is the Jan-30-2023 version.

Bridge the gap between image and text
As shown in Fig. 1a, ChatCAD’s process is simple and consists of the
following steps: (1) Input examination images (e.g., X-Ray) into pre-trained
CAD models to obtain results; (2) Convert these results (often in tensor
form) into natural language; (3) Use language models to summarize the
findings anddraw a conclusion; (4)Utilize the results from theCADmodels
to engage in a conversation regarding symptoms, diagnosis, and treatment.
This section focuses on the second step, i.e., how to effectively design the
prompt that translates the output results (usually in tensor form) into
natural language.

A natural way of prompting is to show all five kinds of pathology and
their corresponding scores. We first tell the LLM “Higher disease score
means higher possibility of illness” as the basic rule in order to avoid some
misconceptions. Then, we represent this network (assumed as the first
network) prediction of each disease as “Network A: ${disease} score:
${score}”. Finally, we end the prompt with “Refine the report based on the
results fromNetworkA” if a report generationnetwork is available as shown
in Fig. 1a. If there is no report generation network, this part of the prompt
will be “Write a Chest X-Ray radiology report based on the results from
Network A”.

We then notice that the LLMs are heavily influenced by this type of
prompt, usually repeating all the numbers in the refined report. Reports
generated from this prompt are very different from radiologists’ reports
since concrete diagnostic scores are not frequently used in clinical settings.
To alignwith the language commonly used in clinical reports, we propose to
transform the concrete scores into descriptions of disease severity, which
will divide the scores into four categories: “No sign” (0.0–0.2), “Small pos-
sibility” (0.2–0.5), “Likely” (0.5–0.9), and “Definitely” (0.9 and above).These
categories will be used to describe the likelihood of each of the five obser-
vations. We finally tested a more concise one that reports diseases with
diagnosis scores higher than 0.5 in the prompt. If no prediction is made
among allfive diseases, the promptwill be “NoFinding”.We found both the
“severity descriptions” and concise one have similar performance, so we
used the concise one for the short prompt thus faster inference and lower
cost. An example is illustrated in Fig. 3.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this work can be obtained from the code repository: https://
github.com/zhaozh10/ChatCAD and MIMIC-CXR dataset: https://
physionet.org/content/mimic-cxr/2.0.0/.

Code availability
All code used in this work can be obtained from the following publicly
accessible GitHub page: https://github.com/zhaozh10/ChatCAD.
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