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Does COVID‐19 contribute to development
of neurological disease?
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Abstract

Background: Although coronavirus disease 2019 (COVID‐19) has been as-

sociated primarily with pneumonia, recent data show that the causative agent

of COVID‐19, the coronavirus severe acute respiratory syndrome coronavirus

2 (SARS‐CoV‐2), can infect a large number of vital organs beyond the lungs,

such as the heart, kidneys, and the brain. Thus, there is evidence showing

possible retrograde transmission of the virus from the olfactory epithelium to

regions of the brain stem.

Methods: This is a literature review article. The research design method is an

evidence‐based rapid review. The present discourse aim is first to scrutinize

and assess the available literature on COVID‐19 repercussion on the central
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nervous system (CNS). Standard literature and database searches were im-

plemented, gathered relevant material, and extracted information was then

assessed.

Results: The angiotensin‐converting enzyme 2 (ACE2) receptors being the

receptor for the virus, the threat to the central nervous system is expected.

Neurons and glial cells express ACE2 receptors in the CNS, and recent studies

suggest that activated glial cells contribute to neuroinflammation and the

devastating effects of SARS‐CoV‐2 infection on the CNS. The SARS‐CoV‐2‐
induced immune‐mediated demyelinating disease, cerebrovascular damage,

neurodegeneration, and depression are some of the neurological complica-

tions discussed here.

Conclusion: This review correlates present clinical manifestations of

COVID‐19 patients with possible neurological consequences in the future,

thus preparing healthcare providers for possible future consequences of

COVID‐19.
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1 | INTRODUCTION

Coronavirus disease‐19 (COVID‐19) was first identified in
Wuhan, China, in early December 2019. In the past few
months, this pandemic disease had spread all over the
world and caused over 38,925,204 confirmed infections,
with 1,098,378 fatal cases globally as of 16 October 2020,
according to the Johns Hopkins University dashboard.

Coronaviruses (CoVs) are not new. The first de-
scribed coronavirus was isolated from chickens in 1937.
Human coronaviruses (HCoVs) were first found to be
pathogenic in the mid‐1960s by Tyrrell and Bynoe.1,2

HCoVs received more attention globally during the 2002‐
2003 outbreak of severe acute respiratory syndrome
(SARS) by SARS‐CoV, and the Middle East respiratory
syndrome coronavirus (MERS‐CoV) outbreak in 2012.
Until then, HCoV strains were only known to cause mild
upper respiratory tract infections.

Infections by HCoVs (229E, OC43) are known to cause
15%–29% of common cold‐like conditions3 with mild up-
per respiratory infections. The epidemic of SARS‐CoV in
2002‐2003 showed their potential for high virulence.
Since the SARS outbreak, five new HCoV strains
(SARS‐CoV, NL63, HKU1, MERS‐CoV, and SARS‐CoV‐2)
have been identified. Of these, NL63 and KHU1 cause
mild upper respiratory tract infections, with fever and very
few fatalities. SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2
are highly contagious and pathogenic and cause lower
respiratory tract infection in the elderly and in

the immunocompromised.4 Interestingly, HCoVs like
SARS‐CoV, MERS‐CoV, and SARS‐CoV‐2 have been
reported to cause respiratory, enteric, hepatic and neuro-
logical disease, with variable clinical severity.5 This review
is an attempt to gather data from isolated reports and
elaborates on the potential of COVID‐19 to cause neuro-
logical complications like immune‐mediated demyelinat-
ing disease, cerebrovascular damage, neurodegeneration,
and depression.

2 | CORONAVIRUSES AND THE
BRAIN

Reports from preclinical studies show that SARS‐CoV
can access the brain through the olfactory bulb, and from
there it reaches the brain via trans neuronal spread re-
sulting in significant neuronal infection in SARS‐CoV‐
receptor transgenic mice.6 Recent studies also show that
SARS‐CoV‐2 is more transmissible than SARS‐CoV.7 The
high homology between SARS‐CoV‐2 and the previous
generations of SARS and MERS coronaviruses suggests
that SARS‐CoV‐2 could potentially damage the neurolo-
gical system.8

Genomic analysis reveals similarity between
SARS‐CoV‐2 and SARS‐CoV, and this is consistent
with the similarity in symptoms and pathogenesis of both
viruses. SARS‐CoV and SARS‐CoV‐2 also have a high
affinity for the angiotensin‐converting enzyme 2 (ACE2)
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receptor through which they can gain access to
respiratory alveoli.9

The extent of SARS‐CoV‐2 infection of the brain might
be influenced by various factors, including environmental
and genetic. Some patients with COVID‐19 infection also
have chronic diseases, which might have increased their
risk to infection and decreased their immune‐mediated
responses. Limited information is available on how this
virus induces immunologic responses to infection in the
brain or the related neuropsychiatric outcomes.
Neural and immune cells serve as reservoirs of latent
SARS‐CoV‐2, which may contribute to the delayed neu-
rodegenerative events.10,11

Interestingly, other than respiratory distress as a
major symptom of COVID‐19, patients also experience
headache, nausea, dizziness and vomiting, which sug-
gests a probable involvement of the nervous system.12

Furthermore, out of 214 SARS‐CoV‐2 patients in one
study, 78 patients had neurological symptoms. Severely
sick patients exhibited neurological symptoms such as
cerebrovascular disease, impaired consciousness and
skeletal muscle injury.13 Reports also suggest that some
SARS‐CoV‐2 coronavirus can also spread from lungs and
lower respiratory tract to cardiovascular and respiratory
centers in the medulla of the brain via mechanoreceptors
and chemoreceptors through synaptic routes. The brain
stem is the most affected SARS‐CoV‐2 target area of the
brain in both experimental animals and patients.8

Although the ACE2 receptor is expressed by different
tissues in the body, and the cells expressing ACE2
receptors are targets for the SARS‐CoV‐2 infection,14 their
expression in the oral cavity and tongue creates a possible
gateway to the organism.15 SARS‐CoV‐2 docking studies
to ACE2 receptors revealed that lungs, heart, kidneys,
intestines, brain and testicles are the major targets.16 In
the brain, besides neurons, the ACE2 receptors are also
present on glial cells.17 Thus, glial cells might be a route
for SARS‐CoV‐2 infection of the brain. Gene sequencing of
cerebrospinal fluid shows the presence of SARS‐CoV‐2,
which adds to the evidence that the coronavirus has the
ability to invade the central nervous system.18

In addition, studies have demonstrated increased
expressions of ACE2 receptors in ischemic brains, dia-
betes and in smokers, suggesting increased suscept-
ibility to SARS‐CoV‐2 infection.19 ACE2 null mice have
been reported to show decreased amino acid tryptophan
uptake from the gut, resulting in lower levels of the
amino acid in the blood. It is speculated that this could
possibly influence kynurenine pathway.20,21 Upregu-
lated or downregulated ACE2 receptors are expressed in
many disease groups like depression, diabetes and
ischemia. Hence, they are more vulnerable to infection
by SARS‐CoV‐2.

Similarly, many reports describe central nervous
system (CNS) infections by neurotropic viruses like
cytomegalovirus, herpes simplex viruses, varicella‐
zoster virus, West Nile virus (WNV), henipavirus,
Japanese encephalitis virus, chikungunya virus, Ebola
virus and rabies virus.22,23 HIV‐1 can also cross the
blood‐brain barrier (BBB) either paracellularly or
transcellularly, and invade the CNS through a “Trojan
horse”mechanism via the infected blood cells. Here, the
infected monocytes cross the BBB via the production of
pro‐inflammatory mediators like CCL2, which com-
promise the BBB.24 Rabies virus binds to nicotinic
acetylcholine receptors at neuromuscular junctions, and
travel into motor and sensory neurons.25 WNV is also
reported to cause associated encephalitis by disrupting
the BBB, and resulting in microglia activation, in-
flammation and loss of neurons.26

3 | POSSIBLE ACCESS OF
CORONAVIRUS TO THE NERVOUS
SYSTEM

The possible mechanistic pathway of penetration of the
coronavirus into the nervous system could be either
hematological or through peripheral nerves.27 In the
hematological route of entry, the coronavirus either
enters the leukocytes and enters the blood stream or
enters the blood through mucosa. Many viruses can
breach the BBB. The BBB in the healthy state prevents
the breach by pathogens. However, if there is
immunosuppression and inflammation, invasion of
viruses can occur. Clinical and experimental animal
studies reports that the neuro‐invasive potential of
coronavirus spread from the respiratory tract to CNS
occurs via retrograde axonal transport from peripheral
nerves, such as olfactory nerve or through the hemato-
genous pathway28 (Figure 1). Substantiating this, a re-
cent report presents the magnetic resonance imaging of
COVID‐19 patient brain, demonstrating anosmia.29

4 | CORONAVIRUS INFECTION
AND IMMUNE ‐MEDIATED
DEMYELINATING DISEASES

Brain autopsy of multiple sclerosis patients showed the
presence of antibodies for coronavirus.30 The presence
of coronavirus antigen and RNA in active demyelinating
plaques also suggests the possible involvement of cor-
onaviruses in the etiology and pathogenesis of multiple
sclerosis.31 The neurovirulence of the coronavirus de-
pends on its ability to induce proinflammatory signals
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from brain cells for the recruitment of blood derived
inflammatory cells. Viruses with varying neuroviru-
lence infecting brain astroglia and microglia cultures
(primary brain immune cell cultures) show variable
capability to induce proinflammatory cytokines like
interleukin 2 (IL‐12), p40, tumor necrosis factor α (TNF‐
α), IL‐6, IL‐15, and IL‐1beta in both astrocytes and mi-
croglia of mouse brain and spinal cords.32 Infection of
the human astrocytic cell lines U‐373MG with the OC43
strain of human coronavirus led to increased tran-
scription of IL‐6, TNF‐α, and MCP‐1, altered matrix
metalloproteinases‐2 and 9 activity, and upregulation of
nitric oxide production in both U‐373 cells and CHME‐5
human microglial cell lines.33 These results suggest a
possible role of coronavirus‐induced glial cell mediated
inflammation leading to conditions such as immune
mediated demyelination of neurons. The 229‐E cor-
onavirus strains could also infect fetal astrocytes, adult
microglia, astrocytes and oligodendrocytes in cell
culture.34 A unique domain at the N‐terminus of spike
protein conferring its ability to bind to ACE2 receptors
is absent in the 229‐E strain. However, C‐terminal parts

of the spike protein in conjunction with specific amino
acids bind to CD13.35

Experiments confirmed the ability of the coronavirus
strain HCV‐OC43 to persistently infect astrocytic cell lines
U‐373 MG and U‐87, suggesting the possible role of human
coronaviruses to persist in CNS by targeting astrocytes.36,37

Further intracerebral infection of rats with coronavirus
results in initial downregulation of transcription of myelin
protein roteolipid protein, leading to infected oligoden-
drocytes, followed by necrosis of the demyelinating lesions;
whereas oligodendrocytes without detectable virus antigen
levels were observed to undergo apoptosis. Although
minimal remyelination was observed after clearance of
virus antigen in oligodendrocytes, the destruction of oli-
godendrocytes continued due to apoptosis.38 Coronavirus‐
induced encephalomyelitis in Lewis rats is reported to re-
sult in necrosis of infected oligodendrocytes followed by
formation of demyelinated plaques. The central area of the
plaques shows no virus antigen, while the peripheral re-
gions of the plaques displayed virus antigen. Also, the
virus‐induced inflammatory demyelination displayed in-
creased expression of interferon γ (IFN‐γ), IL‐2, TNF‐α,

FIGURE 1 Possible entry routes of SARS‐CoV‐2 into brain. (A) Describes entry of SARS‐CoV‐2 from nasal epithelium to olfactory bulb
entering CNS. (B) Explains entry of SARS‐CoV‐2 from the nasopharyngeal region to cerebrospinal fluid, thus gaining access to CNS.
(C) Describes binding of SARS‐CoV‐2 to ACE‐2 receptors on the endothelial cells of BBB thus invading CNSand stimulating the cytokine
storm by binding to ACE‐2 receptors on the glial cells and neurons. ACE‐2, angiotensin‐converting enzyme 2; BBB, blood‐brain barrier;
CNS, central nervous system; COVID‐19, coronavirus disease 2019; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2.
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iNOS and a novel cytokine, endothelial monocyte activat-
ing polypeptide II along with increase in the messenger
RNA (mRNA) levels of regulatory calcium binding S100
proteins MRP8, MRP14, and CP10.39 Parra et al.40 reported
that inhibition of IFN‐γ signaling reduces coronavirus re-
plication; however, demyelination, axonal damage and
infection of oligodendrocytes continued. Human cor-
onavirus OC43 inoculation in mice resulted in infection of
the CNS as a whole and the devastating effects of the virus
were mostly attributed to the microglial reactivity and in-
flammatory reactions. Apparently microglial reactivity was
due to direct neuronal injury.41

A murine coronavirus produced upregulation of Class I
major histocompatibility complex antigens in oligoden-
drocytes and astrocytes. Induction of H‐2 antigen causes
glial infection and triggers glial‐immune reactions.42 These
data strongly suggest that the pattern of virus‐induced de-
myelination involves immune glial cells, which causes tis-
sue destruction during the course of the disease. Indeed, the
status of oligodendrocyte precursor cells, oligodendrocyte
differentiation, axonal contact and myelin regeneration
need to be studied further in coronavirus infections. Similar
pathophysiological circumstances involving glial cells
(being primary target) and oligodendrocytes, hence de-
myelination, may be expected in SARS‐CoV‐2 infection.

5 | CORONAVIRUS AND
CEREBROVASCULAR HEALTH

SARS‐CoV‐2 may reach the cerebral vasculature through
the general circulation, possibly by breaching the BBB
and affecting the parenchyma.17 A possible risk for stroke
in respiratory virus infections was demonstrated by
Warren‐Gash et al.43 One of the clinical studies reported
four patients positive for stroke who were also positive
for COVID‐19. All of the four cases displayed cere-
brovascular accidents at early stages of illness.44 Inter-
estingly, another study reported a 3% incidence of
thrombotic complications in the COVID‐19 patients with
critical illness.45 Oxley et al.46 reported five cases of large
vessel stroke in COVID‐19 patients. Cases of large vessel
strokes were also reported in the SARS‐CoV‐2 outbreak
in Singapore.47 Reports propose that coagulopathy and
vascular endothelial dysfunctions are also complications
of SARS‐CoV‐2 infection.48 The etiopathological reasons
for COVID‐19 induced stroke may range from in-
flammation induced venous and arterial thromboembo-
lism, and hypoxia to diffused intravascular coagulation.45

A case study of a COVID‐19 patient reported ischemic
stroke attributed to infection‐induced hypoxia and ex-
cessive secretion of inflammatory cytokines.49 Another
study found higher D‐dimer or fibrin degradation product

levels predisposing to a hypercoagulable state, and lower
platelet count‐induced cerebrovascular hemorrhage in
SARS‐CoV‐2 positive cases.50–52 Coagulopathy and anti-
phospholipid antibodies were also observed in critically
ill COVID‐19 patients.53 A correlation was observed be-
tween cytokines released, encephalopathy and stroke
symptoms in a COVID‐19 patient with cortical stroke.54

Reports show the ability of SARS‐CoV to induce poly-
neuropathy, encephalitis and aortic ischemic stroke.55

Data also shows influenza virus triggering a cytokine
cascade and thereby exacerbating ischemic brain damage
and intracerebral hemorrhage after treatment with tissue
plasminogen activator.56 Interestingly, SARS‐CoV‐2 in-
fections also result in cytokine storms.57 These simila-
rities suggest that viral infection‐induced cytokine
release mediated cerebrovascular dysfunctions may be
one possible mechanism leading to stroke.58

6 | CORONAVIRUS AND
NEURODEGENERATION

Upregulation of the SARS‐CoV open reading frame,
ORF‐6, leads to enhanced apoptosis via caspase‐3
mediated ER‐stress and JNK‐dependent pathways.59

SARS‐CoV ORF‐9b is localized on host cell mitochondria
and disrupts mitochondrial functions to suppress host
innate immunity.60 SARS‐CoV infection is also reported
to induce mRNA levels of several UPR proteins like
GRP78, GRP94, and C/EBP homologous protein, along
with the accumulation of viral spike proteins in the en-
doplasmic reticulum.61 Coronaviruses affect some of the
host proteases like endosomal cathepsins, cell surface
transmembrane protease or serine proteases, furin, and
trypsin.62 Most of these proteases are known for their
involvement in the pathogenesis of various neurodegen-
erative diseases. Cathepsin D plays an important role in
degrading altered neuronal proteins like alpha‐synuclein,
amyloid precursor and huntingtin, whose abnormal de-
gradation by altered protease could lead to accumulation
of these proteins, which are prominent in neurodegen-
erative diseases like Parkinson's disease (PD) and
Alzheimer's disease (AD).63 Some reports also show
possible interactions of SARS‐CoV with the CNS, re-
sulting in signs of PD.64 Also intracerebral injection of
influenza virus A shows its virulent effect on substantia
nigra and hippocampus, causing formation of Lewy body
like structures and suggesting a role for this viral infec-
tion in neurodegenerative diseases.65 Furthermore, mice
expressing Parkinson's disease linked to p.G2019s LRRK2
mutation exhibit reovirus‐induced encephalitis, resulting
in increased mortality; and brains from these mice also
show increased accumulation of alpha synuclein.66
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The findings so far on SARS‐CoV‐2 infection show
similarity with pathogenesis due to infection with SARS‐
CoV and H1N1 in multiple aspects, including the effects
on mitochondrial function, proteases, and ER stress re-
sponses. These pathways are strongly correlated with
pathogenesis of various neurodegenerative diseases.

7 | CORONAVIRUS ‐INDUCED
AMYLOID BETA AGGREGATION
AND MEMORY LOSS

Emerging evidence indicates that MERS‐CoV and
SARS‐CoV can promote neurological complications.67,68

Neuronal death, especially in the medulla of mice infected
with SARS‐CoV, has been reported.6 Respiratory syncytial
virus (RSV) and herpes simplex virus type 1 (HSV‐1)
trigger the accumulation of a distinctive protein corona in
different biological fluids, which represents the initial
phase of viral–host interactions. HSV‐1 infects peripheral
sensory neurons.69 Several studies have reported that
HSV‐1 contributes to the progression of AD.70 HSV‐1 in-
fection has also been found to promote the deposition of
neurotoxic amyloid beta (Aβ) in brains of infected mice.71

HSV‐1 DNA was found to be localized within Aβ plaques
in AD patients.72 Similarly RSV have been found to ac-
celerate the deposition of Aβ in mice.73 Infection with RSV
and HSV‐1 demonstrated that viruses can physically act as
nano‐surfaces capable of catalyzing amyloid nucleation,
leading to accelerated fibril formation. Increased levels of
Apo‐E, which is a well‐known risk factor for AD, have
been observed in the HSV‐1 corona.73 Accumulation of Aβ
plaques results in memory impairment and synaptic
dysfunction.74 Accumulation of Aβ downregulates the
expression of synapse associated proteins like synapto-
physin, SNAP‐25, PSD‐95, and p‐GluR1 at Ser 845 in the
mouse hippocampus. These proteins are necessary for
maintaining the synapse and intercommunication
between the neurons.74 Aβ‐induced synaptotoxicity may
be critical in inducing memory dysfunction. Reduced
synaptophysin, SNAP‐25, PSD‐95, and p‐GluR1 expression
in the hippocampus is associated with cognitive dysfunc-
tion and memory loss in AD patients.75

8 | CORONAVIRUS
ISOLATION ‐INDUCED ANXIETY
AND DEPRESSION, AND
RELATIONSHIP WITH SEROTONIN

Most viral infections begin in the peripheral tissues.
Despite protective barriers and the immune systems,
viruses can invade the CNS through the bloodstream or

by infecting the nerves connecting to peripheral tissues.76

A recent study reported SARS‐CoV‐2 infection of the
brain, causing disturbances in the mental health of the
patients with COVID‐19.77 At the same time, an increase
in symptoms like anxiety and depression were expected
during the circumstances and restrictions of the global
pandemic.

In terms of pathophysiology, a closely related cor-
onavirus (SARS‐CoV) is reported to be neurotoxic and
affect mental health.78–80 A HCoV strain (HCoV‐NL63) is
also reported to be associated with a mood disorder.81

Thus, there is a possibility that SARS‐Cov‐2 could induce
some of the neurotoxic states and symptoms of SARS‐
CoV infection.

In a recent retrospective study of 214 COVID‐19 pa-
tients in Wuhan, China, 36%–45% reported CNS‐related
disorders like dizziness, headache, loss of smell, impaired
consciousness, loss of taste, and muscle pain.13 In an-
other study involving 144 COVID‐19 patients in Wuhan,
34.72% and 28.47% of the patients reported to have
symptoms of anxiety and depression, respectively.82

Furthermore, among the survivors of SARS infection,
patients were reported to have persistent elevated stress,
and over 64% of the survivors are reported to have a
combination of stress, anxiety, and depression.83 But it is
still not known if the symptoms can be attributed to the
viral infections.

Many studies suggest that downregulation of ser-
otonin (5HT) plays a significant role in conditions like
depression.84–86 Other studies show that viral infection
can lead to production of cytokines that impair neuronal
firing, causing depression‐like symptoms.87 Summarizing
the clinical symptoms reported in SARS virus infection,
there is thus the possibility that SARS virus infection
affected mood by altering the serotonin system. Hence,
targeting the serotonin system could be considered as a
potential option in therapies being developed for treating
depression and anxiety induced by the COVID‐19
infection.

Moreover, the World Health Organization is con-
cerned about the psychological impact of COVID‐19 on
health workers, and people are anxious about the risk
of infection and adapting to protective measures such
as social isolation.82 However, there is concrete evi-
dence showing that social isolation and loneliness are
negatively correlated with mental health.88 In a study
among 1210 cases from the general population in
China, during the initial outbreak of COVID‐19, 16.5%
reported severe depression, 28.8% anxiety, and 8.1%
severe stress.89 The levels of anxiety and depression
were also high among medical staff in Wuhan who
treated the COVID‐19 patients, in comparison to
healthy people.90 In another similar study in Wuhan,
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China, with 1257 responding doctors, 50.4%, 44.6%,
34.0%, and 71.5% reported symptoms of depression,
anxiety, insomnia, and distress, respectively.91

9 | PERSPECTIVE FROM THE
NEUROLOGIST'S CLINIC

The impact of COVID‐19 is affecting all ages of
life.92–97 Both neurotropic and neuro‐invasive prop-
erties of SARS‐CoV‐2 infection are increasing.
A broad spectrum of neurological manifestations in-
cluding demyelinating, vascular and degeneration
have been cited, making it imperative for clinicians to
maintain a holistic approach in tackling the compli-
cations of COVID‐19. Cytokine‐mediated inflamma-
tion can cause both encephalopathy and stroke, along
with altered protease‐mediated neurodegeneration
and neurotransmitter alteration, resulting in depres-
sion and anxiety. Neurologists should be aware of the
multitude of manifestations of this viral infection,
which can manifest itself even in the absence of pro-
minent respiratory symptoms, which are the primary
reported diagnostic criteria used by most healthcare
providers.

10 | CONCLUSION

Extensive reports of the pathogenesis of SARS‐CoV‐2
infection present a complex picture of the etiological
factors involved, the intricate causes of disease, and
their consequences. It is noteworthy that although the
major clinical manifestations of the disease involve
the respiratory system, the key mediator of the pa-
thogenesis is related to the immune system. Retro-
grade transmission of virus into the CNS is clear from
the available literature. Hyper‐induction of chemo-
kines and cytokines and a compromised cellular im-
mune response caused by direct infection or indirect
injury of immune cells in the CNS may contribute to
COVID‐19‐related neurotropism. A compromised im-
mune response may further lead to aggravation of
SARS‐CoV‐2‐induced CNS disorders alongside re-
spiratory distress. Advances made in our under-
standing of the pathology and pathogenesis of
COVID‐19 could potentially serve as a guide for neu-
rologists in the diagnosis, prevention, and treatment of
post‐COVID‐19 neurological effects. As the world is
still combating the pandemic, the present review
provides neurologists some directions on treating the
post‐pandemic effects.
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