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Abstract

Introduction

Cancer consistently remains one of the top causes of death in the United States every year,

with many cancer deaths preventable if detected early. Circulating serum miRNAs are a

promising, minimally invasive supplement or even an alternative to many current screening

procedures. Many studies have shown that different serum miRNAs can discriminate

healthy individuals from those with certain types of cancer. Although many of those miRNAs

are often reported to be significant in one cancer type, they are also altered in other cancer

types. Currently, very few studies have investigated serum miRNA biomarkers for multiple

cancer types for general cancer screening purposes.

Method

To identify serum miRNAs that would be useful in screening multiple types of cancers, micro-

array cancer datasets were curated, yielding 13 different types of cancer with a total of 3352

cancer samples and 2809 non-cancer samples. The samples were divided into training and

validation sets. One hundred random forest models were built using the training set to select

candidate miRNAs. The selected miRNAs were then used in the validation set to see how

well they differentiate cancer from normal samples in an independent dataset. Furthermore,

the interactions between these miRNAs and their target mRNAs were investigated.

Result

The random forest models achieved an average of 97% accuracy in the training set with

95% bootstrap confidence interval of 0.9544 to 0.9778. The selected miRNAs were hsa-

miR-663a, hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-miR-8073.

Each miRNA exhibited high area under the curve (AUC) value using receiver operating

characteristic analysis. Moreover, the combination of four out of five miRNAs achieved the

highest AUC value of 0.9815 with high sensitivity of 0.9773, indicating that these miRNAs

have a high potential for cancer screening. miRNA-mRNA and protein-protein interaction

analysis provided insights into how these miRNAs play a role in cancer.
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Introduction

Cancer has consistently been one of the most common causes of death in the United States,

precisely the second leading cause in 2020 [1]. Therefore, effective cancer screening and early

detection are crucial for improving healthcare outcomes [2, 3]. However, many of the current

standards for cancer screening lack sufficient sensitivity and specificity, and many of the

screening modalities are invasive [3]. In addition, many cancers such as ovarian cancer and

pancreatic cancer are known to be deadly because of late-stage discovery [4, 5]. With the stable

nature of miRNAs, circulating serum miRNAs can serve as a minimally invasive alternative or

supplement the current standard for cancer screening [6, 7].

Many miRNAs have already been reported to be promising biomarkers for certain types of

cancer. For instance, plasma miR-145, miR-20a, miR-21, and miR-223 have been shown to be

biomarkers for screening of early-stage non-small cell lung cancer [8, 9]. Similarly, serum

miR-21 and other miRNAs are also found to be differentially regulated in glioma compared to

healthy controls [10]. Other different panels of miRNAs can be used in early-stage breast, colo-

rectal, and other cancer diagnoses as well [11–18]. However, some of these reported miRNAs

may be non-specific; many miRNAs while being important in one cancer are also altered in

other types of cancers. Rarely has any study investigated serum miRNAs for multiple different

types of cancers for general cancer screening [19–21].

In this study, we curated large microarray datasets consisting of different types of cancers

and non-cancer samples. The cancers include breast, lung, colorectal, prostate, and gastric can-

cers, which are the top five most prevalent cancers in the world in 2020 [22]. The curated

dataset also comprises ovarian and pancreatic cancers, which are well-known to present in late

stages [4, 5]. In addition, the dataset includes biliary tract, bladder, liver, and esophageal can-

cers, gliomas, and sarcomas [14, 16–18]. Candidate miRNAs for general cancer screening for

these 13 types of cancers were selected via random forest, a widely used and reliable machine

learning algorithm for biomarker discovery [23]. The selected miRNAs were then validated in

an independent validation set, and a multinomial logistic regression model was built to distin-

guish cancer from non-cancer samples. We further investigated the miRNA-mRNA interac-

tions and biological pathways to elucidate the roles these miRNAs may play in cancers. The

study workflow is provided in Fig 1.

Results

Study design

A curated dataset from four GEO datasets [14, 16–18] yielded 13 different types of cancers and

many non-cancer samples. There was a total of 3352 cancer samples and 2809 non-cancer

samples. The clinical information of all the samples is detailed in Table 1. The curated dataset

was split into a training set with 2253 cancer samples and 2247 non-cancer samples, and a vali-

dation set with 1102 cancer samples and 562 non-cancer samples. We used the training set to

select promising miRNAs via 100 random forest models and the validation set to verify the

selected miRNA as a potential diagnostic marker for cancer detection. The selected miRNAs

were then used to perform miRNA-mRNA network analysis, protein-protein interaction clus-

tering analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

[24] (Fig 1).

miRNAs selection and validation

Five miRNAs were considered “balanced”, as they satisfied the criteria of being in the top 10

miRNAs 90% of the time across 100 random forest models [23, 25]. The miRNAs selected
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were: hsa-miR-3184-5p, hsa-miR-663a, hsa-miR-6784-5p, hsa-miR-6802-5p, and hsa-miR-

8073 (Table 2). The random forest models achieved an average of 97% accuracy with 95%

bootstrap confidence interval of 0.9544 to 0.9778 [26]. Hierarchical heatmap clustering with

complete linkage based on Euclidean distance was performed using these 5 miRNAs across the

samples, and the heatmap shows a clear separation between cancer and non-cancer samples

[27] (Fig 2).

The receiver operating characteristic curves and the area under the curve value were used

to evaluate the diagnostic potential of each miRNA and their combinations both in the train-

ing set and the validation set [28] (Fig 3). Each of the miRNAs showed significant AUC values

as displayed in Fig 3 and Table 3. The best combination model based on AUC used only four

of the miRNAs: hsa-miR-663a, hsa-miR-6802-5p, hsa-miR-3184-5p, and hsa-miR-8073. The

combined model was built using the training set, yielding (0.0005032411) x hsa-miR-663a +

(0.0006917428) x hsa-miR-6802-5p + (0.0072807475) x hsa-miR-8073 + (-0.0194274974) x

Fig 1. Analysis workflow of the study. The microarray data were manually curated from four studies (GSE113740, GSE112264, GSE106817, GSE113486) and

combined for miRNA selection. The selected miRNAs were then used to classify and validate cancer subjects. miRNA-mRNA interaction network, protein-protein

clustering analysis, and KEGG analysis were performed.

https://doi.org/10.1371/journal.pone.0269554.g001
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Table 1. Clinical summary for cancer samples.

Cancer type Mean Age

(years)

Standard Deviation

(Age in years)

Number of

Female: Male

Total Number of

Samples

% of Samples in

Training

Pathological Stage (if known)

Prostate 67.6 7.5 0:809 809 40%

Ovarian 56.9 11.5 320:0 320 70%

Bladder 67.8 10.7 109:283 392 70% 313 with high pathological grade and 77

low pathological grade

Hepatocellular

Carcinoma

67.6 9.2 77:268 345 70% 270 child-pugh A, 34 child-pugh B

Breast 55.9 11 155:0 155 80%

Colorectal 65.7 11 130:75 205 80%

Sarcoma 53.0 17.6 133:72 205 80%

Pancreatic 63.5 10.0 130:75 205 80%

Gastric 66.7 10.0 124:81 205 80%

Lung 63.8 8.4 126:27 153 80%

Esophageal 67.3 8.2 119:86 178 80%

Glioma 52.6 18.6 21:69 90 80%

Biliary 67.7 9.4 12:78 90 80%

The pathological stage and grade of many samples were unknown. Many of the patients’ age from which the sample was obtained were unknown. Only 90 samples from

sarcomas, colorectal, esophageal, pancreatic, and gastric cancers were used to calculate the mean and standard deviation of age. Only 40 samples from lung and breast

cancer were used to calculate mean and standard deviation of age.

https://doi.org/10.1371/journal.pone.0269554.t001

Table 2. Frequency of top miRNAs in 100 random forest models.

miRNA Frequency

Hsa-miR-3184-5p 100

Hsa-miR-663a 100

Hsa-miR-6784-5p 100

Hsa-miR-6802-5p 96

Hsa-miR-8073 90

Hsa-miR-4783-3p 87

Hsa-miR-1307-3p 86

Hsa-miR-4730 79

Hsa-miR-320a-3p 63

Hsa-miR-5100 45

Hsa-miR-1343-3p 43

Hsa-miR-1469 38

Hsa-miR-1233-5p 30

Hsa-miR-1290 14

Hsa-miR-4675 11

Hsa-miR-1238-5p 8

Hsa-miR-320b 7

Hsa-miR-4532 2

Hsa-miR-4687-5p 1

The table shows the frequency of top miRNAs with respect to highest gini values displayed in the 100 random forest

models. The top 5 miRNAs with the highest frequency in this table were chosen to be biomarker candidates for

cancer screening.

https://doi.org/10.1371/journal.pone.0269554.t002
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hsa-miR-3184-5p + (-1.1271024323) with AUC value of 0.9742 in the training set. The same

model was then used to predict the cancer samples in the validation set, resulting in an accu-

racy of 0.9652, sensitivity of 0.9773, specificity of 0.9413, and an AUC value of 0.9815. The con-

sistently similar high AUC values across training and validation sets suggest that the models

do not overfit.

miRNA-mRNA network, functional enrichment, and protein-protein

cluster analysis

The network (Fig 4) generated a total of 535 mRNAs, with many of them directly associated

with cancer [29]. KEGG analysis of the generated mRNAs was performed. It yielded many sig-

nificant pathways associated with cancer as well [24] (Table 4), with the most significant one

being cell cycle and the second being chronic myeloid leukemia, along with many other can-

cers, including but not limited to glioma, prostate cancer, bladder cancer, and others. KEGG

analysis using the mRNAs and circular RNAs yielded similar results (S1 Table).

Fig 2. Heatmap of the expression value of the top 5 miRNAs selected from highest frequency miRNAs in 100 random forest models. The X-

axis represents the samples, and the Y-axis represents the miRNAs. Each of the boxes represents the normalized expression value of each miRNA

in the corresponding sample.

https://doi.org/10.1371/journal.pone.0269554.g002

PLOS ONE Serum miRNAs as potential markers to screen for thirteen cancer types

PLOS ONE | https://doi.org/10.1371/journal.pone.0269554 June 10, 2022 5 / 14

https://doi.org/10.1371/journal.pone.0269554.g002
https://doi.org/10.1371/journal.pone.0269554


Fig 3. ROC and AUC analysis of the top 5 selected miRNAs and the 4 miRNA combination ROC and AUC values. Panel A is the

analysis for the discovery set. Panel B is the analysis for the Validation Set. Both panels achieved the highest ROC and AUC value using 4

miRNAs: has-miR-663a, has-miR-6802, has-miR-3184-5p, and hsa-miR-8073.

https://doi.org/10.1371/journal.pone.0269554.g003
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The Protein-Protein-Interaction (PPI) network from the top three resulting clusters yielded

46 nodes, 202 edges, and an average node degree of 8.78 [30]. The PPI enrichment p-value

is< 1.0e-16, and KEGG analysis of these proteins yielded many similar pathways with more

significant p-values than the previous KEGG analyses (S2 Table). The clusters, along with their

interaction with the five chosen miRNAs, are displayed in Fig 5.

Discussion

Many studies have reported specific upregulation or downregulation of serum miRNAs in cer-

tain types of cancers [9, 11–18, 31–35]. Yet, fewer studies have investigated the potential of

serum miRNAs as a general cancer screening markers across multiple cancer subtypes [6, 19].

To our knowledge, this is the largest study to assess the potential of miRNAs as markers for

general cancer screening, as no other study has combined multiple cancer types to search for

general miRNA biomarker for cancer screening.

There are a total of 19 miRNAs identified by random forest models to be important in can-

cer diagnosis (Table 2); however, only five balanced miRNAs were selected: hsa-miR-663a,

hsa-miR-6802-5p, hsa-miR-6784-5p, hsa-miR-3184-5p, and hsa-miR-8073. Consistent with

our result, hsa-miR-663a has been reported to regulate cancer signaling and tumor progres-

sion; it specifically has been shown to be a sensitive circulating miRNA marker for detection of

hepatocellular carcinoma [14, 36]. Similarly, hsa-miR-6784-5p has been reported to be a sensi-

tive serum biomarker for ovarian cancer diagnosis and a key regulator for breast cancer [37].

Hsa-miR-3184-5p is also a key regulator in breast cancer and a reliable biomarker for the early

detection of bladder cancer [18, 38]. Interestingly, hsa-miR-8073 is a natural tumor suppressor

and identified to be a promising serum biomarker for ovarian and pancreatic cancers [37, 39].

These consistent and overlapping results suggest that these miRNAs may serve as cancer suit-

able for screening purposes, as other studies also confirmed them to be good biomarkers for

specific cancer type. This study reveals that these miRNAs may be nonspecific to a particular

cancer, but sensitive across multiple cancers.

Indeed, each of the five miRNAs achieved remarkable results with AUC values well over 0.9

in both training and validation sets, suggesting that these miRNAs may truly be significant and

that the models do not overfit. This indicates that the five miRNAs can function as a stand-

alone diagnostic marker for at least the 13 types of cancers included in this study, in which

some are known for late-stage presentations [4, 5]. Furthermore, the combined model of using

four miRNAs: (0.0005032411) x hsa-miR-663a + (0.0006917428) x hsa-miR-6802-5p +

(0.0072807475) x hsa-miR-8073 + (-0.0194274974) x hsa-miR-3184-5p + (-1.1271024323)

achieved the highest AUC value of 0.9815 in the validation set, which is highly desirable for

Table 3. Classification statistics of selected miRNAs.

Accuracy Sensitivity Specificity AUC

All 5 miRNA 0.9687 0.9891 0.9288 0.9780

Hsa-miR-663a, hsa-miR-6802-5p, hsa-miR-3184-5p, Hsa-miR-8073 0.9652 0.9773 0.9413 0.9815

Hsa-miR-663a 0.9453 0.9574 0.9217 0.967

Hsa-miR-6802-5p 0.9435 0.9592 0.9128 0.9648

Hsa-miR-6784-5p 0.9435 0.9555 0.9181 0.9595

Hsa-miR-8073 0.9489 0.9628 0.9217 0.9742

Hsa-miR-3184-5p 0.9351 0.9338 0.9377 0.9552

The table shows classification statistics of each of the 5 selected miRNAs and their best combinations in terms of highest sensitivity and AUC values, which is the

combination with all 5 miRNAs and 4 of them (Hsa-miR-663a, Hsa-miR-6802-5p, Hsa-3184-5p, and Hsa-miR-8073), respectively.

https://doi.org/10.1371/journal.pone.0269554.t003
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screening [2]. If sensitivity and accuracy are prioritized, the combination model of using all

five miRNAs can be considered to minimize false negatives for screening purposes (Table 3).

miRNA-mRNA network (Fig 4) based on these five miRNAs also further provide evidence

that these miRNAs are generally associated with cancers. These miRNAs target many cancer-

associated genes including, TP53, ABL1, STAT5B, and E2F3 [40–43] (Fig 4). KEGG analyses

also show many enriched cancer-related pathways such as cell cycle, chronic myeloid leuke-

mia, glioma, neurotrophin-signaling, and more [44–46] (Tables 4 and S1 and S2). The top

Fig 4. miRNA-mRNA interaction network for the selected 5 miRNAs. The blue squares represent the miRNAs. The purple and yellow circles represent the mRNAs.

The yellow circles represent mRNAs directly associated with cancer, with the bigger yellow circles indicating that the mRNA is more associated with the selected 5

miRNAs. The edge between two nodes indicates their interaction.

https://doi.org/10.1371/journal.pone.0269554.g004
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three clusters of mRNAs in the PPI network analysis also pointed toward a very similar result

(Fig 5). Many of the same cancer pathways showed up in KEGG with more significant p-val-

ues, indicating that these clustered mRNAs are the main actors in enriching these cancer

pathways.

There are few limitations to this study. First, the five proposed serum miRNAs have yet to

be independently verified. Second, many of the cancer subtypes, cancer stages and grades, and

other clinical information are unknown. Though it is possible that many of the samples may

represent cancer in the later stages, other studies [14, 18] have shown some of the identified

miRNA biomarkers in this study to be valuable in early detection for certain cancers. Never-

theless, due to this lack of information, further studies are warranted to investigate the specific-

ities of each of the proposed miRNAs for early cancer detection and screening. However, the

study still demonstrates that these identified miRNAs are useful in cancer detection across

multiple cancer types. It also helps elucidate the association of these miRNAs to cancers in

general, even if they are not proven effective in early cancer detection. Lastly, despite the effort

to balance cancer samples while building the cancer diagnosis model, there are still some

imbalances in the number of different cancer types while constructing the model, which may

over-represent one cancer over the other.

Overall, the results show high sensitivity and AUC value for the proposed 4-miRNA panel

based on highest AUC value. Each individual miRNA achieved significant diagnostic poten-

tials, suggesting that these miRNAs can be used as minimally invasive biomarkers for general

cancer screening. Moreover, network and KEGG analyses provided insights into how these

miRNAs may play a role in cancer regulation, warranting further investigation. Functional

studies of these miRNAs and their associated mRNAs are therefore warranted.

Table 4. KEGG analysis using mRNAs associated with the 5 selected miRNAs.

Pathways Hits P value Adj. P-value

Cell cycle 12 0.00022 0.01135

Chronic myeloid leukemia 9 0.000227 0.01135

Lysine degradation 7 0.000357 0.0119

Glioma 8 0.000517 0.012925

Neurotrophin signaling pathway 10 0.00282 0.05

p53 signaling pathway 7 0.00331 0.05

Prostate cancer 8 0.0035 0.05

Bladder cancer 4 0.00922 0.11525

HTLV-I infection 12 0.0123 0.1227273

Leukocyte transendothelial migration 8 0.0127 0.1227273

Melanoma 6 0.0135 0.1227273

Fructose and mannose metabolism 4 0.0196 0.1557143

Osteoclast differentiation 8 0.0217 0.1557143

Alcoholism 10 0.0218 0.1557143

Circadian rhythm—mammal 3 0.0247 0.1646667

Endometrial cancer 4 0.0378 0.2347059

ErbB signaling pathway 6 0.0399 0.2347059

MAPK signaling pathway 13 0.0429 0.2383333

Phototransduction 3 0.0463 0.24

Epstein-Barr virus infection 6 0.048 0.24

The table shows the relevant pathways associated with the selected 5 miRNAs based on KEGG analysis using miRnet.

https://doi.org/10.1371/journal.pone.0269554.t004
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Materials and methods

Microarray data processing

GSE113740, GSE112264, GSE106817, GSE113486 datasets were obtained from GEO [14, 16–

18]. These datasets were all part of the Japan Initiative to sequence cancer transcriptome via

microarray.

As a result, each of these studies was originally part of a larger dataset that was split into

smaller datasets for analytical purposes. According to the authors, the presence of miRNA was

determined if the signal was greater than the mean + 2X standard deviation of the laboratory’s

internal negative control. Then, the background signal was subtracted from each signal that

was deemed to be present. As these datasets were generated under the same laboratory, the

datasets were normalized with respect to one another using quantile normalization to allow

for comparison across all samples. The processed data for analysis is available on the GEO

website, and the series matrix files were downloaded from each GEO dataset Since the datasets

were originally part of a larger initiative, some of the GEO datasets contained samples that

other datasets also had. Therefore, we manually curated the four datasets to ensure there was

no duplicated samples while maximizing the number of samples. The curated data contain 13

different types of cancers. The distribution of cancers and the clinical information of the data-

set are provided in Table 1. We randomly separated the curated data into training set and vali-

dation set before analysis by computer-generated random numbers. To minimize bias over

certain cancer types with more samples, we randomly chose 40% of prostate cancers and 70%

of ovarian, liver, and bladder cancers in the training set. We randomly chose 80% of the

Fig 5. Cluster analysis of the mRNA presented in the miRNA-mRNA interaction network. Top clusters with MCODE value>5 from cytoscape were chosen and the

clusters along with their interactions with the 5 selected miRNAs were shown. The miRNAs are highlighted in yellow, and the mRNAs are in blue.

https://doi.org/10.1371/journal.pone.0269554.g005
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samples in the rest of the cancer types to include in the training set. The remaining samples

made up the samples in the validation set. Overall, there were 73% of total samples in the train-

ing set and 27% of samples in the validation set. Then, we used the training set to select miR-

NAs that can successfully screen out cancer samples from normal samples, and the validation

set to validate the result. The workflow of this study is provided in Fig 1.

Balanced miRNA selection and validation

We grouped the different cancer types as cancer samples and compared their expression values to

those of the non-cancer samples within the training set. Welch’s t-test was performed for each

miRNA, and FDR was calculated. Top 500 miRNAs with the least FDR were chosen to undergo

further selection via random forest, a well-known machine learning algorithm often used in stud-

ies for cancer classification [23, 47, 48]. Those 500 miRNAs were then put into a further selection

process using a total of 100 random forest models [25], with each model randomly selecting 80%

of the training set for training, and the remaining 20% for testing. The relevant parameters of the

random forest models were optimized using 10-fold cross validation, and the rest of the parame-

ters were mainly set to default. For each model, the mean decrease in gini indices is used to rank

how important each miRNA is with regards to classifying cancer and non-cancer samples. Mean

decrease in Gini indices is often used a natural feature of random forest classification to rank fea-

ture importance; it is calculated as the decrease in impurity of using the feature weighted by the

probability of reaching that feature [47, 49]. In each of the 100 random forest models, the miR-

NAs were deemed “balanced” if they show up as one of the highest 10 miRNAs out of 500 miR-

NAs in their gini values for over 90 models. Bootstrapping in R using 10,000 replicates was used

to calculate the confidence interval of the accuracy achieved by the random forest model [26]. We

plotted the hierarchical heatmap of expression values of these miRNAs using complete linkage

and Euclidean distance to show separation between cancer and non-cancers [27] (Fig 2).

We then used receiver operating characteristic (ROC) curve analysis and the area under the

curve (AUC) to evaluate each miRNA’s potential in distinguishing cancer from normal sam-

ples [28]. The curves were generated for both training and validation sets (Fig 3). A higher

AUC value indicates a higher distinguishing potential for the miRNA. To improve the discrim-

inating potential even further, multinomial logistic regression model was used to discriminate

cancer from the non-cancer samples using combinations of the miRNAs [50]. For transpar-

ency and reproducibility purposes, the custom code used in this study is provided under the

Availability of Data section.

MiRNA-mRNA interaction, functional enrichment, and protein-protein

interaction analysis

To further study why and how these miRNAs are important in cancer diagnosis, we used miR-

net [29] to analyze the relationship between the chosen miRNAs and their associated mRNAs.

miRnet [29] is a web-based software that displays all the miRNA-mRNA interactions, provid-

ing insight into how these miRNAs might regulate different mRNAs associated with cancer

[29]. The analysis was performed with setting organism into homo sapiens and unspecified tis-

sue of origin. Furthermore, two KEGG analyses were performed through miRnet–one using

all the associated mRNAs (Table 2) and one with all the circular RNAs in addition to the

mRNAs [24, 51] (S1 Table). The default settings for KEGG analyses were used on miRnet, uti-

lizing hypergeometric algorithm and including all associated mRNAs as nodes for Table 2, as

well as including all associated mRNAs and circular RNAs as nodes in S1 Table.

The target genes from the miRNA-mRNA interaction network were further clustered to

uncover their potential contribution to the development of cancer [29]. The miRNA-mRNA
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network was uploaded and visualized in the Cytoscape software [52]. Then, the top clusters

were chosen using the Molecular Complex Detection (MCODE) technique, with the inclusion

criteria of degree cutoff of 2, node score cutoff of 2, k-core of 2, and the maximum depth of

100 [53]. The threshold MCODE score was set to greater or equal to 5 as criteria. The resulting

clusters were plotted together as a network. Next, protein-protein interaction analysis was per-

formed by inputting all mRNAs from the top 3 clusters of the miRNA-mRNA network (Fig 5)

into the online STRING database v 11 to visualize their interactions [30]. The analysis was

done by uploading the list of mRNAs from Fig 5 into the STRING database with the setting of

organism as “Homo sapien”. KEGG analysis was also performed using the proteins from the

selected clusters using the STRING database website [24, 30] (S2 Table).

Supporting information

S1 Table. KEGG pathways using mRNAs and circular RNAs. Table of enriched KEGG path-

ways generated from performing KEGG analysis on miRnet using mRNAs and circular RNAs.

(XLSX)

S2 Table. KEGG pathways using mRNAs from top 3 clusters. Table of enriched KEGG path-

ways generated from performing KEGG analysis using mRNAs from top 3 clusters.

(XLSX)
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