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Introduction
Background. Ovarian cancer is the fifth most deadly 

form of cancer for females, after lung, breast, colon, and pan-
creatic cancers. It is estimated that in the United States dur-
ing 2015, there will be 21,290 new cases of ovarian cancer 
and 14,180 deaths.1 Standard front-line therapy for ovarian 
cancer consists of some form of taxane (paclitaxel) coupled 
with some form of platinum (cisplatin or carboplatin), here-
after referred to as platinum-based chemotherapy. Patient 
response to front-line therapy is not uniform. Because it is not 
possible to monitor a patient continually to assess response to 
therapy, one can use progression-free survival (PFS) or over-
all survival (OS) as somewhat imperfect proxies for patient 
response. Initially, 70%–80% of patients appear to respond to 
front-line therapy.2 However, based on the TCGA database 
of serous ovarian carcinoma,3 ∼10% of patients have PFS of 

seven months or less. In contrast, ∼10% of patients enjoy PFS 
of three years or more and the rest most ultimately relapse 
and die of disease progression.4

Therefore, it is imperative to be able to predict the respon-
siveness of ovarian cancer patients to front-line therapy. Our 
premise is that if there is a set of genetic biomarkers that are 
indicative of patient response, their influence is likely to be 
more pronounced at the two extreme ends of patient response. 
Therefore, if we succeed in developing one or more classifiers 
that are capable of discriminating between these two extreme 
cases, then these classifiers can be extended to encompass the 
entire patient population, which is precisely the objective of 
the present paper. We develop four different classifiers based 
on the TCGA Agilent data set and then validate them on the 
TCGA Affymetrix data set, as well as an independent data set 
from Tothill et al.5
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Current status. At the moment, CA125 is the only 
known biomarker to assess the effectiveness of therapy in 
ovarian cancer. However, CA125 levels are primarily used as 
a post facto measure that determines whether therapy is work-
ing and not as a predictive indicator of whether platinum che-
motherapy is likely to work. Moreover, CA125 by itself is not 
deemed to be sufficient as an indicator. In a recent review, it is 
emphasized that germline mutations in BRCA1 and BRCA2 
lead to enhanced lifetime risk of developing ovarian cancer, 
as well as in lowering the age of initial onset of the disease.6 
Over the years, several papers have proposed various sets of 
biomarkers. A recent paper2 states that “There were 139 stud-
ies that reported an association between biomarker expression 
and overall survival (OS) with univariate analysis, whereas 
with multivariate analysis, an association between biomarker 
expression and OS was reported in 47 studies.” and “The num-
ber of studies that evaluated an association between biomarker 
expression and progression-free survival (PFS) with univari-
ate analysis and multivariate analysis was 66 and 20 studies, 
respectively.” Unless one goes through each of these studies 
individually, one would not know whether the analysis also 
incorporated additional factors, such as age, weight, number 
of pregnancies, stage of disease, and size of tumor.

In general, most of the papers fall into one of the two 
categories. In the first category, the authors have a candidate 
biomarker in mind. The available patient pool is divided into 
two groups, and the mean values of the candidate biomarker 
across each group are computed. If there is a statistically sig-
nificant difference between these mean values (using the Stu-
dent’s t-test for example), then the candidate biomarker can 
be said to have passed one filter for utility. Biomarkers that 
are identified using this approach include the protein TR3 
and its associated gene NR4A1,7 Tau protein and its asso-
ciated gene MAPT,8 and β-tubulin and its associated gene 
TUBB.9,10 In such studies, it is implicitly assumed that only 

the putative biomarker being studied exhibits a significant 
variation across groups, while “all other things are equal.” 
However, in the TCGA Agilent mRNA data set,3 there 
are more than 200 genes that show a statistically significant 
difference in mean values between the two extreme cohorts 
(super responders [SRs] and nonresponders [NRs]). Thus, 
examining a few genes (or other biomarkers) in isolation may 
lead to incorrect conclusions.

The second approach is to apply some kind of machine 
learning algorithms to the data at hand, thereby obtaining 
a panel of biomarkers. Examples of such approaches include 
Ref. 11, in which 322  samples were analyzed to generate a 
349-gene biomarker panel that performs very well, but when 
the 349 genes are reduced to 18 genes, the performance on the 
test data is poor,12 in which a 300-gene Ovarian Carcinoma 
Index is constructed on the basis of 80 samples, which is then 
tested on 118 samples; and in Ref. 4, a panel of 14 genes is 
identified to differentiate between early relapse and late-stage 
relapse. It is worth pointing out that all of the abovemen-
tioned papers use some variant of the support vector machine 
(SVM) to find the biomarkers. Indeed, this is reasonable, as 
the SVM is very robust and is widely used in many applica-
tion areas.

An excellent review of several studies can be found in 
Ref. 13. In Ref. 14, the authors started with a set of 151 DNA 
repair genes and identified a subset of 23 such genes that are 
then used to construct a score. Within the family of DNA 
repair genes, it has been suggested that various genes that arise 
in the nucleotide excision repair and base excision repair path-
ways, and single-nucleotide polymorphisms in these genes, 
have a role to play,15 for example, ERCC and XRCC fami-
lies of genes. Finally, a BRCA2 mutation is associated with 
improved survival and improved chemotherapy response,16 
although mutations in BRCA1 or BRCA2 are associated with 
enhanced risk and earlier onset of ovarian cancer.6 A possible 
explanation is that responsiveness to PARP-based therapy  
is enhanced with BRCA mutations. A recent paper that made 
an extensive and thorough benchmark study concluded that 
no ovarian cancer gene expression signature is ready for clini-
cal use yet.17 In summary, there is no shortage of claimed bio-
markers. However, none of these papers contains a molecular 
signature, that is, a procedure for converting measured val-
ues of the biomarkers (usually gene expression levels) into a 
numerical score. The development of such a signature and not 
just a biomarker panel is one of the motivations behind the 
present paper.

Contributions of the paper. In the present paper, we ana-
lyze the TCGA ovarian cancer data that consists of molecular 
measurements and clinical outcomes on nearly 600 serous car-
cinomas. We study gene expression levels as molecular mea-
surements and PFS and OS as clinical parameters. Patients 
whose clinical parameters (survival, OS or PFS) are at the two 
extremes are identified using the user-defined thresholds, as 
described subsequently. Then, we apply an algorithm named 
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Figure 1. Volcano plot of the negative logarithm of the t-test scores on 
the vertical axis and the fold changes on the horizontal axis.
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“lone star” developed within our research group to extract 
biomarkers and an associated molecular signature that can 
discriminate between extreme patients with respect to these 
clinical parameters. Then, this molecular signature is extended 
to the entire patient population in the TCGA study. In this 
manner, we are able to develop a three-way classification pro-
cedure for assigning each patient into one of the three cat-
egories, namely, SR, medium responder (MR), and NR. We 
also use the discriminant function developed for the extreme 
responders to divide the entire patient population into two 
groups, namely, those with a positive score and those with a 
negative score. Kaplan–Meier curves are plotted for these two 
groups, and it is shown that the patients with positive score 

exhibit a clear survival advantage compared to those with a 
negative score.

The lone star algorithm was initially presented in Ref. 
18 and is described in detail in Ref. 19. A brief description of 
the algorithm is given in the Approach and methods section. 
The source code of an MATLAB implementation of the lone 
star algorithm is freely available at the following URL: http://
sourceforge.net/projects/lonestar/

Therefore, the algorithm can be readily used by even 
those unfamiliar with machine learning theory, without hav-
ing to get into its inner workings. The biomarker panels devel-
oped on the TCGA data are then validated on an independent 
data set due to Ref. 5.
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Figure 2. ROC curves with tight prefiltering. Both classifiers started with 59 initial features, of which each classifier chose 25 features (which are 
different from one case to the other). (A) OS as the clinical parameter and (B) PFS as the clinical parameter.
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Approach and Methods
General approach. The broad approach adopted in this 

paper is now described. The TCGA Agilent data set consist-
ing of molecular measurements on roughly 600 serous ovar-
ian carcinomas3 is chosen as the training data set, while the 
corresponding TCGA Affymetrix data set3 and the Tothill 
data set5 are chosen for validating the predictions. Of note, 
the validation data sets also consist solely of serous carcino-
mas. The TCGA Affymetrix data set serves to establish that 
our method is portable across platforms, while the Tothill data 
set serves to establish that our method is portable across both 

platforms and data sets. Given the training data set, a number 
X between 0 and 50 is chosen. The top X percentile in terms 
of patient response is defined to be SRs and the bottom X per-
centile is defined to be NRs. Those in the middle are defined 
to be MRs. Of note, the best responders should be called SR 
and the worst responders should be called NR, while those  
in-between should be called MR. The precise percentile cut-
off, referred to as X earlier, is to some extent arbitrary. We 
have carried out the exercise below for the values of X rang-
ing from 10 percentile to 50 percentile (that is, no MR cat-
egory). The choice X = 33, thus dividing the patients into three 
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equal-sized groups, works best, although the results for other 
choices of X are not much different and are available from the 
authors. Once the three categories of patients are defined, a 
recently proposed algorithm,18,19 known as lone star, is applied 
to the training data, after the initially large number of fea-
tures (genes) is pruned by some prefiltering. This step results 
in the definition of a discriminant function that is a linear 
combination of the expression values of the reduced feature 
set. The value of this discriminant function is computed for all 
patients, based on which patients are assigned to three groups: 
SR, MR, and NR. This results in a 3 × 3 contingency table 
(actual versus predicted group) and P-value is computed. In 
the next step, the patients are divided into two classes, namely, 
those with positive discriminant values and those with nega-
tive discriminant values. In principle, if our prediction meth-
odology is any good, the positive class should have a survival 
advantage over the negative class. Kaplan–Meier curves are 
plotted for the two groups, and the P-value of the results 
obtained is computed for each case.

Definition of patient response. Patient response can be 
measured in two different ways, namely, OS and PFS. Though 
these two are broadly correlated, the correlation is by no means 
perfect. For instance, OS is determined not just by the efficacy 
of the therapy but also by other factors, such as age and gen-
eral health. PFS is also subjective because the date on which a 
tumor is recorded as having progressed is the day on which it 
is observed to have progressed, whereas in reality the progres-
sion would have taken place at some unknown date between 
that observed date and the date of the previous checkup. Thus, 
the disparity between the recorded date of progression and the 
actual date of recurrence could be several months. It was not 
a priori clear which clinical parameter would lead to better 
predictions. Therefore, predictors were developed based on 
each parameter, and their performance was compared. Simi-
larly, during the validation step too, the survival advantage of 
the group ∆+ (those with positive discriminant values) against 
the group ∆− (those with negative discriminant values) can be 
computed using either OS or PFS as the clinical parameter.

Definition of extreme responders. As stated earlier, 
patients whose survival is within the top X percentile are 
called SRs, while those in the bottom X percentile are called 
NRs. This raises the question, what value of X should be cho-
sen? Very small values of X would cause almost all patients 
to be labeled as MRs, while an overly large value of X would 
cause almost no one to be classified as an MR. Various values 
of X from 10 to 50 were tried. The best results were obtained 
with X = 33%, meaning that the top one-third, middle one-
third, and bottom one-third were labeled as SR, MR, and NR, 
respectively. Therefore, only those results are reported, though 
the results for other choices of X are available upon request.

In the TCGA database, there are 565 serous carcinoma 
samples for which information is available on days-to-death, 
days-to-recurrence, and/or days-to-last follow-up. If PFS is 
used as the criterion, the patients with PFS #283 days were 

classified as NRs, while patients with PFS $574 days were 
classified as SRs. If OS is used as the criterion, then patients 
with OS #504 days were classified as NR, while those with 
OS $1202 days were classified as SR. Of note, in both the 
TCGA Agilent and TCGA Affymetrix databases, these break 
points produced 189 NRs, 188 MRs, and 188 SRs. Of note, 
the demographic features of the three classes were quite simi-
lar. This can be ascertained from the TCGA data set. How-
ever, when the classifier was applied to the Tothill data set, the 
labels of NR, MR, and SR were determined solely on the basis 
of the survival times, both OS and PFS. Consequently, the 
fraction of the NR, MR, and SR samples does not necessarily 
correspond to the 33rd percentile.

Prefiltering the feature set. There are roughly 
12,000 genes for which measurements are available in all three 
data sets (TCGA Agilent, TCGA Affymetrix, and Tothill). 
While developing the classifier for the training data, it is not 
desirable to run the lone star algorithm using all 12,000+ 
genes. Some prefiltering is desirable based on the combina-
tion of two attributes: (i) the t-test statistic that compares the 
mean values of a gene over the two groups and (ii) the fold 
change of the mean values over each group. Figure 1 illus-
trates the prefiltering method used. The prefiltering can either 
be loose, resulting in a large number of initial features that are 
then reduced further via the lone star algorithm, or be tight, 
meaning that the initial feature set passed on to the lone star 
algorithm is rather small.

The tight prefiltering used the following parameters: 
fold change of at least 1.25 between the averages of a gene’s 
expression level over the two classes and the P-value of at most 
0.05 between the average expression levels of the two classes, 
as computed using the t-test. This resulted in the retention 
of just 67 of roughly 12,000 genes for OS and 59 of roughly 
12,000 genes for PFS. The loose prefiltering used the follow-
ing parameters: fold change of at least 1.175 and the P-value 
of at most 0.1. This resulted in 208 genes selected for the OS 
and 181 genes selected for PFS.

The above discussion can be summarized in Table 1. There 
are four different combinations that are assessed in this paper: 
OS or PFS as clinical parameters and tight or loose prefiltering.

Lone star algorithm. For each of the four situations 
described in Table  1, the lone star algorithm was used to 
develop a binary classifier to identify a handful of highly pre-
dictive features, together with an associated linear discrimi-
nant function, that could be used to distinguish between the 
two sets of extreme responders. The following discussion is 
essentially reproduced from Ref. 19 in order to make the pres-
ent paper self-contained.

The lone star algorithm is a very versatile and general-
purpose algorithm developed in Ref. 18 and elaborated in 
Ref.  19, for the purpose of identifying a small number of 
highly predictive features from tens of thousands of measured 
features. It combines various ideas in machine learning, such 
as the l1-norm SVM,20 recursive feature elimination (RFE),21 
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and stability selection.22 The SVM formulation presupposes 
that every feature has an equal dynamic range. Therefore, for 
each feature, the vectors measured across all samples are con-
verted into Z-scores by subtracting the mean and dividing by 
the standard deviation.

In case, we are given a set of labeled data here xi ∈ Rn and 
yi ∈ {–1,1} for i = 1, 2, …, m. Therefore, n denotes the number 
of features and m denotes the number of samples. The feature 
vector xi is viewed as a row vector. The objective is to choose 
a subset of features F ⊆  {1, …, n}, a weight vector w ∈ Rn, 
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Figure 7. Kaplan–Meier curves for classifier using PFS to define classes and loose prefiltering. P-values are computed using log-rank test.

and a threshold θ ∈ R, such that (a) the discriminant func-
tion f(xi) = xiw – θ has the same sign as yi for most indices i,  
(b) wj = 0 for all j ∉ F, and (c) |F|,, m.

In other words, the discriminant function f is linear and 
the set of features used by the discriminant has smaller cardi-
nality than the number of samples. Define

	 P = {i: yi = 1} and N = {i ∈ yi = –1}

and let m1 = |P| and m2 =  |N|. The algorithm consists of an 
iterative loop and a final classifier generation step. Steps 1–3 
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comprise the iterative loop, and step 4 is the final classifier 
generation.

Set the iteration counter to 1, the feature set F to the 
set of significant features, the feature count s1 to |F|, and the 
iteration count i to 1, and then proceed to the iterative loop.

1.	 Stability selection: fix an integer l. Choose k1 from the m1 
positive samples and k2 from the m2 negative samples at 
random as the training set of samples. Repeat this random 
choice l times, so that there are l different pairs of train-
ing samples: k1 from the class P and k2 from the class N.  
Ensure that k1 and k2 are roughly equal and lesser than 
m1/2 and m2/2, respectively.

2.	 l1-Norm SVM: for each pair of k1 and k2 training samples, 
solve the following l1-norm SVM formulated in Ref. 20:

	
w y z j j

j

k

j

k

y z, , ,
min ( ) ( ) ,θ λ α α1 1

11

21
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









==

∑∑

subject to the constraints

	

w x y j P w x z j N
y z

t
j j

t
j j

k k

− + ≥ ∈ − − ≤ − ∈

≥ ≥

θ θ1 1

0 0
1 2

, , , ,
, .

The parameter λ should be chosen close to zero, but not 
exactly zero. The parameter α should be chosen as 0.5 if sen-
sitivity and specificity are equally important. The parameter α 
should be chosen to be ,0.5 to place more emphasis on sen-
sitivity, whereas α should be chosen to be .0.5 to place more 
emphasis on specificity.
3.	 RFE: The previous step results in l different optimal 

weight vectors, w wi
l
i

1, ..., , where i is the iteration count. 
Each weight vector will have a different number of non-
zero components. Compute the average number of non-
zero components, round upward to the next integer, and 
denote this integer as ri. Compute the average of all l 
weight vectors. Retain the ri components with the larg-
est magnitude and discard the rest. Increase the iteration 
counter i, set si + 1 = ri, and proceed to step 3. If Ri = si, 
meaning that no features can be discarded, the iterative 
step is complete; hence, proceed to the next step.

4.	 Final classifier generation: When this step is reached, 
the set of features is finalized. Run the l1-norm SVM 

on l different randomly chosen pairs of (k1, k2) training 
samples to generate l different classifiers and evaluate the 
performance of each of the l classifiers on the remaining 
(m1 – k1, m2 – k2) samples. Determine the accuracy, sen-
sitivity, and specificity of each of the l classifiers. Average 
the weights and thresholds of the best-performing classi-
fiers to generate an overall classifier.

Results
Development of binary classifiers. The lone star algo-

rithm was applied to each of the four situations, as described 
in Table 1. In this subsection, the details of the resulting clas-
sifiers and their performance on the training data set, namely, 
TCGA Agilent, are given.

For PFS, with tight filtering and 59 genes as the start-
ing point, the algorithm resulted in 25 genes being chosen as 
the most predictive features. For OS, 67 genes as the starting 
point resulted in 28 genes being chosen. The exercise was then 
repeated using a less aggressive or loose prefiltering step, so 
that the lone star algorithm has a larger number of initial fea-
tures to choose. When OS was used as the criterion, the initial 
feature set consisted of 208 genes, of which 26 were finally 
chosen. When PFS was used as the criterion, the initial fea-
ture set consisted of 181 genes, of which 26 were finally cho-
sen. Of note, though the number of finally selected features 
was comparable for all the four classifiers, the actual features 
themselves were different. Table 2 lists the finally selected fea-
tures in the two classifiers based on OS with tight and loose 
prefiltering, while Table  3 lists the finally selected features 
in the two classifiers based on PFS with tight and loose pre-
filtering. In each case, the expression values of all genes are 
converted into Z-scores by subtracting the mean and dividing 
by the standard deviation across all SR + NR samples. The 
Z-score of each gene is multiplied by the weight shown, and 
the resulting weighted sum is compared to the bias term. If the 
weighted sum exceeds the bias, the sample is assigned to the 
positive (SR) class, whereas if the weighted sum is smaller than 
the bias, the sample is assigned to the negative (NR) class.

For each classifier, receiver operating characteristic (ROC) 
curves were constructed by varying only the bias or threshold 
term to trade off between sensitivity and specificity. The result-
ing ROC curves are shown in Figures 2 and 3 respectively.

3 × 3 Contingency tables. The computations described in 
the previous subsection resulted in four different classifiers to 
discriminate between SRs and NRs. The next step was to use 
each of these discriminant functions and classify all samples 
into one of the three categories, namely, SRs, MRs, and NRs. 
This was done on the training data set which was TCGA 
Agilent and on two validation (or test) data sets, namely, the 
TCGA Affymetrix and Tothill. This was done as follows: The 
discriminant function values corresponding to all samples were 
computed, using the Z-scores of the gene expression values 
of the chosen features (genes). Then, the discriminant values 
were sorted in descending order. For the TCGA Agilent and 

Table 1. The four classifiers studied in this paper.

Classifier No. Clinical Parameter Pre-
Filtering

Classifier No. 1 Overall survival Tight

Classifier No. 2 Overall survival Loose

Classifier No. 3 Progression-free survival Tight

Classifier No. 4 Progression-free survival Loose
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Table 2. Classifier nos. 1 and 2 – classifiers for OS.

Entrez 
Gene ID

Gene 
Symbol

Weight Entrez 
Gene ID

Gene 
Symbol

Weight

241 ALOX5AP −0.5630 953 ENTPD1 −0.7066

3764 kcnj8 −0.4870 54704 Pdp1 −0.6358

26290 GALNT8 −0.4393 1410 CRYAB −0.5821

25790 Ccdc19 −0.3118 3764 kcnj8 −0.4942

2857 GPR34 −0.3116 5266 PI3 −0.4846

8483 CILP −0.3039 25790 Ccdc19 −0.4362

794 CALB2 −0.2889 6236 RRAD −0.4067

55016 MARCH1 −0.2662 10218 angptl7 −0.3554

6356 Ccl11 −0.2458 26290 GALNT8 −0.3522

64231 MS4A6A 0.1312 9033 pkd2l1 −0.3252

25924 MYRIP 0.2086 10753 Capn9 0.2204

962 Cd48 0.2207 728621 CCDC30 0.2306

10753 Capn9 0.2422 57612 KIAA1466 0.2680

51284 TLR7 0.2827 3918 LAMC2 0.3141

1634 DCN 0.2845 404093 CUEDC1 0.3931

123872 LRRC50 0.2881 4147 Matn2 0.3981

79623 Galnt14 0.2937 1674 DES 0.4020

26585 GREM1 0.3075 203102 ADAM32 0.4241

5016 Ovgp1 0.3079 5521 PPP2R2B 0.4337

5276 serpini2 0.3439 9450 LY86 0.4763

6387 CXCL12 0.3519 8470 SORBS2 0.4815

56143 PCDHA5 0.3777 135138 Pacrg 0.5750

135138 Pacrg 0.3992 7130 TNFAIP6 0.5876

4147 Matn2 0.4722 1118 CHIT1 0.6102

1118 CHIT1 0.4867 1360 Cpb1 0.6115

23144 ZC3H3 0.7026

Bias 0.0150 Bias 0.0924
 

Table 3. Classifier nos. 3 and 4 – classifiers for PFS.

Entrez
Gene ID

Gene
Symbol

Weight Entrez
Gene ID

Gene
Symbol

Weight

26290 GALNT8 −0.3878 3696 ITGB8 −0.5790

79908 BTNL8 −0.3711 1301 COL11A1 −0.5332

6356 Ccl11 −0.3313 1421 CRYGD −0.5161

8483 CILP −0.3161 219699 Unc5b −0.4445

2043 EPHA4 −0.3061 27010 TPK1 −0.4264

1421 CRYGD −0.2971 79908 BTNL8 −0.3970

23148 NACAD −0.2522 79933 SYNPO2L −0.3925

27010 TPK1 −0.2273 8483 CILP −0.3620

54532 usp53 −0.2214 55083 KIF26B −0.2996

1281 COL3A1 −0.1851 27335 EIF3K −0.2712

1301 COL11A1 −0.0626 65263 PYCRL −0.2676

29989 OBP2B 0.0028 898 CCNE1 0.2501

26576 SRPK3 0.1299 79815 NIPAL2 0.2547

26585 GREM1 0.1378 64220 STRA6 0.2579

8842 PROM1 0.1870 10017 Bcl2l10 0.3016

203102 ADAM32 0.1898 203102 ADAM32 0.3387

4222 meox1 0.2153 64067 Npas3 0.3950

79623 Galnt14 0.2268 6361 Ccl17 0.4034

10017 Bcl2l10 0.2286 79696 Fam164c 0.4242

1896 eda 0.2519 50626 CYHR1 0.4313

29991 OBP2A 0.2629 3752 Kcnd3 0.4829

64067 Npas3 0.2664 6778 STAT6 0.4922

122616 C14orf79 0.2947 6387 CXCL12 0.5239

4147 Matn2 0.3110 56143 PCDHA5 0.5241

1634 DCN 0.3338 8842 PROM1 0.5826

9723 Sema3e 0.3420 1290 Col5a2 0.7540

56143 PCDHA5 0.4219

6361 Ccl17 0.4895

Bias 0.0084 Bias −0.0189
 

TCGA Affymetrix data sets, the top 33% were assigned the 
label of SR, the bottom 33% were assigned the label of NR, 
and those in the middle were assigned the label of MR. These 
gave the predicted labels. The actual or true labels were deter-
mined by sorting the samples in terms of the OS or PFS, as the 
case may be, and then sorting the samples. Again, the top 33% 
were assigned the label of SR, the bottom 33% were assigned 
the label of NR, and those in the middle were assigned the 
label of MR. For the Tothill data set, first the number of SR, 
MR, and NR samples were determined based on the cutoffs 
of OS or PFS, as appropriate. For OS, the cutoffs were 40, 98, 
and 28 for SR, MR, NR, respectively. Therefore, the patients 
with the 40 highest discriminant scores were labeled as SR, 
those in the bottom 28 scores as NR, and those in-between as 
MR. A similar exercise was carried out for PFS times, result-
ing in 40, 88, and 43 for SR, MR, and NR, respectively.

For a 3  ×  3 contingency table, the relevant quantity is 
the P-value of arriving at these labels purely through chance. 

When the total number of sample is .50, which is the case in 
all of these data sets, it is possible to use the χ2 approximation 
to compute the P-values. Tables 4 and 5 list all these values. 
Of note, the null hypothesis for testing contingency tables is 
that the labels have been assigned independently and at ran-
dom, in which case the contingency table, viewed as a matrix, 
would be very close to a rank-one matrix. If the matrix corre-
sponding to the contingency table is very far from being rank 
one, the P-value would be very small.

Kaplan–Meier curves. Using the discriminant function 
based on the TCGA Agilent data, discriminant values were 
computed for all samples based on Z-scores for TCGA Agi-
lent, TCGA Affymetrix, and Tothill data sets. This was done 
for all the four cases: OS with tight prefiltering, PFS with 
tight prefiltering, OS with loose prefiltering, and PFS with 
loose prefiltering. Patients were divided into two groups: with 
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positive discriminant value and with negative discriminant 
value. Kaplan–Meier curves were plotted to see whether 
the survival (OS or PFS, as appropriate) between these two 
groups was statistically significant. Figures 4 through 7 show 
the results, including the P-values of obtaining the separation 
between classes purely by chance.

Discussion
We begin with a discussion of the three sets of findings, 
namely, the ROC curves, the 3 × 3 contingency tables, and the 
Kaplan–Meier curves. Then, we present an overall discussion.

From the four ROC curves, two broad conclusions can 
be drawn:

•	 Classifiers based on OS to define the classes perform 
slightly worse than classifiers based on PFS.

•	 The classifiers based on loose prefiltering perform bet-
ter on the training data but slightly worse on the testing 
data.

For the 3 × 3 contingency tables, where the results of assign-
ing all patients to one of the three categories (SR, MR, and NR) 
are reported, the broad conclusions are as follows: When OS is 
used as the clinical parameter, the classifier performs satisfac-
torily on the TCGA Affymetrix test data; however, it performs 
poorly on the independent Tothill data set despite the prefiltering 
of the genes is tight or loose. Therefore, OS does not appear to 
provide a useful clinical parameter for this purpose. In contrast, 
if PFS is used as the clinical parameter, then the P-value on the 
TCGA Affymetrix data set is below machine zero despite the 
prefiltering is tight or loose. On the independent Tothill data 

set, the classifier based on tight prefiltering achieves a P-value 
of 0.0313. When loose prefiltering is used, the classifier based 
on PFS achieves a P-value of 0.0319. Given that a P-value of 
0.05 is widely accepted in biological circles as a benchmark for 
statistical significance, it can be said that the three-way clas-
sification substantially outperforms chance on both the TCGA 
Affymetrix and Tothill data sets, when PFS is used as the clini-
cal parameter to define the responder classes. Therefore, PFS 
appears to be a useful clinical parameter that can be used to 
predict overall patient response.

For the Kaplan–Meier curves, where the entire patient 
population is divided into two groups, these are the broad 
conclusions: on the training data consisting of the TCGA 
Agilent database, the group with a positive score shows a very 
significant survival advantage over the group with a nega-
tive score. However, on the independent validation data set, 
namely, the Tothill data set, once again the use of OS as the 
clinical parameter does not lead to satisfactory results.

In contrast, when PFS is used as the clinical parameter, 
the P-value of the Kaplan–Meier curves using the log-rank 
test is ,0.001 with tight prefiltering and ,0.006 with loose 
prefiltering. Both the values are far lower than the widely 
accepted threshold of 0.05. Therefore, PFS appears to be a 
useful clinical parameter for assigning a numerical score to 
predict patient response.

Now we make some general comments on the outcomes 
of this paper. The motivation for this research was to deter-
mine whether it is possible to predict the response of ovar-
ian cancer patients to front-line platinum chemotherapy using 
the biomarkers extracted in a purely data-driven fashion via 
machine learning algorithms. The results are mixed. From 

Table 5. Three-way classification based on OS and loose prefiltering.

Label TCGA Agilent TCGA Affymetrix Tothill

Pred./Act. SR MR NR Total SR MR NR Total SR MR NR Total

SR 117 58 13 188 79 59 49 187 11 25 4 40

MR 60 63 66 189 76 62 50 188 24 48 18 90

NR 11 67 110 188 32 67 88 187 13 25 6 44

Total 188 188 189 565 187 188 187 562 48 98 28 174

P-Value P-Value = 0 P-Value = 10 P-Value = 0.1077

Table 4. Three-way classification based on OS and tight prefiltering.

Label TCGA Agilent TCGA Affymetrix Tothill

Pred./Act. SR MR NR Total SR MR NR Total SR MR NR Total

SR 107 57 24 188 89 59 39 188 13 29 6 48

MR 66 67 56 189 64 64 60 188 27 57 14 98

NR 15 64 109 188 34 65 88 189 8 12 8 28

Total 188 188 188 565 187 188 187 565 48 98 28 174

P-Value P-Value = 0 P-Value = 6.041 × 10−9 P-Value = 0.3532
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the standpoint of considerably outperforming chance, it is 
unmistakably clear that the biomolecular signatures based on 
PFS developed here perform spectacularly well on the train-
ing data set (TCGA Agilent) as well as one validation data set 
(TCGA Affymetrix) and also achieve P-values ,0.05 on an 
independent Tothill data set. For the 3 × 3 contingency tables, 
on an entirely independent validation data set (Tothill), the 
P-values are ∼0.03 if PFS is used as the clinical parameter. 
Similarly, the P-values of the Kaplan–Meier curves are also 
,0.006. Therefore, these findings serve to establish that PFS 
is a very useful clinical parameter that can be used for predict-
ing patient response.

It would be highly desirable to test whether the per-
formance on the Tothill data set could be repeated on other 
data sets. Unfortunately, in ovarian cancer, there very few 
large data sets that contain detailed information on the OS 
and/or PFS of patients. There is one data set, known as the 
Yoshihara data set, which consists of about 100  samples, 
and the rest contain fewer than 50 samples. With very few 
samples, it is not realistic to expect that classifiers would 
demonstrate a statistically significant improvement over 
pure chance. Thus, we are forced to remain content with 
just one independent validation data set, on which the 
approach leads to good results from the standpoint of sta-
tistical significance.

Along similar lines, we have not been able to locate any 
other molecular signature that can be readily applied to gene 
expression data, whose predictions can be compared with 
those given here. The available literature on the topic consists 
of biomarker panels, that is, lists of genes, but not a numerical 
procedure for combining the expression values of these genes 
to assign patients to two or more categories, as is done here.

From the standpoint of being useful in clinical prac-
tice, there is considerable scope for improvement. Ideally, the 
3 × 3 contingency tables should assist the physician to assign 
a patient to an appropriate category. If a patient can be said to 
be an NR with high confidence, then she could straightaway 
be given alternative therapy. Similarly, if a patient can be said 
to be an SR with high confidence, the physician can proceed 
with front-line therapy in an aggressive manner. However, 
Tables 6 and 7 show that the positive predictive value of these 
categorizations on the validation data sets is only ∼50% or less. 
Thus, more work is needed to improve these predictions. In 
other words, an approach can lead to results that are statisti-
cally significant while not yet being useful in a clinical setting.

One of the objectives of the present paper was to compare 
OS with PFS as the clinical parameter to categorize a patient. 
It would appear a priori that OS is a more reliable parameter 
because there is absolutely no ambiguity about the time of 
death of a patient (assuming that the clinic has not lost track). 
On the other hand, as pointed out earlier, the actual date of 
tumor progression lies somewhere between the reported date 
of tumor progression and the date of the previous checkup. 
Therefore, it is surprising that in all the various tests per-
formed, the classifiers based on PFS as the clinical parameter 
outperform the ones based on OS. One possible explanation 
is that OS is determined as a whole host of factors, such as 
age and grade of tumor not just by the gene expression level, 
and in this sense, PFS is more robust against variations in 
these additional factors. However, this hypothesis needs to be 
assessed by gynecological oncologists. Furthermore, it may be 
desirable to enlarge the set of features beyond gene expression 
levels by also including other factors, such as age and grade 
of tumor. For such a study to be meaningful, the number of 

Table 6. Three-way classification based on PFS and tight prefiltering.

Label TCGA Agilent TCGA Affymetrix Tothill

Pred./Act. SR MR NR Total SR MR NR Total SR MR NR Total

SR 110 54 24 188 85 63 39 188 15 18 7 40

MR 59 66 62 189 61 62 63 189 20 48 20 88

NR 18 67 103 188 40 60 87 188 4 24 15 43

Total 187 187 185 565 186 185 189 565 39 90 42 171

P-Value P-Value = 0 P-Value = 0 P-Value = 0.0313
 

Table 7. Three-way classification based on PFS and loose prefiltering.

Label TCGA Agilent TCGA Affymetrix Tothill

Pred./Act. SR MR NR Total SR MR NR Total SR MR NR Total

SR 114 58 16 188 84 60 43 187 12 22 6 40

MR 62 66 59 187 64 64 58 186 23 46 19 88

NR 11 63 114 188 38 61 88 187 4 22 17 43

Total 187 187 189 563 186 185 189 560 39 90 44 171

P-Value P-Value = 0 P-Value = 0 P-Value 0.0319
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tumors needs to be an order of magnitude greater than 565, 
which is available in the TCGA data set.

The predictive features generated in this paper are 
obtained by using the lone star algorithm,18 which does not 
make any use of pathway information or any other contex-
tual information about various features. Other work carried 
out by a subset of the authors has led to an algorithm known 
as “phixer” that can be used to reverse engineer whole-genome 
context-sensitive gene interaction networks. Future work by 
our research team would consist of combining these two algo-
rithms so as to choose features that are both highly predictive 
and also interpretable in terms of biological pathways.

A recent paper on melanoma23 suggests that there are 
different evolutionary trajectories for different subtypes. This 
is a very significant observation, and it is likely that similar 
conclusions might apply to other forms of cancer, though this 
is yet to be established. If differences in patient responses in 
ovarian cancer were to be the result of tumors in different 
patients following different evolution trajectories, the com-
plexity of the disease would increase enormously; in turn, this 
would make it more difficult to apply machine learning meth-
ods of the type used in the present paper.

Conclusions
In this paper, we have proposed a methodology for grouping 
ovarian cancer patients into three categories, referred to here 
as SRs, MRs, and NRs, in terms of their response to front-line 
platinum chemotherapy. We have also developed an approach 
for grouping patients into two groups in such a way that one 
group has a statistically significant survival advantage over the 
other. While both approaches achieve P-values far below the 
widely accepted threshold of 0.05, further work is required to 
make this approach useful in a clinical setting.
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