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Abstract: Butyric acid produced in the intestine by butyric acid-producing bacteria (BAPB) is known
to suppress excessive inflammatory response and may prevent chronic disease development. We
evaluated whether fiber-rich barley intake increases BAPB in the gut and concomitantly butyric acid
in feces. Eighteen healthy adults received granola containing functional barley (BARLEYmax®) once
daily for four weeks. Fecal DNA before intake, after intake, and one month after intake was analyzed
using 16S rRNA gene sequencing to assess microbial diversity, microbial composition at the order
level, and the proportion of BAPB. Fecal butyric acid concentration was also measured. There were
no significant differences in diversities and microbial composition between samples. The proportion
of BAPB increased significantly after the intake (from 5.9% to 8.2%). However, one month after
stopping the intake, the proportion of BAPB returned to the original value (5.4%). Fecal butyric acid
concentration increased significantly from 0.99 mg/g feces before intake to 1.43 mg/g after intake
(p = 0.028), which decreased significantly to 0.87 mg/g after stopping intake (p = 0.008). As BAPB
produce butyric acid by degrading dietary fiber, functional barley may act as a prebiotic, increasing
BAPB and consequently butyric acid in the intestine.

Keywords: microbiota; butyric acid-producing bacteria; 16S rRNA gene sequencing; dietary fiber; prebiotics

1. Introduction

More than 100 trillion bacteria, including 1000 different species, form the gut mi-
crobiota in the human intestine, greatly affecting human health [1]. Butyric acid, one of
the short chain fatty acids (SCFA) produced by butyric acid-producing bacteria (BAPB)
(e.g., portion of Alistipes and Porphyromonas (order Bacteroidales); Clostridium, Eubacterium,
Feacalibacterium, and Roseburia (order Clostridiales)) in the intestine, has garnered attention
owing to its role in the maturation of regulatory T cells in the intestine, which suppress
excessive immune responses [2,3]. A decrease in BAPB in the intestine and in fecal butyric
acid concentration has been reported in patients with idiopathic nephrotic syndrome [4,5],
food allergy [6], cerebrovascular disease [7], and type 2 diabetes [8,9]. Therefore, increasing
BAPB in the gut microbiota may aid in the prevention and treatment of various chronic
diseases. Although probiotics have been employed extensively to correct gut microbiota
imbalance (dysbiosis), their effects are limited, as most probiotics only pass through the
intestine without residing in and modulating the gut microbial composition [10,11]. In-
stead, the efficacy of prebiotics has been receiving attention recently. According to the
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International Scientific Association for Probiotics and Prebiotics, prebiotics are defined as
“a substrate that is selectively utilized by host microorganisms conferring a health benefit”
and include dietary fibers such as β-glucan, fructan, resistant starch, and oligosaccha-
rides [12]. Whole-grain products using corn, wheat, and barley are known to regulate
the gut microbiota owing to their high content of dietary fiber [13–15]. BARLEYmax®, a
line of non-genetically modified barley developed by the Commonwealth Scientific and
Industrial Research Organization, contains twice the amount of dietary fiber and four
times the resistant starch compared to regular barley and is reported to elevate the fecal
SCFA concentration [16]. However, no study has analyzed its effect on the human gut
microbiota, especially focusing on butyric acid. Therefore, we evaluated whether the intake
of fiber-rich barley, BARLEYmax, elevates fecal butyric acid concentration by increasing
BAPB in the gut of healthy adults.

2. Results
2.1. Participants’ Characteristics

A total of the 20 participants took part in this study; however, the analysis was
performed on 18 participants after excluding two participants (owing to antibiotic use
during the study period). The median age of the subjects, including 12 males (67%), was
35.9 years (IQR, 33.8–41.6 years). Seventeen participants (94%) were born vaginally. Median
body mass index was 22.0 (19.6–24.6). Fifteen participants had allergic diseases, mostly
allergic rhinitis (14 participants). Three participants were taking anti-histamine drugs for
allergic rhinitis and one participant was taking magnesium oxide for constipation. Twelve
participants (67%) were taking probiotics constantly. The compliance rate for BARLEYmax
(the percentage of days for which participants had BARLEYmax during the 28-day study
period) was 78% (64–93%) (Table 1).

Table 1. Characteristics of participants.

n = 18

Sex, male (%) 12 (67%)

Age (years) 35.9 (33.8–41.6)

Body mass index 22.0 (19.6–24.6)

Mode of delivery, vaginal delivery (%) 17 (94%)

Allergic disease (%) 15 (83%)
Allergic rhinitis (%) 14 (78%)
Atopic dermatitis (%) 1 (6%)

Daily use of prescription drugs (%) 4 (22%)
Antihistamine (%) 3 (17%)
Magnesium oxide (%) 1 (6%)

Daily use of probiotics (%) † 12 (66%)

Compliance rate (%) ‡ 79% (64–93%)

Consumed BARLEYmax granola
BARLEYmax alone 6 (33%)
With Milk 8 (44%)
With Yogurt 3 (17%)
With Soy milk 1 (6%)

Data are expressed as number (%) or median (IQR). † Four or more times per week of eating yogurt, cheese, miso
(fermented soybean paste), pickles, probiotic drink, or probiotic supplements. ‡ Percentage of days for which
participants took granola during the 28-day study period.

2.2. Alpha Diversity

There was no significant difference in the numbers of observed species between the
pre, post, and 1M groups (46 [IQR, 38–50], 45 [42–50], and 44 [38–50], respectively, p > 0.05).
Moreover, there were no significant differences in Shannon and Simpson indices (Shannon
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index: 4.10 [3.96–4.41], 4.01 [3.81–4.14], and 4.15 [3.53–4.23], respectively, p > 0.05; Simpson
index: 0.91 [0.88–0.93], 0.89 [0.87–0.92], and 0.91 [0.85–0.92], respectively, p > 0.05) (Figure 1A).
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2.3. Beta Diversity

To evaluate the differences in gut microbiota between the pre, post, and one-month
groups, a principal coordinates analysis plot of Bray–Curtis dissimilarity was generated,
and the sample was characterized in two dimensions. No apparent clusters were observed
before and after the intake of BARLEYmax (Figure 1B).

2.4. Taxonomic Composition

At the order level, Clostridiales and Bacteroidales were predominant among the
samples. Although not statistically significant, the abundance of Clostridiales before
BARLEYmax intake was 33.3%, which decreased to 30.4% after one month of intake
(p = 0.30). The abundance of Bacteroidales increased from 16.1% before intake to 19.5%
after intake (p = 0.51). Other bacterial orders did not show any significant changes before
and after intake (Figure 1C).
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2.5. Comparison of BAPB

The proportion of BAPB was 5.9% (2.4–6.8%) before intake, which increased significantly to
8.2% (3.7–10.8%) after the intake. However, one month after stopping the intake, the proportion
decreased to the same level as that before the intake (5.4% [2.3–9.0%]) (Figure 2A).
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2.6. Comparison of Fecal Organic Acid Concentration

Fecal organic acid concentrations were estimated in the samples containing de-
tectable levels of corresponding organic acids (14, 10, and 15 samples in the pre, post,
and 1M groups, respectively). Representative chromatograms of SCFAs at the three time
points of one participant are shown in Supplementary Figure S1. Butyric acid concentra-
tion increased significantly from 0.99 mg/g (0.74–1.04 mg/g) before intake to 1.43 mg/g
(1.05–1.58 mg/g) after intake (p = 0.028), which decreased significantly to 0.87 mg/g after
stopping the intake (0.62–1.06 mg/g; p = 0.008) (Figure 2B, left). Propionic acid concentra-
tion increased significantly from 1.16 mg/g (0.98–1.29 mg/g) before intake to 1.82 mg/g
(1.55–2.22 mg/g) after intake (p = 0.018), which decreased significantly to 1.00 mg/g
(0.85–1.49 mg/g; p = 0.021) (Figure 2B, center). Acetic acid concentration increased signifi-
cantly from 2.79 mg/g (2.54–3.14 mg/g) before intake to 4.63 mg/g (3.38–4.74 mg/g) after
intake (p = 0.018), which decreased significantly to 2.85 mg/g (1.97–3.19 mg/g; p = 0.016)
(Figure 2B, right).

2.7. Post-Hoc Power Analysis

A post hoc power analysis was conducted to evaluate the outcome of the relative
abundance of BAPB. The effect size of data was 0.430. When the two-sided type I error was
set to 0.05, the power was 0.795, which was almost equivalent to the power 0.8 set as priori
power analysis. Therefore, the initial sample size was confirmed to be efficient.

3. Discussion

In this study, we compared the gut microbiota of 18 healthy adults before and after
BARLEYmax intake. We found that BARLEYmax increased the proportion of BAPB in the
gut microbiota without a substantial change in the gut microbial composition. Moreover,
we observed a corresponding increase in the concentration of fecal organic acids, including
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butyric acid. BARLEYmax is rich in dietary fibers such as β-glucan, fructan, and resistant
starch. These components may have worked as prebiotics in the gut, resulting in the
increase in BAPB.

It has been reported that functional barley intake increases the fecal SCFA concen-
tration [16]. Bird et al. conducted a randomized crossover study in 17 healthy adult men
consuming the Himalaya 292 grain (another line of fiber-rich barley), whole wheat, or
refined cereal-based foods daily for 4 weeks [16]. The butyric, propionic, and acetic acids
were significantly higher in samples collected 48 h after the intake of Himalaya 292 grain
than in samples collected after the intake of whole wheat or refined cereal. Our study
reports a similar increase in fecal organic acids following the intake of BARLEYmax. How-
ever, Bird et al. did not assess the changes in the gut microbiota and their correlation
with the fecal organic acids. To our knowledge, this is the first study demonstrating that
BARLEYmax increased the fecal organic acid concentration through the changes in the gut
microbiota in humans.

Here, we discuss the components of BARLEYmax that may function as prebiotics,
thus altering the gut microbiota and organic acid production. Aoe et al. randomly divided
male Sprague Dawley rats into three groups that were fed BARLEYmax, BG012 (a high
β-glucan barley line), or diet containing 5% cellulose (control) and analyzed the fecal
SCFAs and gut microbiota in the cecal and distal colonic digesta. The concentration of total
SCFAs was significantly high only in the BARLEYmax group [17]. This study suggested the
possibility that fructan and resistant starch, rather than β-glucan, affects the gut microbiota
and production of organic acids.

Although inulin, a type of fructan, was reported to affect the gut environment in sev-
eral studies, it did not affect the butyric acid production in the gut. Neyrinck et al. reported
that three months of 12 g/day inulin intake did not affect the fecal SCFA concentration
in adults with obesity [18]. Similarly, a placebo-controlled, double-blind crossover trial
on 50 healthy adults using 7 g of inulin or placebo per day reported that although the
proportion of Bifidobacterium was higher in the inulin group, SCFA did not differ between
the groups [19].

Resistant starch, relatively indigestible in the small intestine, is reported to reach the
colon and change the gut microbiota. Walker et al. conducted a randomized crossover
trial comparing the gut microbiota in 14 obese male volunteers consuming meals rich in
either type-3 resistant starch or non-starch polysaccharides, for three weeks. The group
that consumed resistant starch showed increased abundance of Ruminococcus bromii and
Eubacterium rectale [20]. Similar results were reported in another study conducted in the
participants consuming meals with type-2 resistant starch [21]. R. bromii and E. rectale are
both BAPB, suggesting that resistant starch may promote BAPB growth in the gut.

In our study, BARLEYmax intake led to a moderate increase in Bacteroidales and a
decrease in Clostridiales, though not significant. These results are strikingly similar to
those obtained by Aoe et al., where the abundance of Bacteroidetes (includes the order
Bacteriodales) was higher and that of Firmicutes (includes the order Clostridiales) was
lower in the colonic digesta of rats fed BARLEYmax [17]. A possible reason for the low
statistical significance in our study may be related to the amount of functional barley intake.
While the intake of dietary fiber in the aforementioned study in rats consisted solely of
functional barley, the dietary fiber content in our study food was 5.72 g per 40 g of granola,
which is a quarter of the recommended dietary fiber intake in Japanese men (21 g per day) [22].

Our study has several limitations. First, we cannot deny the possibility that ingredients
other than functional barley present in the study food affected the gut microbiota. A
randomized placebo-controlled study would address this drawback. Second, our study
does not reveal the effects of gut microbiota alteration on the immune system. Further
studies are recommended, including the determination of Tregs proportion in peripheral
blood lymphocytes. Third, since our study predominantly includes young males with high
prevalence of allergic diseases (83%), it may be difficult to extrapolate our result to the
healthy adult population in a generalized manner. However, a recent report suggests a
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high prevalence of allergic diseases (approximately 50%, predominantly allergic rhinitis) in
the Japanese population [23]. Therefore, we believe that our study subjects are not distinct
outliers, and in fact may be a rough representation of the Japanese population with respect
to allergic diseases. Lastly, we recruited subjects only from one region of Japan; hence, our
findings may not be applicable to other areas or ethnic groups. However, because the gut
microbiota varies by race and nation, our results are useful only as a genuine microbiota
profile of Japanese people.

Studies on BAPB and butyric acid in the gut have recently gained increased interest,
as these are reported to be lower in patients with various chronic diseases. We previously
reported the decrease in BAPB in pediatric patients with idiopathic nephrotic syndrome
and chicken egg allergy [4,6]. It is therefore expected that the consumption of BARLEYmax
could increase BAPB and butyric acid in the intestine, thereby preventing and treating
various chronic diseases. In conclusion, the intake of dietary fiber-rich barley increases the
fecal butyric acid concentration by promoting the growth of BAPB in the intestine.

4. Materials and Methods
4.1. Participants and Study Design

This study was conducted between June 2020 and December 2020 at the Kansai
Medical University, Osaka, Japan. Twenty healthy adults (aged 18–65) were enrolled
in the study. Information on the mode of delivery at birth, history of allergic diseases,
antibiotic consumption in the last 3 months, and intake of probiotics were collected using
a questionnaire. Intake of probiotics was defined as four or more times per week of
consuming yogurt, cheese, miso (fermented soybean paste), pickles, probiotic drinks, or
probiotic supplements. Participants received 40 g of granola containing BARLEYmax once
each day for more than four times per week, for four weeks. The participants were not
instructed on the schedule and the method of intake of BARLEYmax. Information on the
consumption of BARLEYmax alone, with yogurt, with milk, or with soymilk, was collected
using a questionnaire. Stool samples were collected thrice; at the start of eating granola, one
month after eating granola, and one month after finishing eating granola (pre, post, and
1M, respectively). The participants were excluded from the study if they did not consume
granola at least four times per week or consumed antibiotics during the study period.
Stool samples were processed for 16S rRNA gene sequencing and the estimation of organic
acids. The primary outcome was the changes in the relative abundance of BAPB. BAPB
were defined as the 61 bacterial species reported in a previous study [24]. The secondary
outcomes were the alpha and beta diversity, relative abundance of bacteria at the order
level, and fecal organic acid concentration.

4.2. Study Food: BARLEYmax Granola

The study food included 40 g of BARLEYmax granola (TEIJIN LIMITED, Tokyo, Japan)
containing 20.4 g of BARLEYmax. It consisted of brown sugar syrup, oats, puffed brown
rice, coconut, rice oil, prune puree, dried mango, dried papaya, dried pineapple, and citric
acid. Regarding the nutritional facts, 40 g of the study food contained 169 kilocalories, 3.32 g
of protein, 5.76 g of fat, 23.08 g of sugar, 5.72 g of dietary fiber, and 0.48 g of resistant starch.
Dietary fiber constituted 1.2 g of β-glucan and 2.32 g of fructan. The nutrient components
were analyzed by the Japan Food Research Laboratories (Tokyo, Japan). The amount of
total resistant starch, β-glucan, and fructan were measured using the resistant starch kit,
mixed-linkage beta-glucan kit, and fructan kit, respectively (Megazyme, Sydney, Australia).

4.3. Stool Sampling and 16S rRNA Gene Sequencing

Stool samples (2 g) were collected per sampling by using a small sterilized spoon
provided with the container and stored at −80 ◦C within 4 h of defecation until further
analysis. The stool samples were thawed, and DNA was extracted using a Nucleo Spin
DNA Stool Kit (MACHEREY-NAGEL, Düren, Germany). The seven hypervariable regions
of the DNA, excluding v1 and v5 of the 16S rRNA region, were amplified using a 16S
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metagenomics kit following the manufacturer’s instructions (Thermo Fisher Scientific,
Waltham, MA, USA). After refinement, a library was generated using the Ion Plus Fragment
Library Kit and Ion Xpress Barcode Adapters Kit (Thermo Fisher Scientific, Waltham, MA,
USA). The barcoded library was quantified and pooled to generate the final concentration of
50 pM per target using the Ion Universal Library Quantification Kit with the Quant Studio
5 system (Thermo Fisher Scientific, Waltham, MA, USA). The Ion Chef Instrument and the
corresponding kit were used to achieve target concentrations for template preparation and
emulsion PCR, and sequence analysis was performed using the Ion Gene Studio S5 System
and Ion 530 chip (Thermo Fisher Scientific, Waltham, MA, USA). The sequence data were
analyzed using Ion Reporter Software with the Metagenomics 16S w1.1 v5.16 workflow
(Thermo Fisher Scientific, Waltham, MA, USA).

4.4. High Performance Liquid Chromatography

SCFA concentration was measured by TechnoSuruga Laboratory Co., Ltd., Shizuoka,
Japan. Briefly, 0.1 g of feces was placed in a 2.0 mL tube with zirconia beads and suspended
in MilliQ water. The samples were heated at 85 ◦C for 15 min, vortexed at 5 m/s for
45 s using FastPrep 24 5G (MP Biomedicals, CA, USA), and centrifuged at 15,350× g
for 10 min. The filtered supernatants were measured for organic acids (acetic, propionic,
and butyric acids) using high performance liquid chromatographic system (Prominence,
SHIMADZU, Kyoto, Japan) consisting of a post-column reaction, a detector (CDD-10A,
SHIMADZU, Kyoto, Japan), two tandemly arranged columns (Shim-pack SCR-102 (H),
300 mm × 8 mm ID, SHIMADZU, Kyoto, Japan), and a guard column (Shim-pack SCR-102
(H), 50 mm × 6 mm ID, SHIMADZU, Kyoto, Japan) [25]. The system was used with a mobile
phase (5 mM p-toluenesulfonic acid) and a reaction solution (5 mM p-toluenesulfonic acid,
100 µM EDTA, and 20 mM Bis-Tris). The flow rate and oven temperature were 0.8 mL/min and
45 ◦C, respectively. The detector cell temperature was maintained at 48 ◦C.

4.5. Statistical Analysis and Sample Size

Continuous variables were expressed as medians and interquartile ranges (IQR), and
categorical variables were expressed as numbers and percentages. The Wilcoxon signed-
rank test was used for statistical analysis, and a p-value of less than 0.05 was considered
statistically significant. To calculate the appropriate sample size for the study, we conducted a
priori power analysis using G*Power version 3.1.9.4 (Heinrich-Heine University, Düsseldorf,
Germany) [26], with an effect size of 0.8 and two-sided type I error of 0.05. Because a sample
size of 15 would provide a power of 0.8, 20 people were recruited, owing to the dropout rate
estimation of 25%. To verify the results, a post hoc power analysis for the primary outcome
was performed with a two-sided type I error of 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/metabo11080559/s1, Figure S1: Representative chromatograms of short chain fatty acids at the three time
points (pre, post, and 1 month) in one participant using high performance liquid chromatography.
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