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ABSTRACT
Noncontrast Computed Tomography (NCCT) of the brain has been the first-line
diagnosis for emergency evaluation of acute stroke, so a rapid and automated detection,
localization, and/or segmentation of ischemic lesions is of great importance.Weprovide
the state-of-the-art review of methods for automated detection, localization, and/or
segmentation of ischemic lesions on NCCT in human brain scans along with their
comparison, evaluation, and classification. Twenty-two methods are (1) reviewed
and evaluated; (2) grouped into image processing and analysis-based methods (11
methods), brain atlas-basedmethods (twomethods), intensity template-basedmethods
(1 method), Stroke Imaging Marker-based methods (two methods), and Artificial
Intelligence-based methods (six methods); and (3) properties of these groups of
methods are characterized. A new method classification scheme is proposed as a 2 ×

2 matrix with local versus global processing and analysis, and density versus spatial
sampling. Future studies are necessary to develop more efficient methods directed
toward deep learning methods as well as combining the global methods with a high
sampling both in space and density for the merged radiologic and neurologic data.

Subjects Neurology, Radiology and Medical Imaging, Science and Medical Education, Computa-
tional Science
Keywords Ischemic stroke, Human brain, Detection, Localization, Segmentation, Noncontrast
CT, Brain atlas, Image processing, Image analysis, Artificial intelligence, Review

INTRODUCTION
Stroke is a major reason for permanent disability and a leading cause of death, which
affects public health and results in large costs (Katan & Luft, 2018). Diagnostic imaging
plays a central role in stroke management with Computed Tomography (CT) and/or
Magnetic Resonance (MR) imaging employed to make the diagnosis and therapeutic
decisions. Noncontrast Computed Tomography (NCCT) remains the first-line diagnosis
for emergency evaluation of acute stroke because it is fast, widely available, cost-efficient,
and reliably rules out hemorrhage (Lövblad & Baird, 2010). Early ischemic changes in
NCCT scans are characterized by several features including the presence of hypodensity
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within the infarcted region, loss of distinction between gray and white matter, diminishing
of the basal ganglia contrast, sulcal effacement, ventricular narrowing, disappearing of
insular ribbon, and/or a middle cerebral artery hyperdensity sign. We also have observed
the presence of the hyperdense posterior cerebral artery sign (Ambrosius et al., 2011).
NCCT, however, has poor sensitivity, particularly in the first few hours, as acute ischemic
changes on NCCT are subtle and often do not show infarct until 12–24 h after stroke onset
(James et al., 2006). When compared to MR, this sensitivity is 25% in NCCT versus 86% in
MR; however, within the first 3 h, it is lowered to 7% for NCCT and 46% for MR (Chalela
et al., 2007).

The stroke-caused changes in a NCCT image may be too imperceptible to the human
eye to be detected, particularly in the hyperacute stage, therefore their computer-assisted
processing and analysis could assist in enhancing and expediting the scan reading. In
general, there are three approaches to delineate lesions in brain images: manual, semi-
automated, and fully automated, and a manual tracing by trained professionals remains
the gold standard (Fiez, Damasio & Grabowski, 2000; Wilke et al., 2011). Especially for
follow-up scans, the reliable and reproducible lesion segmentation is of high interest, as the
lesion volume is one important imaging end-point for clinical trials. A manual delineation
of a brain lesion is laborious and time-consuming, and it requires substantially more
human input compared to the automated approach (e.g., a few hours versus one minute as
compared by Wilke et al. (2011)). Therefore, automating the detection and segmentation
of ischemic infarcts is critical, especially, as the time window to treat stroke is 3-4.5 h for
intravenous thrombolysis (Hacke et al., 2008). Moreover, a manual approach results in
variability across operators, because there is often no clear cutoff between lesioned and
non-lesioned tissues, especially, at the brain’s borders and around the cerebral ventricles as
well as it usually does not detect inevitable stroke-induced changes taking place outside the
lesion (Fiez, Damasio & Grabowski, 2000). Semi-automated methods combine advantages
of a fully automated abnormality detection with manual editing of the lesion enabling the
operator to finalize its location and extent.

A computer-assisted approach, even without applying fully automated methods, has
been employed in stroke image management. For instance, Mainali, Wahba & Elijovich
(2014) demonstrated that a simple transformation of image brightness and contrast,
by changing the window center and width level in standard windows and introducing
improved stroke windows, significantly improves detection (from 18% to 70%) of early
ischemic changes.

A popular approach for stroke detection is to apply the ASPECTS score. The ASPECTS
(meaning the Alberta Stroke Program Early CT Score) aims to systemize the detection
and reporting of ischemic stroke by visually identifying an ischemic hypodensity on the
middle cerebral artery (MCA) territory subdivided into ten regions that are located on two
different axial CT slices (Barber et al., 2000). In order to automate this visual approach,
Kuang et al. (2019) proposed a method based on texture features extracted from each
ASPECTS region to train a random forest classifier. This automated approach tested on
100 patients showed a reasonable ability to determine the ASPECTS.
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Numerous methods have been developed for semi-automated and automated stroke
lesion detection and delineation,mostly inMR images; however, only a few approaches have
been proposed for detecting stroke lesions in NCCT scans (Rekik et al., 2012). Moreover,
in comparison to the development of hemorrhagic stroke processing methods that of
ischemic stroke detection is given less attention because of its more demanding nature
(Gillebert, Humphreys & Mantini, 2014).

Besides the speed and operator independence, there are several additional advantages
of employing a computer-assisted fully automated infarct detection and localization in
NCCT as discussed by Nowinski et al. (2013). Namely, first, the computer is able to process
multiple density ranges in order to detect subtle changes in them. Second, the density
changes caused by infarction can be accumulated across all slices in 3D by the computer,
which may facilitate the detection and localization of these changes. Third, the computer
is able to identify and compare contralateral regions (i.e., symmetrical with respect to the
calculated midsagittal plane) which symmetry is critical, particularly, when the symmetry
in the original images is deteriorated or even completely vanished due to a heavy head tilt
(which often happens in scans acquired in the emergency room).

Though there exist several methods aiming to automate the evaluation of ischemic stroke
in MR and CT images, only a few of them address the automated detection, localization,
and/or segmentation of ischemic lesions in NCCT human brain scans. Rekik et al. (2012)
presented a state-of-the-art review in the medical image analysis approaches applied to
segmentation, prediction, and dynamic evolution modeling of acute/subacute ischemic
stroke from CT and MR human, animal and/or synthetic data. Out of 44 papers included
in that review, in the category of automated segmentation of human ischemic stroke from
NCCT the review lists only six papers from four centers. These papers are categorized into
three groups: image-based methods (Matesin, Loncaric & Petravic, 2001; Meilunas et al.,
2003; Usinskas et al., 2003; Usinskas, Dobrovolskis & Tomandl, 2004), pixel-based methods
(Chawla et al., 2009), and atlas-based methods (Maldijan et al., 2001).

Another review prepared by Mokli et al. (2019) provides a computer-aided imaging
analysis in acute ischemic stroke from NCCT, computed tomography angiography, and
perfusion imaging. This review lists 26 software applications commercially available from
13 companies for automated and semi-automated medical image analysis for acute stroke
diagnostics, and only two of them deal with NCCT ischemic stroke, each employing
the ASPECTS score. These are e-ASPECTS R© software from Brainomix Ltd. (Oxford,
UK) to assess the ASPECTS score and volume of ischemia; and RAPID ASPECTS R©

from iSchemaView (Menlo Park, USA) to automatically identify and score regions with
early ischemic changes using the ASPECTS score. Up to date, these are the only two
commercial products available that are certified for use in clinical routine. In addition,
Frontier ASPECTS from Siemens Healthcare GmbH (Erlangen) is another ASPECTS-based
application developed that is not yet certified for clinical application.

The goal of this work is to provide: (1) review of the state-of-the-art methods for
automated detection, localization, and/or segmentation of ischemic lesions in human
brain NCCT scans, (2) comparison, evaluation, and classification of the reviewed methods,
and (3) recommendation for future developments.
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SURVEY METHODOLOGY
We searched the literature in the examined scope of interest using PubMed and Google
Scholar, scanning also in the corresponding references, selected papers, and related articles.
We employed the following keywords: ‘‘stroke’’, ‘‘ischemic stroke’’, automated detection’’,
‘‘automated segmentation’’, ‘‘automated localization’’, and ‘‘noncontrast CT’’.

A number of various methods have been proposed for automated detection, localization,
and/or segmentation of ischemic lesions on NCCT in human brain scans. We classify these
methods into five groups:
1. Image processing and analysis-based methods;
2. Brain atlas-based methods;
3. Intensity template-based methods;
4. Stroke Imaging Marker (SIM)-based methods;
5. Artificial Intelligence (AI)-based methods.

Image processing and analysis-based methods
Several image processing and analysis-based methods have been proposed for automated
handling of NCCT stroke images by employing a variety of techniques including, among
others, thresholding, region growing, edge detection, textures, wavelets, rule-based expert
systems, classification, and combination of them.

Matesin, Loncaric & Petravic (2001) proposed a rule-based method for segmentation
and labeling of ischemic stroke lesions. The method consists of three steps as previously
described in Matesin, Loncaric & Petravic (2001): determination of a head symmetry axis
based on moments, seeded region growing to identify multiple regions having uniform
brightness, and rule-based region labeling by using an expert system. The rules for
identifying the background, skull, brain, and cerebrospinal fluid (CSF) are neighborhood-
and intensity-based, and those for an ischemic lesion are symmetry-based. The authors
claimed feasibility without presenting any quantitative results.

The group by Meilunas and Usinskas presented three works. Meilunas et al. (2003)
proposed a method based on the contouring of an ischemic stroke region boundary. The
method consists of slice filtering, smoothing, and extension of stroke region boundary
followed by the computing of an infarct volume.

Usinskas et al. (2003) compared a few methods suggesting that the best viability for
ischemic stroke area segmentation showed mean, standard deviation, histogram, and
gray level co-occurrence matrix methods as well as a supervised artificial neural network
technique.

Subsequently, Usinskas, Dobrovolskis & Tomandl (2004) proposed a texture-based
method with an unsupervised classifier. The method uses 18 unified textural features
to segment an ischemic stroke region on images, including joint features from the mean,
standard deviation, histogram, and gray level co-occurrence matrix. The method requires
thresholding for each image which is not automated. The authors showed an ability to
segment an ischemic stroke region without any quantitative assessment.

Przelaskowski et al. (2007) proposed a wavelet-based method. The authors observed that
infarction perception can be improved by data denoising and local contrast enhancement in
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a multi-scale domain, and presented a wavelet-based image processing method enhancing
the subtlest signs of hypodensity which were often invisible in a standard CT scan review.
The method studied on 30 ischemic scans increased the sensitivity of ischemic lesion
detection from 12.5% for a standard CT scan preview to 56.3%.

Chawla et al. (2009) proposed a classification-based method in the intensity and wavelet
domains. The method detects and classifies a stroke-related abnormality into acute infarct,
chronic infarct, and hemorrhage by comparing the cerebral hemispheres. The method
consists of three steps as previously reported in Chawla et al. (2009): image enhancement
and denoising, detection of a brain symmetry line, and classification of abnormal slices.
A two-level classification scheme employs an intensity histogram-based comparison to
identify chronic and hemorrhagic cases as well as wavelet energy-based texture information
for acute infarct detection. The method was evaluated on 6 normal and 9 stroke patient
CT scans resulting in an accuracy of 90%.

Tang, Ng & Chow (2011) and Tang, Ng & Chow (2013) proposed a texture-based
method using circular adaptive regions of interest. This method comprises preprocessing
(a threshold-based bone and artifact removal), generation of circular adaptive regions of
interest, for each region locating by reflection a corresponding circular region on the other
side of the brain image, and comparing each pair of the circular regions with several texture
attributes. These attributes are calculated based on a gray level co-occurrence matrix and
they include energy, entropy, inverse difference moment, inertia, prominence, shade,
correlation, and variance. The method was tested on 10 acute and 10 chronic ischemic
stroke cases resulting in an estimated accuracy of 86.96%.

Boers et al. (2013) presented a method for infarct volume measurement in follow-up
NCCT scans by employing region growing. After a manual placement of the seed point in
the infarcted hypo-attenuated area, the region growing was repeated for various thresholds
in the range of 1.5–4.5 HU (Hounsfield Units) with a step of 0.5 HU resulting in seven
segmentations. To avoid the region growing from leaking into the contralateral hemisphere,
the midline was used as a limit (that was determined based on the geometric center and
the most extreme midsagittal bone or nasal cartilage structures). The algorithm was tested
on 34 cases and achieved the Dice’s Similarity Coefficient (DSC) (Dice, 1945) of 34%.

Vos et al. (2013) proposed a classification-based method to detect and segment ischemic
lesions. Themethod comprises three stages as previously described inVos et al. (2013): pixel
classification and lesion candidate localization (via a naive Bayes classifier combined with a
tissue homogeneity processing to localize candidates for ischemic lesions), segmentation of
the candidate lesions and feature extraction (through amarching cubes algorithm to analyze
regional statistics in order to extract features based on local and contextual information
from the contralateral hemisphere), and aggregation of the extracted features into a
likelihood of ischemia (by employing a supervised classifier). The method performance in
lesion segmentation achieved the DSC of 74%.

Tyan et al. (2014) presented an unsupervised feature perception enhancement method
for ischemic stroke detection. The method works in four-steps as previously reported in
Tyan et al. (2014): preprocessing (utilizing a cubic curve contrast enhancement), brain
tissue extraction (by applying thresholding, blurring, and morphological operations),
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meaningful area extraction (through edge detection to identify the stroke area and
unsupervised region growing followed by a brain area partitioning into eight regions
by a horizontal and a vertical line and an elliptic curve determining the border between the
graymatter (GM) andwhitematter (WM)), and infarct regional location (by calculating the
brightness in these eight regions, determining areas with the smallest values in comparison
to their counterparts, and analyzing their mutual relationships). The method tested on 26
patients demonstrated an increased stroke diagnosis sensitivity of 83% in comparison to
31% when radiologists used conventional diagnostic images.

Ray & Bandyopadhyay (2016) proposed a method based on the textural analysis. The
method contains three modules as previously featured in Ray & Bandyopadhyay (2016):
preprocessing (by performing noise and artifacts removal), segmentation (by applying
image gradient magnitude watersheding followed by thresholding), and feature extraction
(by dividing an image into four quadrants, calculating for each region first-order texture
measures (the mean, standard deviation, variation, skewness, kurtosis, and entropy), and
selecting an abnormal region based on their values). The results contain a single image of
an extracted hemorrhage, without any ischemic lesions and quantitative assessment.

Brain atlas-based methods
A brain atlas is a means for knowledge aggregation, presentation, and discovery (Nowinski,
2020a). Electronic brain atlases have potential usefulness in stroke image management for
diagnosis, treatment, and prediction (Nowinski, 2020b). In ischemic stroke detection, a
brain atlas enables an automated generation of regions of interest (ROIs).

Maldijan et al. (2001) presented an atlas-enhancedmethod for identifying potential areas
of acute ischemia for middle cerebral artery (MCA) stroke. The method first performs
image preprocessing, including interpolation, scalp striping, normalization, and atlas-
based segmentation of the lentiform nucleus and insula. Then, voxels densities in the
segmented lentiform nucleus and insula of one hemisphere are compared with those in the
contralateral side by using the Wilcoxon two-sample rank-sum test. This method, limited
to two structures and MCA ischemic stroke, was validated for 15 ischemic stroke patients.
Note that conceptually, the method is similar to the ASPECTS scale with a lower number
of ROIs, though delineated and processed automatically.

Nowinski (2020b) proposed a multi-atlas method to detect and localize ischemic and
hemorrhagic stroke lesions. It processes the entire brain covered with numerous ROIs that
are examined, overcoming the limitation of the ASPECTS-based andMaldijan et al. (2001)
methods regarding a small number of ROIs. These ROIs are derived from two atlases, an
atlas of anatomy and an atlas of blood supply territories, which are in spatial correspondence
(Nowinski et al., 2006b). As previously described inNowinski (2020b) the method calculates
the midsagittal plane separating the brain into the right and left hemispheres and is able
to handle a large head tilt often present in emergency room acquisitions (Puspitasari et al.,
2009), maps the brain atlases on an NCCT scan through the ellipse-fitting atlas-to-scan
registration method (Volkau et al., 2012), extracts the ventricular system using a dedicated
algorithm for segmentation of the ventricular system from ischemic stroke NCCT scans
(Poh et al., 2012) and removes from the processed images the CSF regions as the CSF
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density range overlaps with that of infarcts, determines numerous left–right corresponding
ROIs in both hemispheres by employing the atlases, and compares these pairs of the
ROIs by means of multiple statistical tests. The method was tested on several ischemic and
hemorrhagic cases demonstrating feasibility, and the component algorithms were validated
quantitatively on 208 NCCT scans (MSP extraction), 75 multi-modal NCCT,MR, and PET
scans (atlas-to-scan mapping), and 102 NCCT stoke cases (ventricular system extraction).

Intensity template-based methods
Gillebert, Humphreys & Mantini (2014) proposed an intensity template-based method
to delineate infarcts and hemorrhages. The method comprises two steps as previously
described in Gillebert, Humphreys & Mantini (2014): patient scan preprocessing (by
applying a threshold-based clustering, intensity transformation, MNI (Montreal
Neurological Institute) space normalization, isotropic reslicing, and smoothing) followed
by statistical analysis for lesion detection (by a voxel-by-voxel comparison of the
preprocessed scan with a normal CT scan template developed from 72 non-stroke subjects
for defining areas with hypo- or hyper-intense signals). The performance measured by the
DSC on 24 acute stroke patients and 72 control subjects with the simulated lesions ranged
(depending on the degree of applied smoothing and the level of thresholding) between
52% and 89%.

SIM-based methods
The image processing and analysis-based methods typically detect local changes in images,
while the SIM-based methods attempt to capture global density changes caused by an
infarct in the scan. Moreover, the SIM-based methods make detection taking into account
the actual patient’s values of CSF, WM, and GM. Finally, these methods avoid image
processing operations distorting original densities values, such as smoothing or blurring.

Standard SIM-based method
Nowinski et al. (2013) proposed a method for rapid and automatic detection, localization,
and volume assessment of ischemic infarcts (including hyperacute, acute, lacunar, and
chronic infarcts as well as infarcts with hemorrhagic transformation and leukoaraiosis).
The method exploits the fact that an ischemic lesion manifests itself by (1) occupying the
density range between CSF and WM, and (2) redistribution of density globally between
the hemispheres. This redistribution, which might be barely observable by the human
eye, is captured by the introduced Stroke Imaging Marker (SIM). The SIM determines
the infarct spatial range in the axial, coronal, and sagittal orientations by statistically
comparing multiple cumulative density distributions calculated for the whole normal
and infarcted cerebral hemispheres. As previously described in Nowinski et al. (2013) the
method performs in five main steps: (1) identify the midsagittal plane (MSP) by applying
the algorithm by Puspitasari et al. (2009) and subdivide the brain into the right and left
hemispheres; (2) reformat the originally acquired axial slices through near neighbor
interpolation (to avoid changing the original density values) such as to be precisely
perpendicular to the MSP, as typical stroke acquisitions usually do not produce exactly
symmetrical images; (3) calculate for each hemisphere the patient-specific density ranges
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of CSF, WM, and GM employing the algorithm by Gupta et al. (2010); (4) compute the
spatial extent of the ischemic infarct by determining its range in each axial, coronal, and
sagittal orientations through the SIM; and (5) calculate two cuboidal regions inner and
outer that localize the ischemic infarct in 3D.

The SIM is composed of three components and it is computed as:
SIM = P-ratio * N-ratio / MDV,
where:

• P-ratio denotes a percentile difference ratio in several small subranges of the entire
density distribution;

• N-ratio denotes a ratio of voxels count in two density bands within the brain
parenchyma;

• MDV is the median density value.

As previously explained inNowinski et al. (2013) the SIM is computed for every image in
each hemisphere, and each axial, coronal, and sagittal orientation. The SIM is adaptive to
diverse manifestations of the infarcted region by employing a set of parameters determining
the density subranges resulting in 54 various combinations (SIM plots). The combination
that achieves the maximum SIM difference across the normal and infarcted hemispheres
is taken as the most significant result by applying the Wilcoxon rank-sum test. The
spatial extent of the infarct is determined by the starting and ending locations of the
intersection points of the SIM plots for both hemispheres enclosing the largest number of
the consecutive slices. The 5th and 95th percentiles of the distribution of the starting and
ending intersections are considered the lesion localization limits, and when calculated for
the axial, coronal, and sagittal orientations they demarcate two bounding boxes, the inner
and the outer, that localize spatially the infarct.

As described earlier byNowinski et al. (2013) the method was quantitatively validated on
576 clinically confirmed strokes, each with a single NCCT scan. The scans were acquired
at four centers in two countries. The scans consisted of core scans of 322 ‘‘pure’’ acute
ischemic infarcts (i.e., without any other noticeable pathology), 36 lacunar infarcts, 17
hemorrhagic transformations, 104 ischemic infarcts jointly with chronic infarcts, and
70 acute ischemic infarcts along with leukoaraiosis. Out of the total of (104+70) chronic
infarcts and leukoaraiosis cases, 27 scans had ischemic infarcts alongwith both leukoaraiosis
and chronic infarcts. The time after the onset of symptoms at acquisition was available for
532 scans, and it spanned from 1.5 h (hours) to 72 h for 450 scans and above 72 h for 82
others. These scans were divided into 3 h, 3< to 8 h, and >8 h after the onset of symptoms.
In addition, 21 NCCT hyperacute cases (between 1.5 h and 7 h) with additional follow-up
NCCT imaging were used for early stroke detection.

As previously reported inNowinski et al. (2013) the SIMmethodmatched 100% expert’s
infarct detection achieving 99.8% inner localization specificity and 93.3% outer localization
sensitivity when leukoaraiosis cases, chronic infarcts, and infarct volumes <2 cm3 were
excluded. For all the cases while omitting infarct volumes <2 cm3, this detection accuracy
lowered to 95.7%. For any case, detection accuracy further reduced to 83.2%. Early
detection accuracy (≤3 h) was 78.4% and this accuracy increased with the raise of the time
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after the onset of stroke symptoms from 78.4% (≤3 h) to 80.1% (3< to ≤ 8 h) to 87.9%
(8< to ≤ 72 h). In addition, the SIM method also detected all 21 early ischemic infarcts (of
which 15 were overlooked by stroke neuroradiologists).

Modified SIM-based method
The promising results obtained for early ischemic stroke detection encouraged us to further
study the SIM to improve its performance for hyperacute ischemic stroke. Two quantities
were studied in the SIM formula: (1) parameter selection and their value setting as well as
(2) its components (Gomolka et al., 2016).

In the standard (original) SIM method the P-ratio was sampled with six density ranges
and the N-ratio with nine density ranges giving rise to 54 parameter combinations. This
parameter setting resulted in quick infarct detection and localization in 7 s. The modified
SIM method employed a wider spectrum of density ranges in terms of their span (from
five to 40 HU), coverage, and numbers, including finer ranges, resulting in a total of 168
parameter combinations.

These parameters were modified and examined only in the P-ratio as the study showed
that the N-ratio was optimally formulated and the MDV was excluded from the modified
SIM for efficiency as its average value was similar in the infarcted and normal hemispheres
among all the early scans (indicating that early infarction causes changes in density
distribution rather than forming hypodense areas).

As previously reported in Gomolka et al. (2016) the modified SIMmethod was evaluated
on 70 early (for the detection) and 70 follow-up (to set of the gold standard) ischemic stroke
scans from two centers. The best performance was obtained for the P-ratio including seven
percentile subranges within the range of 35th-75th percentile achieving a 76% ischemic
hemisphere detection rate and 54% sensitivity in spatial localization of hyperacute ischemia.

AI-based methods
Artificial Intelligence (AI) is defined in the Merriam-Webster dictionary (https:
//www.merriam-webster.com/) as: ‘‘(1) a branch of computer science dealing with the
simulation of intelligent behavior in computers, and (2) the capability of a machine to
imitate intelligent human behavior’’. Machine learning is one form of artificial intelligence
that ‘‘is devoted to building algorithms that allow computers to develop new behaviors
based on experience’’ (https://www.merriam-webster.com/). In other words, machine
learning develops algorithms enabling computers to learn from existing data without
explicit programming.

Machine learning methods are subdivided into supervised learning and unsupervised
learning. In supervised learning, the algorithms are first trained by employing some existing
‘‘gold standard’’ or ‘‘ground truth’’; in the considered application this is a collection of
brainNCCT scans classified into infarcted versus no infarcted. Supervised learningmethods
include, among others, linear regression, support vector machines, decision trees, random
decision forests, and k-nearest neighbors (k-NN) algorithm (classifiers for ischemic stroke
lesion segmentation are reviewed and compared by Maier et al. (2015)). In contrast,
unsupervised learning attempts to discover previously unknown classes, patterns, and/or
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structures in the data with no given classification nor previous training. Unsupervised
learning methods include, among others, k-means clustering, mixture models, and hidden
Markov model. In radiology at present, the dominant type of machine learning algorithm
is the artificial neural network (ANN) which is a cluster of interconnected nodes (Dreyer
& Geis, 2017). An ANN with multiple layers of interconnected nodes with representation
learning is termed deep learning. Deep learning has recently become the principal form
of machine learning because of a convergence of theoretic advancements, openly available
computer software, and hardware with adequate computational power (Zaharchuk et al.,
2018). Deep learning through computationally efficient convolutional neural networks
(CNNs) is well-suited for imaging (Zaharchuk et al., 2018). The CNNs require a large
amount of training data to avoid overfitting, and once the network parameters have
converged an additional training step is performed to fine-tune the network weights.
To reduce the amount of training data and to produce more precise segmentation of
biomedical images, U-net architecture is developed based on CNNs (Ronneberger, Fischer
& Brox, 2015).

Rajini & Bhavani (2013) proposed a detection method by employing texture features
combined with various machine learning methods. The method consists of five stages:
preprocessing, segmentation, brain midline tracing, extraction of 14 texture features (using
a gray level co-occurrencematrix between the left and right hemispheres), and classification
(by a binary classifier). As reported earlier by Rajini & Bhavani (2013) the method was
validated quantitatively on 15 ischemic cases and, to distinguish an ischemic from normal
hemisphere by applying a support vector machine, k-nearest neighbors, artificial neural
network, and decision tree classifiers, it achieved the accuracy of 98%, 97%, 96%, and 92%,
respectively.

Sales Barros et al. (2019) proposed an infarct segmentation method utilizing CNN
deep learning. The goal was to segment an infarct to calculate its volume in follow-up
NCCT scans acquired between 12 h and 2 weeks after stroke onset. The method has two
steps as previously described in Sales Barros et al. (2019): preprocessing to segment the
intracranial region (through thresholding, region growing, and morphological operations)
and CNN-based infarct segmentation (with the CNN architecture with two convolutional
layers followed by two fully connected dense layers, each dense layer with 256 nodes).

For validation 396 NCCT stroke scans were employed to test segmentation performance,
and additional 570 scans for training, and 60 for parameter fine-tuning. Patients with
anterior circulation stroke were selected for this study, which is its major limitation. A
single trained CNN achieved for all tested 396 patients the DSC of 18%. As this value is
low, the scans were additionally divided into three infarction classes with fixed thresholds:
severe of [14, 22] HU, intermediate of [22, 32] HU, and subtle of [32, 44] HU. Then by
employing three CNNs, the corresponding values of the DSC were 78% for the severe class
with 67 cases, 61% for the intermediate with 204 cases, and 37% for the subtle class with
125 cases.

Kuang et al. (2019) proposed a deep learning method to automate the ASPECTS score
based on texture features extracted from each ASPECTS region to subsequently train a
random forest (RF) classifier. The classifier was trained for 157 cases. The method tested on
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100 patients resulted in a sensitivity of 66.2%, specificity of 91.8%, and area under the curve
of 0.79. This performance was further improved when the ASPECTS was dichotomized
(>4 and ≤4) achieving a sensitivity of 97.8%, specificity of 80%, and area under the curve
of 0.89.

Three deep learning approaches have been proposed by the group of Kuang, Menon,
and Qiu to segment follow-up NCCT scans to measure post-treatment cerebral infarct
volumes for evaluating the effectiveness of endovascular therapy of acute ischemic stroke
patients.

Kuang, Menon & Qiu (2019a) presented an infarct segmentation method that
combines machine learning exploiting cascaded RF and interactive segmentation. The
method includes three major steps as reported by Kuang, Menon & Qiu (2019a): expert
initialization, RF learning and classification (with a two-stage training and testing classifier),
and convex optimization-based segmentation. The initialization step requires the user’s
input knowledge to pre-label some voxels in the infarcted region and background on a few
axial slices aiming to lessen the detected false positives (making in this way the method
semi-automated). A cascaded RF learning is applied to classify each voxel into normal or
ischemic, and to calculate an infarct probability map. Four kinds of features are extracted:
intensity, statistical information in the local region, the symmetric difference compared
to the contralateral side (by using image symmetry), and the spatial probability of infarct
occurrence. These features are input into the RF to train a first-stage classifier whose coarse
results of segmentation are employed to train a second-stage fine classifier with fivefold
cross-validation. The RF estimated infarct probability map calculated by the second-stage
classifier with user input knowledge is subsequently included in a convex optimization
function to get the final segmentation. One hundred stroke patients were used in this study,
of which 70 scans for evaluation and 30 for training achieving the DSC of 79%. Themethod
considerably outperformed some other AI methods, including the RF-based methods and
CNN-based U-net.

Another method proposed by Kuang, Menon & Qiu (2019b) is based on dense Multi-
Path Contextual Generative Adversarial Network (MPC-GAN). It makes use of a dense
multi-path U-Net as a generator regularized by a discriminator network. The generator
and discriminator input contextual information, such as bilateral intensity difference,
infarct location probability, and distance to CSF. The MPC-GAN network was trained on
60 patients, fine-tuned on 10 patients, and 30 patients were used for validation yielding the
DSC of 72.6%. The MPC-GAN method outperformed some state-of-the-art segmentation
methods, such as the U-Net, U-Net based GAN, and RF-based segmentation method.

Kuang, Menon & Qiu (2019c) presented a deep learning-based semi-D-net method
for the simultaneous segmentation of infarcts and hemorrhages. The method integrates
network learned semantic information, local image context, and user initialized prior to
a multi-region contour evolution scheme, which subsequently is globally optimized by
a convex relaxation technique. The method also introduces a D-Unet architecture that
follows that of U-Net, and semi-D-Unet that additionally requires user input knowledge.
As reported earlier by Kuang, Menon & Qiu (2019c) a quantitative evaluation using 30
cases yielded the mean DSCs of 67.4% for ischemic infarct, 65.3% for hemorrhage, and
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72.5% for both. Post-processing using multi-region evolution and the introduction of
user interactions greatly improved accuracy. The proposed method outperforms other
deep-learning methods including the U-net, D-net, demi RF, and semi-U-net.

DISCUSSION
The discussion covers a comparison of the individual methods and evaluation of their
advantages and limitations, a characterization of the groups of the methods, a proposal
of a new classification of the methods, and as a conclusion a recommendation for future
development.

The proposed methods are usually a combination of diverse techniques and approaches,
and the main approaches are various image processing and analysis techniques, assessment
of asymmetry between the left and right cerebral hemispheres, ROI-based analysis, and
AI-based classifiers.

The reviewed methods are summarized and compared in Table 1 taking into account:
author(s), type of method along with techniques, use of brain symmetry (with respect to the
image or by calculating the MSP), ROI-based analysis (along with the number of employed
ROIs), type of stroke/infarct (ischemic, hemorrhagic, hyperacute ischemic, acute ischemic,
chronic ischemic, follow-up ischemic, lacunar, infarct with hemorrhagic transformation,
and infarct with leukoaraiosis), and validation (including the number of stroke cases and
availability of quantitative validation).

Characterization of groups and evaluation of methods
The reviewed methods enable automated detection, localization, and/or segmentation of
ischemic lesions. An advantage of having the infarct segmented is that it then can easily be
quantified, including calculation of its volume, which is an important radiologic outcome
measure of the effectiveness of endovascular therapy. However, ischemic infarcts on NCCT
images show neither homogenous density nor sharp edges, suffer from a low signal to noise
ratio, and interfere with chronic infarcts and leukoaraiosis, among others, as illustrated in
Fig. 1. Therefore, their accurate segmentation is difficult for real clinical data, if possible
at all for acute and hyperacute cases. A more practical approach seems to provide infarct
detection cum localization with the infarct volume estimated statistically by applying, for
instance, a method presented by Nowinski et al. (2013). Alternatively, infarct segmentation
is carried out on follow-up NCCT images as presented by Sales Barros et al. (2019), Kuang,
Menon & Qiu (2019a), Kuang, Menon & Qiu (2019b) and Kuang, Menon & Qiu (2019c)).

The majority of the reviewed methods are based on image processing and analysis.
Some of these methods apply thresholding, edge detection, and region growing for infarct
segmentation, however, the outcome of these operations is questionable (particularly for
real clinical data). First, these operations are sensitive to noise. Second, region growing is
not able to bridge gaps between multiple infarcted areas (Boers et al., 2013), see Fig. 1E.
Third, the ischemic lesions are not regions with uniform intensities (see Figs. 1B, 1C) but
show smaller decreases on the borders and larger decreases towards the center of the lesion
(Rekik et al., 2012), so these methods are not able to clearly determine the lesion boundary.
And fourth, the density range of ischemic lesions overlaps with that of CSF (see Fig. 1F),
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Table 1 Comparison of automated methods for ischemic infarct detection, localization , and segmentation in NCCT scans of the human brain.

Author(s) Method (group and techniques) Left/right
symmetry

ROI analysis Type of
stroke

Validation

Y/N MSP Y/N Number
of ROIs

Number of
stroke cases

Quantitative
assessment

Matesin, Loncaric & Petravic (2001) IPA; rule-based, region growing Y N N NA I NA N
Meilunas et al. (2003) IPA; contour-based, filtering, smooth-

ing
N N N NA I NA N

Usinskas et al. (2003) IPA; mean, standard deviation, his-
togram, co-occurrence matrix

N N N NA I NA N

Usinskas, Dobrovolskis & Tomandl (2004) IPA; texture-based, thresholding (not
automated)

N N N NA I NA N

Przelaskowski et al. (2007) IPA; wavelet-based N N N NA I 30 Y
Chawla et al. (2009) IPA; intensity-based, wavelet-based,

two-level classification
Y N N NA I-a, I-

ch, H
9 Y

Tang, Ng & Chow (2011);
Tang, Ng & Chow (2013)

IPA; texture analysis, radius variable
ROIs

Y N Y Variable I-a, I-ch 10 acute,
10 chronic

Y

Boers et al. (2013) IPA; region-growing with multiple
thresholds

N Y N NA I-fu 34 Y

Vos et al. (2013) IPA: Bayes classification, marching
cubes segmentation, supervised classi-
fication

Y NA N NA I NA Y

Tyan et al. (2014) IPA; edge detection, region growing,
blurring

Y N Y 8 I 26 Y

Ray & Bandyopadhyay (2016) IPA; textural analysis, watersheding,
thresholding

Y N Y 4 I 0 N

Maldijan et al. (2001) BA; limited to MCA, interpolation,
normalization

Y N Y 2 I 15 Y

Nowinski (2020b) BA; two atlases, atlas individualiza-
tion, ventricular system extraction,
statistical tests

Y Y Y Many I, H Several Y (component
algorithms)

(continued on next page)
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Table 1 (continued)

Author(s) Method (group and techniques) Left/right
symmetry

ROI analysis Type of
stroke

Validation

Y/N MSP Y/N Number
of ROIs

Number of
stroke cases

Quantitative
assessment

Gillebert, Humphreys &
Mantini (2014)

IT; normalization, smoothing, statisti-
cal analysis

N N N N I, H 24 Y

Nowinski et al. (2013) SIM; original, CSF/WM/GM calcula-
tion, density sampling

Y Y N NA I-ha, I-
a, I-ht,
I-ch, I-
lac, I+la

576 Y

Gomolka et al. (2016) SIM; modified, CSF/WM/GM calcula-
tion, density sampling

Y Y N NA I-ha 70 Y

Rajini & Bhavani (2013) AI; texture features, classifiers (sup-
port vector machine, k-nearest neigh-
bors, artificial neural network and de-
cision tree)

Y N N NA I 15 Y

Sales Barros et al. (2019) AI; segmentation, region growing,
morphological operations, deep learn-
ing with CNN

N N N NA I-fu 396 (67, 204,
125 for
individual classes)

Y

Kuang et al. (2019a) AI; texture features and RF classifier
for ASPECTS

N N Y 10 I 100 Y

Kuang, Menon & Qiu (2019a) AI; cascaded RF with interactive seg-
mentation

Y N N NA I-fu 70 Y

Kuang, Menon & Qiu (2019b) AI; dense MPC-GAN N N N NA I-fu 30 Y
Kuang, Menon & Qiu (2019c) AI; semi-D-net with user initialized

prior
N N N NA I-fu, H 30 Y

Notes.
AI, AI-based method; BA, brain atlas-based method; CCN, AI convolutional neural networks; H, hemorrhagic stroke; I, ischemic stroke; I-a, ischemic stroke, acute infarct; I-ch, ischemic stroke,
chronic infarct; I-fu, late ischemic stroke, follow-up images; I-ha, ischemic stroke, hyperacute infarct; I-ht, ischemic stroke, infarct with hemorrhagic transformation; I-lac, ischemic stroke, lacunar
infarct; I+la, ischemic stroke, infarct with leukoaraiosis; IPA, image processing and analysis-based method; IT, intensity template-based method; MCA, middle cerebral artery territory; MPC-GAN,
dense Multi-Path Contextual Generative Adversarial Network; MSP, midsagittal plane calculated in 3D; NA, non- available/applicable; ROI, region of interest processing; RF, AI random forest; SIM,
stroke imaging marker-based method; Y/N, yes/no.
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Figure 1 Illustration of space-dependent ischemic stroke changes on NCCT scans: (A) Early ischemic
stroke with invisible changes; (B) focal inhomogeneous ischemic lesion in the right basal ganglia with a
fuzzy border; (C) focal large ischemic presence in the left MCA territory with a partly fuzzy ischemic le-
sion at its posterior border; (D) focal large ischemic presence in the left MCA territory with a clear is-
chemic lesion border (along with hemorrhagic transformation); (E) multi-focal ischemic lesion of the
right MCA territory; (F) overlapping density cum a partial volume effect in cerebrospinal fluid spaces; (G)
distributed ischemic presence, obscuring of basal ganglia density (in the right lentiform nucleus) and loss
of distinction between gray and white matter; and (H) distributed early ischemic presence, sulcal efface-
ment in the right fronto-parietal region.

Full-size DOI: 10.7717/peerj.10444/fig-1
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and because of this and a partial volume effect in the area around CSF, the latter may be
falsely included in the segmented region.

Several methods employ smoothing as a preprocessing step, which may have an impact
on a precise delineation of lesion boundaries (Seghier et al., 2008). Moreover, larger
smoothing values penalize the detection of small lesions by blending them with the
surrounding tissues.

To cope with some of these shortcomings, more powerful approaches have been
proposed in image and wavelet domains with a battery of operations, a plurality of texture
attributes (such as energy, entropy, moments, inertia, shade, prominence, correlation,
skewness, kurtosis, and variance), and diverse classifiers. These approaches are enhanced
by a left–right hemisphere comparison and ROI processing and analysis.

It also shall be noted that some authors claim their methods to be automated, but they
are actually semi-automated requiring human interaction, such as a seed point placement
(Boers et al., 2013) or a threshold setting (Usinskas, Dobrovolskis & Tomandl, 2004).

The brain atlases are useful means for image partitioning by the individualized atlas
(or atlases) superimposed on a scan, enabling in this way an ROI-based analysis and a
comparison of the right and left cerebral hemispheres (Nowinski, 2020a). The number
of image partitions varies from a few for some part of the brain (like only two in the
MCA territory (Maldijan et al., 2001)) to many delineated by multiple complementary
whole-brain atlases (Nowinski, 2020b). A fast and automated atlas-to-scan mapping is
critical in stroke image management and we have developed earlier suitable methods for
this purpose (Nowinski et al., 2006a; Volkau et al., 2012).

The intensity template based-methods exploit a common approach for abnormality
detection by comparing a patient brain to some reference, neurologically normal control
brain. To enable comparison with a plurality of control brains, an intensity template must
be created by normalizing them to the same stereotactic space. Then, the stroke patient
scan is normalized to the template and statistically compared to it on a voxel-by-voxel basis
aiming to identify typical areas. In contrast to brain atlas-based methods, this group of
methods can only be employed to stroke patient scans that have the same image modality
as the intensity template. In the case of NCCT, the patient scan-template comparison
aims at identifying regions with hypo- or hyper-intensity indicating a suspected ischemic
or hemorrhagic lesion, respectively. An advantage of this approach is that it handles
simultaneously both ischemic and hemorrhagic stroke; in fact, Gillebert, Humphreys &
Mantini (2014) claim that their intensity template-based method was more specific in
distinguishing hemorrhage than ischemia. A limitation of this approach is that ischemic
lesions, as discussed above, do not demonstrate uniform intensities and overlap with other
regions. The same holds for hemorrhagic lesions whose properties were studied on 289
NCCT hemorrhagic stroke scans by Nowinski et al. (2014a). These lesions span a 25–88
HU range, in contrast to other studies compared in (Nowinski et al., 2014a) indicating a
much narrower range, such as 60-80 HU (New & Aronow, 1976). Moreover, hemorrhagic
lesions substantially overlap with GM and to some extent with WM density ranges.

Knowledge aggregation, limited to averaging of normal brain scans in the intensity
template-based methods, has a much wider potential in atlas-assisted approaches. We
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have created a probabilistic stroke atlas aggregating radiologic (imaging) and neurologic
(numerous parameters) knowledge in the population (Nowinski et al., 2014b). The atlas
originally employed for the prediction of ischemic stroke outcomes (by mapping imaging
into neurologic parameters) can be potentially employed to enhance lesion detection (by
applying a reverse mapping).

The image processing and analysis-based and the intensity template-based methods
exploit local changes caused by an ischemic lesion, while the brain atlas-based methods
examine the changes occurring in the atlas-defined ROIs. In contrast to these three groups
of methods, the SIM-based methods capture the patient-specific density distribution
changes globally, both in the infarct itself and the surrounding it parenchyma. This
feature is especially beneficial when the infarct is in the hyperacute stage, so when its
focal hypodensity (see Fig. 1A) and/or any distributed presence (see Figs. 1G, 1H) might
be very subtle or even hardly discerned by the human eye. The modified approach has
demonstrated that the finer density sampling with a larger number of density sub-ranges
improves infarct detection in the hyperacute stage. This study also confirmed that the
average density of the normal and infarcted hemisphere for hyperacute cases are the
same, indicating that the hyperacute stroke detection approaches based on ischemic lesion
features themselves will probably fail.

As previously reported by Nowinski et al. (2013) the usage of two different infarct
localization 3D bounding boxes that are superimposed on the processed scan accumulates
advantages of the high sensitivity of the outer localization bounding box and the high
specificity of the inner localization bounding box. Consequently, the inner localization
bounding box marks the infarcted region (meaning it works like a cursor) and the outer
localization bounding box estimates the infarct extent. It is worth noting that this approach
can estimate the volume of an ischemic infarct.

AI has been changing our world in many aspects, and its impact will inevitably grow in
the years to come. In particular, deep learning has shown remarkable promise in solving
many problems in computer vision, natural language processing, and robotics (LeCun,
Bengio & Hinton, 2015) with various neural network architectures proposed, including
U-Net, D-Unet, ReLU, ConvNet, ResNet, ConsNet, and MPC-GAN. Neural networks
are a very intensive area of research. For instance, on Google Scholar under term ‘‘neural
network’’ there are 2.7 million results and under ‘‘convolutional neural network’’ 456
thousand results. More specifically, under ‘‘stroke convolutional neural network’’ there
25.4 thousands results, and under ‘‘acute ischemic stroke convolutional neural networks’’
18.7 thousand results. In particular in strokemanagement, Feng et al. (2018) claim that deep
learning techniques, because of their speed and power, will become an increasingly standard
tool for stroke experts. Furthermore, Maier et al. (2015) compared several classification
methods for ischemic stroke lesion segmentation, although for MR scans, and concluded
that high-level machine learning techniques, such as CNNs and random decision forests,
lead to significantly better segmentation results compared to the rather simple classification
methods such as kNN, Gaussian naive Bayes, and generalized linear models.

The papers reviewed here , however, do not demonstrate the fulfillment of these promises
in the considered area yet. The method by Rajini & Bhavani (2013) employs heavy image
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processing components combined with several simple classification methods tested on a
low number of 15 patients.

The methods proposed in Sales Barros et al. (2019), Kuang, Menon & Qiu (2019a)
Kuang, Menon & Qiu (2019b) and Kuang, Menon & Qiu (2019c) use advanced deep
learning techniques for follow-up NCCT scans which are easier for processing than
hyper-acute and acute cases. The CNN-based method by Sales Barros et al. (2019) tested
on a large dataset of 396 cases yielded the DSC of 34%. For the late cases, the DSC was
increased to 78%. This approach uses fixed thresholds for density ranges, in contrast to
the SIM-based methods that employ patient-specific density ranges for the calculated CSF,
WM, and GM.

The methods proposed by Kuang, Menon & Qiu (2019a), Kuang, Menon & Qiu (2019b)
and Kuang, Menon & Qiu, (2019c) employ various network architectures tested on a
relatively small number of cases yielding a moderate performance. This performance
was substantially improved by introducing high-level human knowledge to drive the
segmentation (which makes the methods semi-automated).

The existing powerful deep learning techniques are inferior to the SIM-based methods
(even when tested on easier data). The reason for this is that the SIM-based methods
capture and process the overall changes in both the infarcted region and the parenchyma
for the entire density spectrum along with the employment of patient-specific ranges, while
the deep learning methods seem to focus on learning the properties of the infarcted regions
only and often use fixed values of parametres.

It shall be noted that the AI methods can be used optionally with preprocessing (such
as (Rajini & Bhavani, 2013) to extract texture features before supervised classification)
and/or with postprocessing (such as Kuang, Menon & Qiu (2019c) to performmulti-region
evolution and to do image median filtering for noise elimination in segmentation of
stroke lesions from CT perfusion images (Liu et al., 2019)). Preprocessing, postprocessing,
and high-level domain knowledge greatly improve the accuracy of AI-based methods as
illustrated by Rajini & Bhavani (2013) and Kuang, Menon & Qiu (2019c).

Most of the image processing and analysis-based methods and the brain atlas-based
methods exploit the comparison of values in the left and right whole hemispheres or
some parts of them, usually the MCA territories. This spatial left–right correspondence is
obtained in various ways, namely, by image division into quadrants (Ray & Bandyopadhyay,
2016), using image symmetry (Chawla et al., 2009), through individualized atlas (Nowinski,
2020b), brain midline tracing (Rajini & Bhavani, 2013), or by automated calculation of
the MSP in 3D (Nowinski et al., 2013). Approaches based on image symmetry or ROI
reflection (Tang, Ng & Chow, 2013) will not be able to handle real clinical cases as the
left–right hemisphere symmetry is generally absent in clinical stroke scans. Moreover,
standard algorithms for calculation of the MSP may often fail for some stroke NCCT scans
acquired in the emergency room due to a large brain tilt. Therefore, we have developed a
dedicated algorithm for MSP calculation to robustly handle stroke cases (Puspitasari et al.,
2009).

Some of the image processing and analysis-based and the brain atlas-based methods
employ an ROI analysis. The number of ROIs varies across methods, namely, 2 (Maldijan
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et al., 2001), 4 (Ray & Bandyopadhyay, 2016), 8 (Tyan et al., 2014), 10 (ASPECTS), and
multiple when generated by brain atlases (Nowinski, 2020b). The number of ROIs per
method may be fixed (as in the abovementioned methods) or be variable as in (Tang, Ng &
Chow, 2013). The shape of ROIs is predefined by the way of image partitioning (Tyan et al.,
2014; Ray & Bandyopadhyay, 2016), results from the constructed brain atlases (anatomical
structures and vascular territories) or is given (e.g., circular ROIs in Tang, Ng & Chow
(2013). The size of ROIs during processing is mostly fixed or variable as in Tang, Ng &
Chow (2013) being circular with an adjustable radius.

The scope of validation varies among the reviewed methods, with some with no
quantitative validation at all and the majority of them with a small number of stroke cases.
Until today to our best knowledge, the standard SIM method by Nowinski et al. (2013)
tested quantitatively on 576 stroke cases from four centers in two countries is the most
thoroughly validated method in terms of the number of stroke cases and their variety. The
most highly validated method of the AI-based group is that of Sales Barros et al. (2019)
with 396 cases, though resulting in a very low performance (the DSC of 18%). The highest
number of proposed methods belong to the image processing and analysis-based group,
and the most highly validated method of this group used 30 cases (Przelaskowski et al.,
2007).

Finally, the reviewed methods differ in their novelty and intellectual property. Namely,
threemethods are patented, that ofTang, Ng & Chow (2011) holds oneUS patent (Tang, Ng
& Chow, 2013), and the methods by (Nowinski et al., 2013; Nowinski, 2020b) are based on
four US patents and several US patent applications pending (out of our 17US stroke-related
patents listed in Nowinski, 2020b).

This comparison of methods has limitations in terms of completeness, performance
measures, task performed, criteria for method grouping, and testing scan selection.
Although we have tried our best to have this review as complete as possible using PubMed
and Google Scholar, there might be some relevant works not listed there. Different authors
use various performance measures, which hinder a fair comparison of methods. Infarct
detection and infarct segmentation are two different tasks. Infarct detection uncovers the
presence of any infarcted region (possible with its localization) while infarct segmentation
is performed mainly to quantify the cerebral infarct volume as an important outcome
measure. Moreover, the majority of infarct segmentation methods are tested on follow-up
scans, where ischemic infarcts are more prominent than in acute cases. A specific method
often is a combination of various techniques, so the groups of methods may overlap and
the presented grouping of them is not unique. For instance, several image processing
and analysis-based methods employ classifiers, which are part of image analysis and also
of AI; conversely, some AI methods employ image processing techniques for pre- and
post-processing.

Finally, our experience shows that probably the most critical for a fair comparison
is the selection of a dataset for testing. NCCT ischemic stroke scans differ from being
easy for processing to difficult; from pure ischemic stroke to stroke with hemorrhagic
transformation, chronic infarct, and/or leukoaraiosis; from small lacunar infarcts to large
infarcted areas; and from hyper-acute stroke (1.5 h from the stroke onset) to late stroke
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(several weeks after the stroke onset) to chronic infarcts (several months after the stroke
onset). This difference in data selection for the same method was demonstrated, for
instance, by Sales Barros et al. (2019), where the performance measured by the DSC ranged
from37% for the subtle infarct class to 78% for the severe infarct class; as well as byNowinski
et al. (2013) for the detection accuracy raising from of 78.4% for cases with ≥3 h from the
stroke onset to 87.9% for cases with 8<to ≥ 72 h from the stroke onset. Time-dependent
ischemic stroke changes over a two-month period in terms of appearance and HU density
characteristics for the same patient are illustrated in Fig. 2. Note the growing prominence
of the ischemic lesion and the decreasing mean density from 30 HU (1.5 h) to 23 HU (one
day) to 18 HU (one week) to 13 HU (one month) to 10 HU (two months.)

Classification of methods
Rekik et al. (2012) divided methods for ischemic stroke image management into
four groups: pixel and voxel-based classification (the most common), image-based
segmentation, atlas-based segmentation, and deformable model-based segmentation.
In Section 2 we have classified the reviewed methods into five groups: image processing
and analysis-based, brain atlas-based, intensity template-based, SIM-based, and AI-based.
Additionally to this classification, In Table 1 some supplementary criteria are applied
including a left–right hemisphere symmetry, employment of ROI-based analysis, and type
of validation.

In fact, these divisions are somehow arbitrary, as the methods typically use a battery of
various techniques ranging from image processing and analysis to atlas-assisted processing
to statistical analysis to machine knowledge.

Therefore, we propose here another classification scheme that ismore related to a strategy
of ischemic infarct management than to a particular technique. Then, from a standpoint of
image scope, one strategy is to provide local or regional processing and analysis to detect
ischemic lesion changes, and on the other hand, the whole brain scan can be processed to
detect ischemic changes. From a standpoint of image handling, the image spatial extent can
be sampled and processed or its density range can be sampled. Hence, this classification
can be considered as a 2×2 matrix with local versus global processing and analysis, and
density versus spatial sampling. Then, for instance, the SIM-based methods belong to the
global, density sampling category with multiple density bands; the atlas-based methods to
spatial sampling category that can be regional or global; and the intensity template-based
methods to the local category as it detects in the lesion area (they also may be considered as
amarginal case of density sampling with a single band). The spatial sampling ratemay range
from low (Maldijan et al., 2001), to medium (ASPECTS), to high (Nowinski, 2020b). The
density sampling rate is also variable, considered being medium in the standard SIM-based
method and high in the modified SIM-based method.

CONCLUSION
Future studies are necessary to develop more efficient methods and we recommend two
directions for method development. One is AI, as it is considered radiology’s next frontier
(Dreyer & Geis, 2017) and deep learning techniques are supposed to become a standard
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Figure 2 Illustration of time-dependent ischemic stroke changes in terms of appearance and
Hounsfield Unit (HU) density characteristics (measured in the marked circular regions) for the
same patient for the stroke onset after: (A) 1.5 hours (with [18,44] HU range); (B) 24 hours (with [8,36]
HU range); (C) one week (with [7,29] HU range); (D) two and a half weeks (with [11,23] HU range); (E)
one month (with [14,7] HU range); and (F) two months (with [-4,24] HU range). Note the change in the
appearance of the ischemic lesion and its continuously decreasing density from the mean value of 30 HU
to 9 HU.

Full-size DOI: 10.7717/peerj.10444/fig-2

tool for the modern stroke specialist (Feng et al., 2018), although the results demonstrated
so far in ischemic infarct detection and segmentation from NCCT using the AI methods
are moderate. At present, the SIM-based methods outperform the state-of-the-art deep
learning techniques, because they process the overall changes in the infarcted region and
the parenchyma for the entire density spectrum with patient-specific density ranges, while
the deep learning methods seem to focus on learning in infarcted regions only with fixed
parameter values.
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Another direction is to combine the advantages of the SIM-based method (Nowinski
et al., 2013) and the multi-atlas guided method (Nowinski, 2020a) enhanced by the
probabilistic stroke atlas (Nowinski et al., 2014b). In other words, the future development
shall be directed toward the combination of the global methods with a high sampling both
in space and density along with the employment of merged radiologic and neurologic
data.
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