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We have previously shown that GSH depletion alters global metabolism of cells. In the present study, we applied a metabolomic
approach for studying the early changes in metabolism in hydrogen peroxide- (H2O2-) treated hepatoma cells which were
destined to die. Levels of fructose 1,6-bisphosphate and an unusual metabolite, sedoheptulose 1,7-bisphosphate (S-1,7-BP), were
elevated in hepatoma Hep G2 cells. Deficiency in G6PD activity significantly reduced S-1,7-BP formation, suggesting that
S-1,7-BP is formed in the pentose phosphate pathway as a response to oxidative stress. Additionally, H2O2 treatment
significantly increased the level of nicotinamide adenine dinucleotide phosphate (NADP+) and reduced the levels of ATP and
NAD+. Severe depletion of ATP and NAD+ in H2O2-treated Hep G2 cells was associated with cell death. Inhibition of
PARP-mediated NAD+ depletion partially protected cells from death. Comparison of metabolite profiles of G6PD-deficient cells
and their normal counterparts revealed that changes in GSH and GSSG per se do not cause cell death. These findings suggest
that the failure of hepatoma cells to maintain energy metabolism in the midst of oxidative stress may cause cell death.

1. Introduction

Reactive oxygen species (ROS) are implicated in a number of
physiological and pathophysiological processes. Depending
on their level, ROS can serve as signaling molecules to pro-
mote cell proliferation or as mediator of cell death. Exposure
to relatively high levels of oxidant induces apoptosis and
necrosis. ROS inflict damages to cellular macromolecules,
which, if not repaired, elicit apoptosis and necrosis [1, 2].
Normally, cells are equipped with an arsenal of antioxidants
to impose a control on ROS generation [3, 4]. For instance,
glutathione (GSH) acts as substrate for antioxidative
enzymes. Glutathione peroxidase catalyzes reduction of
hydroperoxides, accompanied by oxidation of GSH to its
disulfide form. The latter is reduced back to GSH through
the activity of glutathione reductase. NADPH is needed as a

coenzyme in the latter reaction. Inefficient NADPH produc-
tion and GSH regeneration are known to promote death of
cells under oxidative stress [5].

Maintenance of antioxidative defense depends on active
metabolism. Oxidative stress rapidly increases the flux of glu-
cose into the pentose phosphate pathway (PPP) and NADPH
production. PPP activation is involved in cytoprotection
against oxidative damage [6]. Consistent with this, glucose
6-phosphate dehydrogenase- (G6PD-) deficient cells are
more susceptible to diamide-induced GSH depletion [5]
and utilize different biochemical pathways in an attempt to
maintain their GSH and NADPH pools [7, 8]. The GSH bio-
synthesis and NAD phosphorylation are upregulated at the
cost of excessive energy usage. Moreover, the metabolic
responses of erythrocytes to diamide differ from those of
nucleated cells [7]. The interplay between oxidative stress,
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the antioxidant system, and metabolism is more complicated
than what has been previously thought. It is interesting to
study if other oxidants, such as H2O2, elicit metabolic
responses unique from those of diamide treatment. Thor-
ough understanding of metabolic changes in response to
oxidants necessitates the application of metabolomics.

Intracellular NADPH/NADP+ and NADH/NAD+ are
involved in maintenance of antioxidant defense and energy
metabolism, respectively. Additionally, these pyridine nucle-
otides act as coenzymes in metabolism and have regulatory
functions [9]. NAD+ is a precursor of cyclic ADP ribose
[10] as well as a substrate for ADP ribosylation by
poly-ADP-ribose polymerases (PARPs) [11], which are
involved in processes such as DNA repair and cell death.
The heightened PARP activation may activate programed
cell death despite antioxidant replenishment [12].

In this study, we used a LC-MS-based metabolomic
research platform [8, 13] for studying the early changes in
metabolite profile accompanying H2O2-induced death. Our
findings indicate that PPP is activated and production of
S-1,7-BP, an unusual PPP intermediate, increases in
H2O2-treated cells. PPP and the NAD kinase (NADK) path-
way are activated to furnish sufficient reducing equivalents.
ATP and NAD+ pools dwindle, leading to dysfunction in
metabolism. Inhibition of PARP-mediated exhaustion
partially protects cells from death.

2. Material and Methods

2.1. Reagents. Unless otherwise stated, all chemicals were
obtained from Sigma-Aldrich (St. Louis, MO, USA). Dulbec-
co’s modified Eagle’s medium (DMEM), fetal calf serum
(FCS), penicillin, streptomycin, amphotericin, and trypan
blue were purchased from Thermo Fisher Scientific Inc.
(Waltham, MA, USA). Anti-G6PD antibody was purchased
from Genesis Biotech (Taiwan); mouse anti-NADK mono-
clonal antibody (sc-100347) was available from Santa Cruz
Biotechnology (CA, USA); rabbit anti-phospho-AMPKα
(Thr172) (40H9) and rabbit anti-AMPKα (D5A2) antibodies
were obtained from Cell Signaling Technology (Danvers,
MA, USA). Anti-actin antibody and anti-rabbit and
anti-mouse IgG antibodies were available from
Sigma-Aldrich (St. Louis, MO, USA). Western Lightning
Chemiluminescence Reagent Plus was purchased from
PerkinElmer (Waltham, MA, USA).

2.2. Cell Culture and Cell Viability Determination. Hep G2
cells were cultured in DMEM supplemented with 10%
FCS, 100 units/ml penicillin, 100μg/ml streptomycin, and
0.25μg/ml amphotericin at 37°C in a humidified atmo-
sphere of 5% CO2 as previously described [5].

Cell viability was determined using the neutral red uptake
assay [5]. After H2O2 treatment, the cells in 24-well plates
were incubated with 10% neutral red solution to a final con-
centration of 0.033% at 37°C for 2 h. Thereafter, the culture
supernatant was removed, the cells were fixed in 0.1% CaCl2,
0.5% formaldehyde, and the incorporated dye was solubilized
in a 1% acetic acid, 50% ethanol solution. The absorbance

was measured using a microplate reader with a 540nm test
wavelength and a 690nm reference wavelength.

2.3. Generation of G6PD-Knockdown and Scrambled Control
Hep G2 Cells. The cassette for expressing G6PD and scram-
bled control shRNA has been described elsewhere [14]. It
was subcloned in pSUPER.retro. puro vector (Oligoengine,
Seattle, WA, USA). The retroviral vectors were packaged into
amphotropic virus using PT67 cells, as previously described
[5, 15]. Hep G2 cells were transduced with the packaged virus
and selected for stable transfectants in a medium containing
3μg/ml puromycin.

2.4. Western Blotting Analysis. Western blotting was
performed as previously described [5, 15]. Briefly stated, the
cells were rinsed with cold PBS, scraped, and collected by
centrifugation. They were immediately lysed in lysis buffer
(20mM Tris-HCl (pH8), 1% Triton X-100, 137mM NaCl,
1.5mM MgCl2, 10% glycerol, 1mM EGTA, 1mM NaF, 1mM
Na3VO4, 10mM β-glycerophosphate, 1mM phenylmethylsul-
fonyl fluoride, 1μg/ml leupeptin, and 1μg/ml aprotinin).
Protein concentration of cell lysate was determined using the
Bio-Rad protein assay kit (Bio-Rad Laboratories, Hercules,
CA, USA). The sample was analyzed by SDS-PAGE and immu-
noblotting with anti-AMPK, anti-pAMPK, anti-NADK, and
anti-actin antibodies.

2.5. Extraction of Cellular Metabolites. Extraction was per-
formed as previously described with modifications [8, 16].
After removal of medium, cells were scraped in 80% metha-
nol precooled at −80°C. The extract was collected, centri-
fuged at 14000 × g for 15min, and extracted once more
with 80%methanol. The extracts were pooled and completely
dried under nitrogen gas. The sample was dissolved in 200μl
0.1% formic acid, centrifuged at 14000 × g for 15min to
remove debris, and subjected to LC-MS analysis.

2.6. LC-TOF-MS Analysis. Liquid chromatographic separa-
tion was achieved on a 100mm × 2 1mm ACQUITY
1.8μm HSST3 C18 column (Waters Corp.; Milford, MA,
USA) using an ACQUITY TM Ultra Performance Liquid
Chromatography (UPLC) system (Waters). The column
was maintained at 40°C, and the flow rate was set at
0.5ml/min. Sample was eluted from LC column using a lin-
ear gradient: 0–1.5min, 1–25% B; 1.5–2.0min, 25–98% B;
2.0–4.9min, 98% B; and 5.0–7.0min, 1% B (for reequilibra-
tion). Solvent A was 0.1% formic acid in water and solvent
B was acetonitrile containing 0.1% formic acid. The lyophi-
lized sample was dissolved with 200μl of water/acetonitrile
(95 : 5, v/v). Mass spectrometry was performed on a Waters
Q Tof-MS (SYNAPT G2S, Waters MS Technologies,
Manchester, UK) operated in an ESI negative ion mode.
The scan range was from 50 to 990m/z. The desolvation
gas flow was set to 1000 l/hr at 500°C, and temperature
was set at 150°C. The capillary voltage and cone voltage
were set at 2000 and 25V for the ESI negative mode. Leu-
cine encephalin, generating [M-H]− ion (236.1035m/z,
554.2615m/z), was used as the lock mass at a concentra-
tion of 200ng/ml and a flow rate of 10μl/min.

2 Oxidative Medicine and Cellular Longevity



2.7. Data Processing. All data obtained in the negative ion
mode were processed using Progenesis QI data analysis soft-
ware (Nonlinear Dynamics, Newcastle, UK) for peak picking,
alignment, and normalization to generate peak intensities for
all features. The identities of features were obtained through
search in METLIN (available at https://metlin.scripps.edu)
[17] and Human Metabolome (available at http://www
.hmdb.ca/) databases [18] and/or by comparison to both
retention times and mass spectra of standard compounds.
The MS data were analyzed by principal component analysis
(PCA) and orthogonal partial least squares discriminate
analysis (OPLS-DA) using SIMCA-P+ 13.0 (Umetrics,
Sweden).

2.8. Metabolite Identification. For validation of the target
metabolite, standards were analyzed under chromatographic
conditions identical to that of the metabolite profiling exper-
iment. MS and MS/MS analyses were performed under the
same conditions as the metabolite profiling experiment.
MS/MS spectra were collected at 0.3 second per scan, with a
medium isolation window of ~4m/z. The trap collision
energy from 5 to 35V was set.

3. Results

3.1. Distinct Impact of Hydrogen Peroxide on Global
Metabolism of Hepatoma Cells. Our previous study has
shown that GSH depletion significantly affects cellular
metabolism and cell viability [8]. We sought to study if an
oxidant can cause specific metabolic changes that are differ-
ent from those brought about by GSH depletion. To test such
possibility, we examined the changes in the metabolite profile
of Hep G2 cells in response to H2O2 treatment. Hep G2 cells
were treated without, or with 0.5 or 5mM, H2O2 for a period
ranging from 15min to 2 hr. Cell extracts were analyzed
using TOF-MS in negative ion mode. The experimental
scheme is outlined in Supplemental Figure 1. The orthogonal
partial least squares discriminate analysis (OPLS-DA) plot
showed that the metabolite profile of cells treated with
5mM H2O2 was significantly different from that of control
cells. In contrast, there were mild changes in the metabolite
profile of cells treated with 0.5mM H2O2 versus that of
control cells (Supplemental Figure 2B). Treatment of cells
with 5mM H2O2 for 4 hr resulted in considerable decline
in viability, while treatment with 0.5mM caused insignifi-
cant cell death (Supplemental Figure 2A).

To study the early metabolic changes associated with
H2O2-induced cell death, we focused on the analysis of data-
sets for 5mM H2O2 treatment and control groups. As shown
in OPLS-DA (Figure 1(a)), there were time-dependent
changes in metabolites in H2O2-treated cells. Significant
changes in metabolites occurred as early as 15min after treat-
ment (Figure 1(b)). Those features with variable importance
in the projection (VIP) score greater than 1 correspond to
differentially abundant metabolites and were selected for
further analysis (Figure 1(c) and Supplemental Table 1).
Enrichment analysis revealed changes in metabolites related
to the metabolism of nucleotide, citric acid, glutamate, glu-
cose, glutathione, and ammonia cycle in cells (Figure 1(d)).

These findings suggest that these pathways may represent
the early cellular metabolic response to H2O2-induced death.

3.2. H2O2-Induced Accumulation of S-1,7-BP and Fru-1,6-BP.
Of the metabolites that changes in H2O2-treated cells, several
metabolites related to the nonoxidative pentose phosphate
pathway (PPP) are noteworthy. Fructose 1,6-bisphosphate
(Fru-1,6-BP), the metabolite involved in regeneration of glu-
cose, accumulated over time (Figure 2(a)). Intriguingly, the
S-1,7-BP level rapidly increased by nearly 11.41-fold within
15min of treatment, peaked at 30min, and subsided
(Figure 2(b); Supplemental Table 1). The identities of
Fru-1,6-BP (Figure 2(c) & 2(d)) and S-1,7-BP (Figure 2(e))
were validated byMS/MS. Similarly, octulose-1,8-bisphosphate
(O-1,8-BP) increased by roughly 6.75-fold at 15min after treat-
ment, remained elevated up to 60min, and gradually declined
afterwards (Supplemental Table 1). Previous studies have
shown that S-1,7-BP and O-1,8-BP were present in hemolysate
and thought to be synthesized by aldolase in a distinct type of
nonoxidative PPP [19–21]. Our recent findings suggest that
PPP is activated in response to treatment with high H2O2
concentration.

3.3. H2O2-Induced Changes in Redox and Energy Metabolism.
GSH metabolism is affected by H2O2 treatment. The GSSG
level increased to nearly 5 times the basal level within
30min of treatment and stayed more or less steady through-
out the treatment period. The decline in the GSH level was
relatively modest during the same period (Supplemental
Table 1). Such findings suggest that GSH buffer is largely
maintained. However, other GSH-related intermediates were
affected. For instance, the S-lactoylglutathione level increased
over 130-fold within 90min of treatment and declined after-
wards (Supplemental Table 1).

Energy metabolism was drastically affected. Levels of
nucleoside triphosphate, such as ATP and CTP, were drasti-
cally reduced, whereas monophosphate forms AMP, UMP,
and GMP strongly increased in abundance. Moreover,
cellular NAD+ decreased appreciably during H2O2 treatment
(Supplemental Table 1). Besides, citrate accumulated over
time during treatment. Apparently, cellular energy metabo-
lism is adversely affected in the presence of high H2O2
concentration.

3.4. Knockdown of G6PD Impairs PPP and GSH Metabolism.
Diamide that induces mild changes in cellular GSH and
GSSG in normal hepatoma cells does not significantly affect
their viability [8]. In contrast, treatment with 5mM H2O2,
which caused similar changes in the abundance of GSH and
GSSG as diamide, elicited cell death. It is wondered that
redox parameters, such as GSSG/GSH redox potential, are
not the sole determinant of the cellular outcome of H2O2
treatment. G6PD is critical to maintenance of NADPH and
GSH. We studied the effect of G6PD knockdown on
H2O2-induced changes in metabolism and cell physiology.
We knocked down expression of G6PD gene in Hep G2 cells
and derived knockdown (Gi) and control (Sc) cells. As
expected, the G6PD activity in Gi cells was reduced by 90%,
as compared with that in Sc cells (Figure 3(a)). H2O2
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treatment induced a slightly higher degree of cell death in Gi
cells than in Sc cells (Figure 3(b)). To examine the effect of
H2O2 on metabolism, we treated Gi and Sc cells with 5mM
H2O2 for 15, 30, 60, 90, and 120min and extracted them
for metabolite profiling. Datasets were analyzed using mul-
tivariate statistical analyses. The OPLS-DA plots for Gi
and Sc cells are shown in Figure 3(c). The metabolite pro-
file of these cells changed in a time-dependent manner. As
expected, PPP is adversely affected by G6PD deficiency

(Figure 4). The levels of PPP intermediates, such as sedo-
heptulose 7-phosphate (S7P), 6-phosphoglucono-δ-lactone,
6-phosphogluconate (6PG), and ribulose 5-phosphate, in
Gi cells were significantly lower than those in Sc cells.
Additionally, the S-1,7-BP level was largely lowered in Gi
cells, advocating that S-1,7-BP is an intermediate formed
in the nonoxidative branch of PPP.

Temporal changes in GSH and GSSG were also followed
(Figure 4). The levels of GSSG in Gi and Sc cells increased
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Figure 1: Early changes in metabolism of H2O2-treated hepatoma cells. Cells were treated with 5mMH2O2 for 0, 15, 30, 60, 90, and 120min
and harvested for metabolomic analysis. Molecular features were identified by Progenesis QI, and the data were processed and analyzed using
SIMCA-P. (a) Orthogonal partial least squares discriminant analysis (OPLS-DA) score plot for various treatment groups are shown. (b)
OPLS-DA score plot of the 0min- and 15min-treated groups. The ellipse shown in the model (a, b) represents the Hotelling’s T2 with
95% confidence. (c) Variable importance in projection (VIP) plot of the OPLS-DA model for the 0min- and 15min-treated groups.
Selected metabolites with a VIP value > 1 0 are presented. (d) The data were subjected to metabolite pathway analysis. A summary plot for
metabolite set enrichment analysis (MSEA), in which metabolite sets are ranked according to the p value, is shown. The bar plot is color
coded according to the calculated p values.
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within 30min of treatment and were significantly lowered at
60min after treatment. The extent of the surge in the GSSG
level was much higher in the former than in the latter. The
basal GSH level in Gi cells was higher than that in Sc cells.
Upon H2O2 treatment, the GSH level in Gi cells showed
a transient large drop and gradually stabilized at a value
lower than the basal level. Meanwhile, the GSH abundance
in Sc cells declined gradually with time and was not signif-
icantly different from that in Gi cells at 120min. Appar-
ently, the dynamic changes in the GSSG and GSH pools in
these cells, particularly Gi cells, represent their effort to
restore GSH homeostasis. Notwithstanding the differences
in the kinetics and extent of changes in GSH and GSSG levels
between Gi and Sc cells, H2O2 treatment results in the same
outcome—cell death. These findings, together with our pre-
vious studies on diamide, indicate that changes in GSH and
GSSG levels per se do not determine the fate of cells exposed
to high concentration of H2O2. It is likely that events conse-
quent to changes in redox homeostasis may be linked to
initiation of H2O2-induced cell death.

3.5. H2O2 Treatment Causes Anomalous Energy Metabolism.
Our previous study has shown that energy metabolism is
hampered in diamide-treated cells [8]. As shown in Supple-
mental Table 1, ATP was significantly reduced in H2O2-trea-
ted cells. We proceeded to examine the changes in levels of
ATP in Gi and Sc cells receiving H2O2 treatment. ATP levels
in Gi and Sc cells declined dramatically with treatment time
(Figure 5(a)). Basal ADP and AMP levels in Sc were substan-
tially lower than those in Gi cells. The ADP levels of Sc and
Gi cells increased, peaked at 15min, and declined thereafter
(Figure 5(b)). The AMP levels of Sc and Gi cells spiked at
15min and returned to values higher than their basal levels
(Figure 5(c)). Accumulation of AMP was associated with
phosphorylation of AMPK at Thr172 (Figure 5(f)). These
findings suggest that H2O2 induces ATP depletion. As treat-
ment of Sc and Gi cells with 0.5mMH2O2 did not cause their
death, we examined the effect of 0.5mMH2O2 on the cellular
ATP content. As shown in Figure 6(a), in contrast to 5mM
H2O2, 0.5mM H2O2 induced a significant increase in the
ATP level over time.

(d)

(c)

(a) (b)

(e)

+30.0102 +30.0099

0

15 

30

60

90

120

0.59

100

(%
)

0

100

(%
)

0

100
(%

)

0

100

(%
)

0

100

(%
)

0
−0.00 1.00 2.00 −0.00 1.00 2.00 3.00

Time
0.52

78.9576

96.9686

158.9250
176.9357

241.0122

338.9897

m/z
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

m/z
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

m/z
60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

78.9576

96.9690

158.9250
176.9359

241.0125

338.9901

78.9583

96.9694

199.0013176.9357

271.0227

369.0000

OH

HO

O

O−P

OH

HO

O

O−P

OH

HO

O

O−P

OH

HO

HO

OH

OH

CH3

O

O

O O

O O

O

P

P

OH

O

O−

O−

P

OH

HO

O

OP

OH

O

O−P

OH

HO

O

OP

OH

O

O−P

HO

OH

OH

CH3

O O

O O

OO

P

HO

OH

OH

CH3

O OH

O O

O

P

O

HO

OH
OH

OH

O

HO O

O

O

O

OH

P
P

O−

HO

OH
OH

OH

O

HO O

O

O

O

OH

P
P

O−

HO

OH

OH
OH

O

HO O

O

O

O

OH

P P

OH

Figure 2: Oxidative stress-induced accumulation of Fru-1,6-BP and S-1,7-BP. The extracted ion chromatograms of Fru-1,6-BP (a) and
S-1,7-BP (b) in Hep G2 cell treated with 5mM H2O2 for 0, 15, 30, 60, 90, and 120min are shown. Metabolite abundance is indicated by
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analysis. The MS/MS spectrum of Fru-1,6-BP in cell specimen (d) was matched against that of standard (c). The spectrum of S-1,7-BP
reveals a parent cation (369.0001m/z) and a fragment ion (271.0227m/z). The latter differs from the fragment ion of Fru-1,6-BP
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3.6. H2O2 Treatment Induces Expression of NADK and
Biosynthesis of NADP+. The transient increase in GSSG in
Gi cells prompts us to study if pathways other than PPP pro-
vide reducing equivalents for its reduction. It is probable that
NADP+ synthesis is upregulated during H2O2 treatment.
Consistent with this, the NADP+ level in Gi and Sc cells
increased substantially within 30min of treatment. The mag-
nitude of the increase was significantly greater in the former
than in the latter (Figure 5(e)). The basal NAD+ level in Gi
cells was lower than that in Sc cells. Upon H2O2 treatment,
it decreased drastically (Figure 5(d)).

NADK, which catalyzes NAD+ phosphorylation and its
conversion to NADP+, may be part of the compensatory
mechanism. To study whether NADK is involved, we exam-
ined NADK expression in H2O2-treated Sc and Gi cells. As
shown in Figure 5(f), expression of NADK increased in both
cells, with the induction fold being higher in Gi cells than in
Sc cells.

3.7. Inhibition of PARP-Mediated NAD+ Depletion Partially
Protects Cells from Death. H2O2 treatment causes NAD+

depletion. There were large drops in the NAD+ level in Gi
and Sc cells within 15min of treatment with either 0.5 or
5mM H2O2 (Figure 6(b)). For the 5mM treatment group,
their NAD+ levels continued to decline from 15min onward.
In contrast, for the 0.5mM treatment group, the NAD+ levels
of Gi and Sc cells stabilized at 15min posttreatment and
gradually rebounced to values that were about 30% of their
respective basal levels.

One of the routes, through which NAD+ is rapidly uti-
lized and exhausted, is poly (ADP-ribose) polymerase
(PARP). ROS are known to cause single-strand breaks and
PARP activation [22]. To test if PAPR-mediated depletion
of NAD+ accounts for cell death, we cotreated Hep G2 cells
with PARP inhibitor PJ34 and H2O2 and examined their via-
bility. Treatment of Hep G2 cells with PJ34 enhanced viabil-
ity but did not completely block their death (Figure 7). These
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Figure 3: Temporal changes in metabolism in G6PD-deficient hepatoma cells. (a) G6PD activities in Sc and Gi cells were measured and are
expressed in U/mg of cell lysate. Data aremeans ± SD, n = 6. (b) Sc and Gi cells were untreated or treated with 0.5 and 5mM H2O2 for 4 and
24 hr, and their viabilities were determined. Data aremeans ± SD, n = 6. (c) Sc and Gi cells were treated with 5mMH2O2 for 0, 15, 30, 60, 90,
and 120min and collected for metabolomic analysis. Data were analyzed as described in the legend of Figure 1. The OPLS-DA score plot of Sc
and Gi cells treated for various times is shown.
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findings suggest that PARP-mediated NAD+ depletion con-
tributes partly to the death process.

4. Discussion

In this study, we have applied the metabolomic approach for
studying the metabolic response of hepatoma cells to H2O2.
High concentration of H2O2 significantly alters the fluxes of
metabolic pathways. Some of these pathways, such as the
PPP and NADK pathway, are activated to restore redox
homeostasis. Despite their effectiveness, these pathways lead
to excessive consumption of NAD+ and ATP. Our findings
support the notion that impairment of energy metabolism
precipitates cell death.

H2O2-induced changes in metabolism are different from
what we observed in diamide-treated cells. Diamide reacts
with thiols and causes GSH depletion. It induces
time-dependent changes in metabolic pathways, such as
GSH biosynthesis, amino acid metabolism, and energy
metabolism, in hepatoma cells [8]. GSH biosynthesis and

amino acid uptake are not enhanced in H2O2-treated cells.
The disparity may lie in the fact that diamide is highly effec-
tive in the conversion of GSH to GSSG and hence GSH pool
diminution. This may lead to the relief of the inhibitory effect
of GSH on glutamate cysteine ligase (GCL) [23] and to the
subsequent γ-glutamylcysteine formation. In agreement with
this, diamide is superior to H2O2 in its ability to deplete the
cellular GSH pool [24]. Nonetheless, there are metabolic
changes commonly induced by H2O2 and diamide. For
instance, energy metabolism is adversely affected [8]. PPP is
important to the provision of reducing equivalents [7].

PPP is activated in response to oxidant treatment. Levels
of intermediates of normal PPP, such as sedoheptulose
1,7-bisphosphate and ribulose 5-phosphate, increased with
treatment time. We detected metabolites that are supposedly
to be formed in the L-type pathway [25]. These metabolites
include S-1,7-BP and O-1,8-BP. S-1,7-BP has been found in
erythrocytes and liver tissues. It is conjectured that
S-1,7-BP can be formed from dihydroxyacetone phosphate
and erythrose-4-phosphate (E4P) via aldolase activity. E4P
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can replace glyceraldehye-3-phosphate (G3P) as a substrate
for S-1,7-BP synthesis in extracts of mammalian tissues such
as the liver and muscle [21, 26]. Additionally, it may be
formed from fructose 1,6-bisphosphate and E4P. Alterna-
tively, 6-phosphofructokinase may catalyze S-1,7-BP forma-
tion from sedoheptulose 7-phosphate. O-1,8-BP may arise
from condensation of DHAP and ribose 5-phosphate [27].
In our present study, we validate that these metabolites
are formed in nonoxidative PPP. Knockdown of the
G6PD gene significantly reduced the levels of these metab-
olites. In this sense, S-1,7-BP is considered a marker of
increased PPP activity.

Our previous study has shown that diamide treatment
caused about 11% decrease in the GSH pool in hepatoma
cells at 60min posttreatment [8]. In the present study,
H2O2 treatment resulted in around a 10% decrease in this
pool. Despite the similarity in the extent of change, H2O2
induced cell death, while diamide did not. Such findings sug-
gest that factors other than simply a change in GSH parame-
ter contribute to cell death.

H2O2 treatment causes anomalous energy production.
The ATP level decreased continually throughout treatment
and became virtually exhausted. ADP and AMP levels tran-
siently rose and gradually subsided. The increases in ADP
and AMP levels activate AMPK and cause influx of glucose
into the glycolytic pathway. The increase in glycolytic flux
is indicated by increases in levels of fructose 1,6-bispho-
sphate and glyceraldehyde 3-phosphate. Additionally, such
increases may promote the nonoxidative branch of PPP for
glucose regeneration and continual operation of PPP. Fur-
thermore, accumulation of glyceraldehyde 3-phosphate is
accompanied by formation of lactoylglutathione. Lactoylglu-
tathione is derived from methylglyoxal and glutathione via
the activity of glyoxalase I [28, 29]. This represents a pathway

involved in detoxification of methylglyoxal, which is able to
glycate nucleic acid and protein and conduces to advanced
glycation end product (AGE) formation [30]. Methylglyoxal
is formed either nonenzymatically from dihydroxyacetone
phosphate and glyceraldehyde 3-phosphate or enzymatically
via a triosephosphate isomerase-mediated process [28]. It
has been demonstrated that a low NAD+ level promotes gen-
eration of methylglyoxal [31]. H2O2-induced deficit in
NAD+ probably reduces the flux of glyceraldehyde
3-phospahte-catalyzed reaction and makes it favorable for
diversion of triose phosphate toward methylglyoxal forma-
tion. An additional point is noteworthy. The total pool of
adenine nucleotides dwindles, suggesting their transforma-
tion to other molecules. We observed that the level of diade-
nosine diphosphate spiked within the first 30min of H2O2
treatment and remained elevated. Diadenosine diphosphate
(Ap2A) is formed in a side reaction catalyzed by aminoacyl
tRNA synthetase in the absence of cognate tRNA [32]. Dia-
denosine oligophosphate is proposed as a novel class of
signaling molecules. For instance, Ap3A binds to the Fhit
protein and, as a complex, serves as effector molecule with
tumor suppressor activity [33]. ApnA interacts with P2Y
and P2X receptors and elicits downstream signaling [34].
Ap2A protects neutrophils from apoptosis [35]. In addition,
Ap2A stimulates growth of vascular smooth muscle cells
[36]. It is probable that Ap2A might be generated in
H2O2-treated cells in an attempt to rescue them from
demise. Moreover, another metabolite adenylosuccinate
increased in abundance within 15min of treatment and
gradually declined. It is an intermediate formed in the path
of conversion of IMP to AMP. H2O2-induced change in
the adenylosuccinate pool probably represents a biochemical
response of cells in the face of ATP depletion. These cells
upregulate purine biosynthesis to make up for the deficit.

AMPK is composed of 3 subunits, including catalytic α
subunit and regulatory β and γ subunits. It acts as an impor-
tant energy sensor molecule that controls cellular physiology
[37, 38]. AMPK is activated by an increase in the AMP/ATP
ratio under the stressful condition that hinders ATP genera-
tion and accelerates its consumption [39]. Its activity can also
be modulated by ADP and NAD+ [40–42]. Moreover, AMPK
can be regulated indirectly through reactive nitrogen
species-mediated activation of upstream kinases LKB1 and
CaMKKb or through S-glutathionylation or S-nitrosylation
of cysteine residues of the AMPK α subunit [43, 44].
H2O2-induced increases in AMP and ADP, and probably
oxidative modification, activate AMPK. AMPK activation
enhances hepatic glucose uptake via Glut2 [45]. AMPK is
able to phosphorylate phosphofructokinase 2 [46], which
generates fructose 2,6-bisphosphate, a potent activator of
phosphofructokinase 1. Increase in fructose 1,6-bisphosphate
in H2O2-treated cells may be accounted for by an increased
flux of phosphofructokinase 1-catalyzed reaction.

H2O2-induced changes in nicotinamide adenine nucleo-
tide pools have important implication in biochemical and
cellular processes. NAD+ depletion, amid the maintenance
of the NADP+ pool, is associated with increased NADK
expression. Menadione increases NADK activity and causes
NAD+ depletion in colon epithelial cells [47]. NADK activity
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increases in diamide-treated G6PD-deficient cells [8]. It is
plausible that upregulation of NADK represents a mecha-
nism for maintenance of the NADP+ pool [48, 49]. Mamma-
lian NADK catalyzes formation of NADP+ at the expense of
NAD+ and ATP. Increased NADK activity in H2O2-treated
cells, particularly Gi cells, contributes to diminution of the
NAD+ and ATP pools. Oxidative damage-induced DNA
damage leads to activation of poly (ADP ribose) polymerase
(PARP) and NAD+ depletion [50, 51]. Treatment with the
PARP inhibitor partially protects H2O2-treated cells from
death, implying that activation of PARP is involved in cell
death. These findings suggest that depletion of NAD+ and
ATP can trigger cell death. Deficit in NAD+ leads to reduc-
tion in glycolysis and oxidative phosphorylation and hence
to insufficient ATP production. When NAD+ and ATP levels
fall below certain thresholds, cells are destined to die.

Accumulation of citrate in H2O2-treated cells is interest-
ing. H2O2 increases the intracellular glutamine level and con-
comitantly reduces the glutamate level. Glutamine is
available in culture medium as energy source and is converted
to glutamate by glutaminase. Glutamate can be catabolized to
α-ketoglutarate via action of glutamate dehydrogenase.
α-Ketoglutarate is metabolized via forward reactions of the
TCA cycle or transformed via isocitrate dehydrogenase and
aconitase to citrate in a process known as reductive carboxyl-
ation. For the former process, citrate abundance is elevated
as a consequence of reduced mitochondrial aconitase activity.
Aconitase is uniquely sensitive to superoxide-mediated inacti-
vation [52, 53]. Another nonexclusive possibility is that reduc-
tive carboxylation is essential to the maintenance of redox
balance [54] and is probably upregulated as a response to oxi-
dative stress. Citrate formed by reductive carboxylation is
transported to the cytoplasm, where it is acted upon by cyto-
solic aconitase and isocitrate dehydrogenase to generate
NADPH. H2O2-induced citrate accumulation may represent
such an antioxidative mechanism.

A number of mechanisms come into play to maintain
redox homeostasis. Activation of PPP protects cells from oxi-
dative damage within the first few minutes of treatment [6].
Reductive carboxylation and NADK may provide an addi-
tional supportive role for NADPH generation. PARP activa-
tion is involved in signaling of the DNA repair process. These
antioxidative and repair mechanisms may be activated in
cells subject to oxidative stress and consume NAD+ and
ATP. In milieu of strong oxidative stress, excessive utilization
of these key metabolites leads to cellular energy stress and
cell death.
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