
Materials 2015, 8, 5385-5397; doi:10.3390/ma8085249
OPEN ACCESS

materials
ISSN 1996-1944

www.mdpi.com/journal/materials

Article

The π-Electron Delocalization in 2-Oxazolines Revisited:
Quantification and Comparison with Its Analogue in Esters
Martin Fimberger 1,2,:, Klaus P. Luef 1,2,:, Claudia Payerl 1,2, Roland C. Fischer 3,
Franz Stelzer 2, Mihály Kállay 4 and Frank Wiesbrock 1,;,*

1 Polymer Competence Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria;
E-Mails: martin.fimberger@pccl.at (M.F.); klauspeter.luef@pccl.at (K.P.L.)

2 Institute for Chemistry and Technology of Materials, Graz University of Technology, NAWI Graz,
Stremayrgasse 9, 8010 Graz, Austria; E-Mails: claudia.payerl@tugraz.at (C.P.);
franz.stelzer@tugraz.at (F.S.)

3 Institute of Inorganic Chemistry, Graz University of Technology, NAWI Graz, Stremayrgasse 9,
8010 Graz, Austria; E-Mail: roland.fischer@tugraz.at

4 MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and
Materials Science, Budapest University of Technology and Economics, P.O. Box 91, 1521 Budapest,
Hungary; E-Mail: kallay@mail.bme.hu

: These authors contributed equally to this work.

; This publication is dedicated to Professor Hubert Schmidbaur on the occasion of his 80th birthday.

* Author to whom correspondence should be addressed; E-Mail: frank.wiesbrock@pccl.at;
Tel.: +43-3842-42962-42; Fax: +43-3842-42962-6.

Academic Editor: Maryam Tabrizian

Received: 24 June 2015 / Accepted: 13 August 2015 / Published: 21 August 2015

Abstract: The single crystal X-ray analysis of the ester-functionalized 2-oxazoline, methyl
3-(4,5-dihydrooxazol-2-yl)propanoate, revealed π-electron delocalization along the N–C–O
segment in the 2-oxazoline pentacycle to significant extent, which is comparable to its
counterpart along the O–C–O segment in the ester. Quantum chemical calculations based on
the experimental X-ray geometry of the molecule supported the conjecture that the N–C–O
segment has a delocalized electronic structure similar to an ester group. The calculated bond
orders were 1.97 and 1.10 for the N=C and C–O bonds, and the computed partial charges
for the nitrogen and oxygen atoms of ´0.43 and ´0.44 were almost identical. In the ester
group, the bond orders were 1.94 and 1.18 for the C–O bonds, while the partial charges of
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the oxygen atom are ´0.49 and ´0.41, which demonstrates the similar electronic structure
of the N–C–O and O–C–O segments. In 2-oxazolines, despite the higher electronegativity
of the oxygen atom (compared to the nitrogen atom), the charges of the hetero atoms oxygen
and nitrogen are equalized due to the delocalization, and it also means that a cationic attack
on the nitrogen is possible, enabling regioselectivity during the initiation of the cationic
ring-opening polymerization of 2-oxazoline monomers, which is a prerequisite for the
synthesis of materials with well-defined structures.

Keywords: 2-oxazoline monomers; π-electron delocalization; regioselectivity of the
initiation of cationic ring-opening polymerizations; ester-functionalized 2-oxazoline;
hydrolysis of 2-oxazoline; methyl 3-(4,5-dihydrooxazol-2-yl)propanoate

1. Introduction

Since the introduction of microwave reactors dedicatedly designed for usage in laboratories,
considering the chemists’ and material scientists’ requirements [1–4], the class of poly(2-oxazoline)s
has been reawakened from its hibernation (Scheme 1): discovered in 1966/67 by four research groups
almost simultaneously [5–8], the versatility of this class of polymers, and its derived materials, has been
under constant investigation, while the commonly-low polymerization rates have been the bottleneck
for a long time in terms of applicability of these materials. With the exclusion of acceleration-limiting
factors such as temperatures (boiling points), microwave reactors have helped to successfully accelerate
the polymerizations of 2-oxazolines, and, currently, they are under thorough investigation, in particular,
for usage in medical and sanitary applications [9–15] and as cross-linkable materials [16–22].

In particular for medical and medicinal applications, a precise knowledge of the materials’ structures
is of key importance, which makes living or at least pseudo-living polymerizations and their inherent
access to polymers with narrow molecular weight distributions favorite synthetic strategies. For the
polymerization of 2-oxazolines, it has been shown that the highly reactive methyl tosylate is one of the
initiators that can start pseudo-living polymerizations [23–25]. Due to its high reactivity, it has been
argued whether the initiation by methyl cations occurs regioselectively at the nitrogen atom (Scheme 1)
when the polymerization times experience accelerations by a factor of up to 400 [26].
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Scheme 1. Methyl tosylate-initiated polymerization of 2-oxazolines. 
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charge at the oxygen atom of the 2-oxazoline ring is lessened (Scheme 2). The negative charge of the 

nitrogen atom, on the other hand, is enhanced and, hence, the nitrogen atom is an ideal reaction partner 

Scheme 1. Methyl tosylate-initiated polymerization of 2-oxazolines.

In a precedent study [27], we could show that, due to π-electron delocalization, the partial negative
charge at the oxygen atom of the 2-oxazoline ring is lessened (Scheme 2). The negative charge of



Materials 2015, 8 5387

the nitrogen atom, on the other hand, is enhanced and, hence, the nitrogen atom is an ideal reaction
partner for the methyl tosylate. In order to expand the understanding of this π-electron delocalization
in 2-oxazolines, we aimed for a correlation/comparison with its counterparts in esters, where the C–O
“single” bond as well has been reported to show an intermediate value between that of a C–O double and
single bond. In this study, we therefore present the single crystal X-ray analysis of an ester-functionalized
2-oxazoline and the corresponding ring-opened ester-functionalized amino acid.
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2. Experimental Section

2.1. Materials

All chemicals were used as received. Chloroethylamine hydrochloride, hydrochloric acid solution
(0.1 mol/L), methyl chlorobutyrate, triethylamin, and calcium carbonate were purchased from Sigma
Aldrich (Vienna, Austria), while ethanol, methanol, dichloromethane, and sodium hydroxide were
bought from Carl Roth (Karlsruhe, Germany).

2.2. Instrumentation

IR spectra were recorded with 48 scans per sample on a Bruker Alpha FT-IR spectrometer
(Bruker Optics Inc., Billerica, MA, USA) equipped with the ALPHA’s Platinum attenuated total
reflection (ATR) single reflection diamond ATR module. The spectral range was set from 500 to
4000 cm´1. 1H NMR spectra were measured in deuterated chloroform or deuterium dioxide on a
Bruker 300 MHz spectrometer (Bruker BioSpin Corporation, Billerica, MA, USA) with 32 scans and
relaxation delays of 5 s. The solvent residual peaks were used for referencing the spectra to 7.26 ppm
and 4.80 ppm, respectively.

2.3. Single Crystal X-ray Diffraction Analyses

The crystalline samples were placed in inert oil, mounted on a glass pin and transferred to the cold
gas stream of the diffractometer. Crystal data were collected and integrated with a Bruker APEX-II
CCD system (Bruker AXS GmbH, Karlsruhe, Germany) with monochromated Mo-Kα (λ = 0.71073 Å)
radiation at 100(2) K. The structures were solved by direct methods using SHELXS-97 [28] and refined
by full matrix least squares calculations on F2 with SHELXL-97 [29]. The space group assignments and
structural solutions were evaluated using PLATON [30]. Non-H-atoms were refined with anisotropic
thermal parameters. All protons located on carbon atoms were calculated and allowed to ride on
their parent atoms with fixed isotropic contributions; protons on nitrogen atoms were located and
refined with isotropic contributions. Extinction corrections were applied for all compounds using
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SADABS [31]. A summary of the crystal data, experimental details and refinement results is listed in
Table 1. Important interatomic distances and angles are given in the figure captions. Thermal parameters
and complete tables of interatomic distances and angles have been deposited with the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1 EZ, UK. The data are available on
request on quoting CCDS-1418758/1418759 and in the Supporting Information.

Table 1. Crystal data, data collection, absorption and structure refinement of
methyl 3-(4,5-dihydrooxazol-2-yl)propanoate EstOx (ester-functionalized 2-oxazoline) and
4-(2-aminoethoxy)-4-oxobutanoic acid EstAA (ester-functionalized amino acid).

Crystal Structure
Analysis

Methyl 3-(4,5-dihydrooxazol-2-yl)
Propanoate, EstOx

4-(2-Aminoethoxy)-4-oxo-butanoic
Acid, EstAA

Crystal data

CCDC No. 1418758 1418759
Crystal form block block

Crystal colour colorless colorless
Empirical formula C7H11NO3 C6H11NO4

Formula weight 157.17 161.16
Crystal system monoclinic monoclinic
Space group P21 P21/c

a (Å) 5.547 (2) 10.3132 (8)
b (Å) 6.765 (3) 9.0304 (7)
c (Å) 9.993 (4) 8.0012 (7)
α (˝) 90 90
β (˝) 91.583 (13) 96.688 (5)
γ (˝) 90 90

V (Å3) 374.9 (3) 740.10 (10)
ρcalc (g¨ cm´3) 1.268 1.446

Z 2 4
F(0 0 0) 152 344

µ (Mo-Kα) (cm´1) 0.102 0.122

Data Collection

Measured reflections 4559 1786
Unique reflections 1278 1786

Rint 0.0659 0.000

Absorption
Tmin/Tmax 0.9690/0.9808 0.9574/0.9855

Refinement Results

Refined parameters 101 101
R1

a,b, wR2
a;c 0.0530; 0.1352 0.0630; 0.1432

a, b 0.0887; 0.0457 0,000; 2.2816
ρ (e¨ Å´3) 0.306; ´0.219 0.362; ´0.325

a I > 2σ(I); b R1 = Σ(||Fo ´ Fc||/Σ|Fo|; c wR2 = {[Σw(Fo2 ´ Fc2)2]/Σ[w(Fo2)2]}0.5; w = 1/[σ2(Fo2) + (ap)2

+ bp]; p = (Fo2 + 2Fc2)/3; a and b: free variables.
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2.4. Preparation of Methyl 3-(4,5-Dihydrooxazol-2-yl)propanoate EstOx

Ten millilitres (0.13 mol) of methyl 4-chloro-4-oxobutanoate and 15.41 g (0.13 mol) of
chloroethylamine hydrochloride were dissolved in 130 mL of dichloromethane under inert conditions
and cooled to 0 ˝C. Forty-one millilitres of triethylamine, dissolved in 20 mL of dichloromethane,
were added dropwise within 1 h, and the reaction mixture was stirred overnight. The organic phase
was extracted twice with deionized water and once with brine, prior to drying with sodium sulphate.
Subsequently, the solvent was removed under reduced pressure. 17.40 g of the dry intermediate product
were recovered (0.09 mol, 69% yield). 9.537 g (1 equiv.) of sodium carbonate were added and
the mixture was stirred overnight under reduced pressure. The mixture was subsequently filtrated.
7.11 g (0.063 mol, 48% yield) of the final product were recovered as colorless liquid by distillation
under reduced pressure. The product crystallized at 6 ˝C.

NMR (300 MHz, CDCl3): δ (ppm) = 2.55 (2 H, t, 3JH–H = 6.6 Hz, H4a and H4b), 2.64 (2 H, t,
3JH–H = 6.6 Hz, H5a and H5b), 3.67 (3 H, s, H7a, H7b and H7c), 3.78 (2 H, t, 3JH–H = 9.3 Hz, H3a and
H3b), 4.21 (2 H, t, 3JH–H = 9.3 Hz, H2a and H2b) (for atomic labelling, see Figure 1).

IR (ATR, cm´1): ν = 2985 m, 2948 m, 2906 m, 2884 m, νstr (CH); 1734 s, νstr (C=O); 1669 s,
νstr (N=C); 1438 m, νstr (CO); 1364 m, 1350 m, νdef (CH3); 1204 m, 1161 s, νasym str (COCH3); 657 w,
νbend (COCH3); 583 w, νdef (CH2COCH3).

2.5. Preparation of 4-(2-Aminoethoxy)-4-oxobutanoic Acid EstAA

A solution of 0.5 g (0.0032 mol, 1 equiv.) of EstOx in 50 mL of methanol and 32 mL of an aqueous
solution of sodium hydroxide (0.1 mol/L) were mixed and stirred for 1 h. The solvents were subsequently
removed under reduced pressure. The crude product was dissolved in methanol, and 0.0032 mol of
hydrochloric acid (aqueous 0.1 M solution) were added. After 10 min of stirring under reflux conditions,
the mixture was stored overnight at 6 ˝C. The solvents were removed under reduced pressure, and 0.467 g
(0.0029 mol, 91% yield) of the final product were recovered by recrystallization from ethanol.

1H NMR (20 ˝C, CDCl3, 300 MHz): δ (ppm) = 2.50 (2 H, t, 3JH–H = 6.5 Hz, H3a and H3b), 2.66 (2 H,
t, 3JH–H = 6.5 Hz, H2a and H2b), 3.34 (2 H, t, 3JH–H = 5.1 Hz, H6a and H6b), 4.38 (2 H, t, 3JH–H = 5.1 Hz,
H5a and H5b) (for atomic labelling, see Figure 3).

IR (ATR, cm´1): ν = 3438 m, νstr (NH2); 2986 w, 2961 w, 2925 w, 2848 w, νstr (CH); 2524 m
νstr (OH); 1729 s, νstr (C=O); 1611 s, 1571 s, νdef (NH2); 1312 s, νdef (OH); 1248 s, 1155 s,
νasym str (COC); 1013 s, νstr(NH2); 957 m, ν(COOH).

3. Results and Discussion

3.1. Synthesis of the Compounds EstOx and EstAA

Methyl 3-(4,5-dihydrooxazol-2-yl)propanoate EstOx can be prepared from the reaction of methyl
4-chloro-4-oxobutanoate and chloroethylamine hydrochloride and subsequent ring-closure under
alkaline conditions (Scheme 3, top), following a literature protocol [32]. Hydrolyses of the ester bond
and the 2-oxazoline ring yield the ester-functionalized amino acid 4-(2-aminoethoxy)-4-oxobutanoic
acid EstAA (Scheme 3, bottom). Single crystals from both compounds were grown at 6 ˝C.
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Scheme 3. Synthesis of EstOx from methyl 4-chloro-4-oxobutanoate and chloroethylamine
hydrochloride (top) as well as hydrolyses of the 2-oxazoline under alkaline and acidic
conditions yielding EstAA (bottom).

3.2. Crystal Structure of EstOx

EstOx crystallizes in the monoclinic space group P21 with Z = 2 formula units in the unit cell.
The asymmetric unit contains 1 formula unit (Figure 1). A detailed analysis of the dihedral angles reveals
that the 2-oxazoline C3N1O1-pentacycle is almost planar [O1–C2–C3–N1: ´4.2(3)˝, N1–C1–O1–C2:
´1.8(4)˝, C3–C2–O1–C1: 3.6(3)˝, O1–C1–N1–C3: ´1.1(4)˝, C2–C3–N1–C1: 3.3(3)˝], and the carbon
atoms of the side-chain are in trans alignment [C1–C4–C5–C6: ´174.0(2)˝]. Minor deviations of
the overall trans alignment can only be observed around the ester group [C4–C5–C6–O2: 12.7(4)˝,
C4–C5–C6–O3: ´168.4(2)˝, C7–O3–C6–C5: ´178.4(2)˝].
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Figure 1. Asymmetric unit in the crystalline structure of EstOx (ORTEP drawing [33] with
50% probability ellipsoids). Selected bond lengths (Å): C1–N1: 1.263(4), C1–O1: 1.376(3),
C2–O1: 1.458(3) C3–N1: 1.483(4), C2–C3: 1.529(4), C1–C4: 1.497(3), C4–C5: 1.515(4),
C5–C6: 1.507(3), C6–O2: 1.211(3), C6–O3: 1.338(3), C7–O3: 1.448(3). Selected bond
angles (˝): N1–C1–O1: 118.6(2), N1–C1–C4: 128.9(2), O1–C1–C4: 112.5(2), O1–C2–C3:
104.0(2), N1–C3–C2: 105.1(2).
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Notably, like in the crystalline structures of 2-phenyl-2-oxazoline, 2-nnonyl-2-oxazoline and
2,2’-tetramethylenebis(2-oxazoline) [27], the two C–O bonds in the 2-oxazoline pentacycle differ
significantly: While the C2–O1 bond with a length of 1.458(3) Å has the expected length of a C–O single
bond [34,35], the C1–O1 bond with a length of 1.376(3) Å is significantly shorter and exhibits a value
intermediate between the expected bond lengths of a C–O single and double bond. This phenomenon can
be explained by the delocalization the π-electrons along the N–C–O segment of the C3N1O1-pentacycle.
Along the O–C–O segment of the ester group of the side-chain, comparable delocalization can be
observed: while the O2–C6 bond with a length of 1.211(3) exhibits a bond length typical for a C=O
double bond, the O3–C6 bond with a length of 1.338(3) Å shows a value intermediate between the
expected bond lengths of a C–O single and double bond.

Hence, the lengths of the C1–O1 bond and the O3–C6 bond are of very comparable value. While the
potential (hetero) keto-enol tautomerism of the ester bond cannot be elucidated from the C–C bond
lengths [C4–C5: 1.515(4) Å, C5–C6: 1.507(3) Å], it can be stated that the extent of π-electron
delocalization along the N–C–O segment in 2-oxazolines is very comparable to that along the O–C–O
segment in esters. The π-electron delocalization in esters is less pronounced than in amides (Scheme 2),
but nonetheless significant: In 2-oxazolines, it renders the partial charge of the oxygen atom less
negative, and the partial negative charge of the nitrogen atom more negative.

Packing of the EstOx molecules in the crystalline phase seems to be controlled by steric factors only
(Figure 2): The EstOx molecules are aligned in parallel fashion, with molecule-to-molecule distances
of 5.547 Å; for comparison: Distances of adjacent molecules of 2,2’-tetramethylenebis(2-oxazoline)
in the crystalline phase (that showed a packaging very similar to that of EstOx) exhibited a value of
5.084 Å [27].
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3.3. Crystal Structure of EstAA

EstAA crystallizes in its zwitterionic form in the monoclinic space group P21/c with Z = 4 formula
units in the unit cell. The asymmetric unit contains 1 formula unit (Figure 3). A detailed analysis
of the dihedral angles shows that the C6–C5–O4–C4(O3)–C3 segment of the formula unit is in trans
alignment [C4–O4–C5–C6: 179.6(2)˝, C5–O4–C4–C3: 176.2(2)˝, C5–O4–C4–O3: 0.2(4)˝, while
the ammonium group and the C2–C1(O1O2) segment deviate from that alignment [C1–C2–C3–C4:
68.7(3)˝, O4–C5–C6–N1: ´57.6(3)˝]. In addition to its ester group with C–O bond lengths of 1.205(4)
and 1.354(3) Å (which are almost identical to the C–O ester bond lengths of 1.211(3) and 1.338(3) Å
in EstOx), EstAA also contains a carboxylate group that exhibits C–O bond lengths of 1.251(3) and
1.268(3) Å, which correspond in close proximity to the bond lengths of C–O double bonds [34,35].
The very minor difference among the two C–O bond lengths in the carboxylate group is assumed
to originate from a different involvement of the oxygen atoms O1 and O2 atoms in the formation of
hydrogen bonds (Table 2).
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Figure 3. Asymmetric unit in the crystalline structure of EstAA (ORTEP drawing [33] with
50% probability ellipsoids). Selected bond lengths (Å): C1–O1: 1.251(3), C1–O2: 1.268(3),
C4–O3: 1.205(4), C4–O4:1.354(3), C5–O4: 1.447(3), C6–N1: 1.489(3). Selected bond
angles (˝): O1–C1–C2 118.1(2), O3–C4–O4: 122.8(3), C1–C2–C3: 113.2(2).

Table 2. Hydrogen bonds in the crystalline phase of EstAA.

Atom Names Bond Length N–H Distance H¨ ¨ ¨ O Distance N¨ ¨ ¨ O Angle NHO

N1–H1A¨ ¨ ¨ O2 A 0.91 Å 1.84 Å 2.739(3) Å 171.1˝

N1–H1B¨ ¨ O2 B 0.91 Å 1.86 Å 2.741(3) Å 162.7˝

N1–H1C¨ ¨ O1 C 0.91 Å 1.84 Å 2.747(3) Å 172.2˝

A,B,C: Symmetry operations used to generate equivalent atoms; A: ´x + 2, y ´ 0.5, ´z + 1.5; B: x, ´y + 1.5,
z ´ 0.5; C: ´x + 2, ´y + 1, ´z + 2.
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All acidic protons, namely the protons of the ammonium group, are involved in hydrogen bonds
jointly with the oxygen atoms of the carboxylate group. The hydrogen bonds are likely to cause the
deviation of the ammonium group and the carboxylate group from the overall trans alignment of the
carbon chain of EstAA. The oxygen atoms of the ester group do not participate in the formation of
hydrogen bonds. Correspondingly, packing of the EstAA molecules in the crystalline phase (Figure 4)
is controlled by the formation of hydrogen bonds and large molecule-to-molecule distances of 8.001 Å.Materials 2015, 8 9 
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3.4. Quantum Chemical Calculations of EstOx

In order to interpret the experimental findings, quantum chemical calculations were performed for the
EstOx model system using the MRCC program [36,37]. Mulliken atomic charges [38] and Mayer bond
orders [39] were computed with the density-fitting Hartree-Fock method using the correlation-consistent
valence quadruple-zeta (cc-pVQZ) basis set [40] and the corresponding auxiliary basis sets [41].
The calculations were carried out at the experimental X-ray geometry of the molecule.

The theoretical results support the conjecture that the N–C–O segment has a delocalized electronic
structure similar to an ester group. The calculated bond orders are 1.97 and 1.10, respectively, for the
N=C and C–O bonds indicating that the former bond order is lower than a double bond, while the latter
bond order is higher than a typical single bond. The computed partial charges for the nitrogen and oxygen
atoms, namely ´0.43 and ´0.44, respectively, are comparable: despite the higher electronegativity of
the oxygen atom (compared to the nitrogen atom), the charges of the hetero atoms are equalized due
to the delocalization, and it also means that a cationic attack on the nitrogen atom is possible. It is
interesting to compare the above numbers with the corresponding results for the ester group. The bond
orders are 1.94 and 1.18 for the O=C and C–O bonds, while the partial charges of the carbonyl and other
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oxygen atom are ´0.49 and ´0.41, respectively, which demonstrate the similar electronic structure of
the N–C–O and O–C–O segments.

4. Conclusions

The single crystal x-ray analysis of EstOx reveals that the π-electron delocalization along the N–C–O
segment in 2-oxazolines occurs at a content comparable to the π-electron delocalization in esters along
the O–C–O segment: while the observed C=N bond length in 2-oxazolines and the measured C=O bond
length in the ester group are in good agreement with the literature values for the corresponding C=X
double bonds [33,34], the C–O “single” bonds are similar to each other and exhibit a value intermediate
between a single and double C–O bond. Quantum chemical calculations revealed calculated bond orders
of 1.97 and 1.10 for the N=C and C–O bonds of the 2-oxazoline ring, and almost identical partial
charges for the nitrogen and oxygen atoms of ´0.43 and ´0.44. As the charges of the hetero atoms
are equalized due to the delocalization, the cationic attack on the nitrogen atom during the initiation of
the cationic ring-opening polymerization is possible. The ester group exhibits bond orders of 1.94 and
1.18 for the O=C and C–O bonds, which demonstrates the similar electronic structure of the N–C–O and
O–C–O segments.
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