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Abstract

We analyzed whole-exome sequencing data from 97 Japanese lung adenocarcinoma patients and identified several
putative cancer-related genes and pathways. Particularly, we observed that cancer-related mutation patterns were
significantly different between different ethnic groups. As previously reported, mutations in the EGFR gene were
characteristic to Japanese, while those in the KRAS gene were more frequent in Caucasians. Furthermore, during
the course of this analysis, we found that cancer-specific somatic mutations can be detected without sequencing
normal tissue counterparts. 64% of the germline variants could be excluded using a total of 217 external Japanese
exome datasets. We also show that a similar approach may be used for other three ethnic groups, although the
discriminative power depends on the ethnic group. We demonstrate that the ATM gene and the PAPPA2 gene could
be identified as cancer prognosis related genes. By bypassing the sequencing of normal tissue counterparts, this
approach provides a useful means of not only reducing the time and cost of sequencing but also analyzing archive
samples, for which normal tissue counterparts are not available.
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Introduction

The advent of next generation sequencing technology has
greatly facilitated the detection and characterization of genetic
variations in the human genome. Most remarkably, this type of
study has driven the 1000 Genomes Project [1,2], which aims
to provide a comprehensive map of human genetic variants
across various ethnic backgrounds. However, because whole-
genome sequencing is still costly, the sequencing of whole
exon regions using hybridization capture methods (exome
sequencing) [3-5] is widely used to screen for genes that are
related to hereditary diseases. By sequencing exomes from
healthy and diseased individuals and comparing them, genes
that are responsible for many diseases have been identified [6],
including Miller syndrome [7,8] and familial hyperkalemic
hypertension [9]. Along with the progress that has been made
in exome sequencing, the volume of germline single nucleotide
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polymorphism (SNP) data that has been registered in dbSNP is
rapidly expanding for various populations [10].

Exome sequencing provides a powerful tool for cancer
studies as well. Indeed, a number of papers have been
published describing the identification and characterization of
single nucleotide variants (SNVs) that somatically occur in
cancers and are suspected to be responsible for
carcinogenesis and disease development [11]. The
International Cancer Genome Consortium (ICGC) has been
collecting exome data for somatic SNVs that are present in
more than 50 types of cancers as a part of an international
collaborative effort [12-14]. The Cancer Genome Atlas (TCGA)
has developed a large genomic dataset, including exomes for
high-grade ovarian carcinoma, that has been used to detect
significantly mutated genes, including TP53, BRCA1 and
BRCA2 [15]. They have also identified various genomic
aberrations and deregulated pathways that may act as
therapeutic targets.
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In most ongoing cancer exome studies, normal tissue
counterparts have been sequenced in parallel with cancer
tissue [15-19]. This is assumed to be necessary because
germline variants must be excluded from the full set of SNVs to
detect the somatic SNVs that are unique to cancers. However,
the sequencing of normal tissue counterparts increases the
cost and time of the analysis. Also, in some cases, it is difficult
to obtain normal tissue counterparts. In addition, it remains
unclear how accurately germline SNVs can be excluded using
normal tissue exomes. To conservatively exclude germline
SNVs, their sequence depths and accuracies may need to be
greater than those that are obtained from the cancer exomes.

In this study, we generated and analyzed 97 cancer exomes
from Japanese lung adenocarcinoma patients. We also
demonstrate that somatic SNVs can be enriched to a level that
is sufficient for further statistical analyses even in the absence
of the sequencing of normal tissue counterparts. To separate
the germline from the somatic SNVs, we first compared the
variation patterns between a cancer exome with the 96 other
patients’ normal tissue exomes. We also attempted to conduct
a similar mutual comparison solely utilizing cancer exomes,
without the consideration of exomes of normal tissue
counterparts. It is true that if we completely omitted normal
tissue sequencing, we would tentatively disregard of somatic
mutations that occurs at exactly the same genomic position in
multiple cancers. However, recent papers have elucidated that
such shared SNVs are very rare [15,20-22]. Moreover, many of
these recursively mutations have been registered in the cancer
somatic mutation databases such as Sanger COSMIC [23,24],
and those recurrent SNVs can be recovered by follow-up
studies partially using the data from the normal tissues. To
understand the unique nature of each cancer, a statistical
analysis of the distinct SNVs is presumed to be essential in
addition to the analysis of the common SNVs.

In this study, we demonstrate that it is possible to identify the
first candidates for cancer-related genes and pathways, even
without the sequencing of a normal tissue counterpart. We
show that this approach is useful not only to reduce the cost of
the sequencing but also to improve the fidelity of the data. It
should be also useful for analyzing old archive samples, for
which normal tissue counterparts are not always available.
Here, we describe a practical and cost-effective method to
expedite cancer exome sequencing.

Results and Discussion

Characterization of SNVs using the 97 exome dataset
Firstly, we generated and analyzed whole-exome sequences
from 97 Japanese lung adenocarcinoma patients. Exome data
were collected from both cancer and normal-tissue
counterparts, separated by laser capture microdissection. We
purified the exonic DNA (exomes) and generated 76-base
paired-end reads using the illumina GAllx platform.
Approximately 30 million mapped sequences were obtained
from each sample, providing 74x coverage of the target
regions; 93% of the target regions had 5x coverage (Figure S1
in File S1). Burrows-Wheeler Aligner (BWA) [25] and the
Genome Analysis Toolkit (GATK) [26,27] were used to identify
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SNVs (Figure S2 in File 81). Only SNVs that were detected in
cancer tissues and showed no evidence of variation in normal
tissues were selected for further analysis.

The obtained dataset was used to characterize the cancer-
specific mutation patterns (Table S3 in File S1). We calculated
the enrichment of the SNVs within particular genes, protein
domains, functional categories, and pathways. We searched
for genes with somatic SNVs significantly enriched in Japanese
lung adenocarcinoma. As shown in Table S4 in File S$1, several
genes were identified as significantly mutated. In particular, we
searched for domains that are enriched with SNVs and harbor
known cancer-related mutations in the COSMIC database. In
total, 11 genes were identified (P < 0.02, Table 1). For
example, the Dbl homology (DH) domain of PREX1 gene [28]
was enriched with SNVs (P = 0.00071). However, in the
PREX2 gene [29], the Pleckstrin homology (PH) domain was
enriched with SNVs (P = 0.011) (Figure 1A and B). Both the
PREX1 and the PREX2 genes activate the exchange of GDP
to GTP for the Rho family of GTPases and the DH/PH domains
are indispensable for nucleotide exchange of GTPases and its
regulation [30-32]. In addition, we analyzed the expression
patterns of these genes using a cancer gene expression
database, GenelLogic (Figure S3 in File S81). Expression levels
of PREX1 and PREX2 were not enhanced in lung
adenocarcinoma but were enhanced in wide variety of cancers,
which is partly indicated in previous studies [33]. The SNVs in
the PREX1 and PREX2 genes, which were concentrated at its
pivotal signaling domains, might enhance activities in these
genes, and thereby functionally mimics the increased
expressions of this gene in some different types of cancers.
The cancer-related gene candidates identified from this dataset
are listed in Table 1.

Similarly, pathway enrichment analyses using the KEGG
database [34] also detected several putative cancer-related
pathways. The identified pathways are listed in Table 2.
Interestingly, the endometrial cancer pathway [35] was
detected in this enrichment analysis (P = 3.1e-15, Figure 2A).
This pathway includes major cancer-related pathways, for
example, the MAPK signaling pathway and the PI3K/AKT
pathway. For this pathway, we compared mutation patterns
between our Japanese data and those of the previous study of
lung adenocarcinoma in Caucasians [21]. We found that the
SNVs in the EGFR gene were four times more frequent in the
Japanese population than among Caucasian populations
(Figure 2B, left panel). EGFR mutations were frequently
occurring in non-smoker, female and Asian patients of lung
adenocarcinoma [36], which is a molecular target of anti-cancer
drug, gefitinib [20,37,38]. Conversely, KRAS mutations, which
are also well-known cancer-related mutations [39], were more
than four times frequent among Caucasians (Figure 2B, center
panel). However not all mutational patterns are different
between populations. For instance, TP53 harbored mutations
in both datasets with similar frequency (Figure 2B, right panel).

Ambiguity in SNV identification of normal tissue
counterparts

In the aforementioned analysis, we discriminated germline
variants using the normal tissue counterparts. A number of
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Table 1. List of the identified possible cancer-related genes.

Number of SNVs
Gene Domain Domain Gene P-value’

IPR001245:Serine-threonine/tyrosine-

EGFRY 34 37 4.4e-21
protein kinase

KRAST  IPR001806:Ras GTPase 6 7 8.0e-6

TNN IPR003961:Fibronectin, type IlI 4 5 5.2e-5
IPR008967:p53-like transcription factor,

TP53t 20 23 9.5e5
DNA-binding

PREX1  IPR000219:Dbl homology (DH) domain 4 0.00071

DNAH7  IPR004273:Dynein heavy chain 5 0.0025
IPR011044:Quinoprotein amine

FSTL5 7 7 0.0043
dehydrogenase, beta chain-like
IPR008985:Concanavalin A-like lectin/

NRXN3 5 7 0.0063
glucanase

PREX2  IPR001849:Pleckstrin homology 3 7 0.011
IPR008973:C2 calcium/lipid-binding

FER1L6 3 6 0.013
domain, CaLB
IPR008985:Concanavalin A-like lectin/

COL22A 3 6 0.015
glucanase

"P<0.02

T Reported in the Cancer Gene Census [11]. Note that the genes atop the list are
previously reported to be associated with this cancer type, while most of them are
novel possible cancer-related genes.

doi: 10.1371/journal.pone.0073484.t001

SNVs initially identified as somatic were also found to be
present in normal tissues, thus, were false positive calls under
the validations by visual inspection of the mapped sequences
and Sanger sequencing. To examine the cause of this problem,
we inspected the errors in randomly selected 26 cancers and
their normal tissues. On average in each cancer, twenty-five
percent of somatic SNV candidates were found to be false
positive (Figure 3). In these cases, the sequence coverage and
quality of the normal counterpart were not sufficient. Indeed,
the sequences supporting each SNV and these qualities were
significantly diverged between the cancer and normal tissues.
Although we increased the total number of reads in the normal
tissues, it was difficult in practice to cover all of the genomic
positions (Figure S4 in File $1). A summary of the germline
SNV validations is shown in Table S5 in File S$1.

However, we noticed that some were correctly identified as
germline SNVs in external reference exomes. Twenty-five
exomes allowed us to exclude eight false positive calls in each
cancer. This raised the possibility that the SNVs from the other
patients may be used as surrogates to increase the depth and
quality of the sequencing.

Excluding germline SNVs by considering mutual
overlaps of other persons’ exomes

To further test this possibility, we examined whether cancer
exome analyses would be possible without sequencing of the
normal tissue counterpart of each cancer. First, we evaluated
the extent to which the germline SNVs could be discriminated
using external exomes. For this purpose, we used the 97
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paired cancer-normal exome datasets for the validation
dataset. We found that we could detect 54% of the germline
SNVs by using the 96 normal tissue exomes from the external
reference (Figure 4A). We further expanded the filtration
dataset using the externally available 73 Japanese exome data
and 48 in-house Japanese exome datasets. Altogether, we
were able to remove 64% of the germline SNVs, using a total
of 217 Japanese exome datasets from other individuals,
without sequencing each cancer’'s normal counterpart (Figure
4A). The extrapolation of the graph also indicated that 1,350
and 2,000 samples would be required to remove 90% and 95%
of the germline SNVs, respectively. We expect that such a
sample size will be available in near future considering current
rapid expansion of the exome analysis.

We further evaluated if the same filtration could be done by
solely using cancer exomes. We obtained essentially the same
results (Figure S5 in File S1). Obvious caveat of this approach
is that this would disregard about 3% of somatic SNVs
recurrently occurring (Figure S5 in File 81, blue). However, as
aforementioned, we found that those recurrent SNVs were very
rare [15,19] and most of them were derived from dubious
somatic SNVs, which were overlooked in the normal tissues.
We also consider that most of those recurrent SNVs, if any,
can be analyzed separately by sequencing a limited number of
normal tissues.

Filtering out germline SNVs by considering mutual
overlaps for different ethnic groups and for rare SNPs

We examined whether SNVs in other ethnic backgrounds
could be used as external datasets for the filtration. We
obtained exome data from individuals of various ethnic
backgrounds from the 1000 Genome Project. We used these
exome datasets to exclude the germline SNVs that were
identified in the Japanese cancers. We found that the
discriminative power was significantly lower compared with
exomes from Japanese populations. Therefore, these datasets
were not suitable for this purpose (Figure 4B). We also
examined and found that the exomes in each ethnic group
were useful to discriminate the germline SNVs in the
corresponding group (Figure S6, S7 and Table S6 in File S1).

We, then, examined to what extent minor germline variants
could be covered with this approach in the Japanese
population. We evaluated the sensitivity of the filtration process
for the SNVs in the 97 cancers (Figure S8 in File S1). We
found that 88% of the germline SNVs occurring in more than
five percent of the 97 exomes could be detected using the 73
external Japanese datasets. For the SNVs occurring in 1% of
the 97 cancers, 19% could be excluded.

Using the crude dataset to characterize cancer related
SNVs and pathways

Taken together, with 217 Japanese exomes used for
filtration, 36% of the germline SNVs remained unfiltered.
Nevertheless, we considered that it may be still possible to use
the crude SNV dataset as a first approximation for identifying
and analyzing cancer-related genes and pathway candidates.
To validate this idea, we compared the results of enrichment
analyses between the crude dataset and the refined somatic
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Figure 1. Identification and characterization of the putative cancer-related genes using 97 cancer exomes. SNVs in the
PREX1 (A) and PREX2 (B) genes are represented in the boxes. The protein domains in which the enrichments of the SNVs were
statistically significant are represented in orange boxes (also see Materials and Method). DH-domain: Dbl homology (DH) domain;
PH: Pleckstrin homology domain; D: DEP domain; P: PDZ/DHR/GLGF.

doi: 10.1371/journal.pone.0073484.g001

SNV datasets, which were generated from the paired cancer-
normal exomes.

Most of the putative cancer-related genes and pathways that
were identified from the refined dataset were also present in
the crude dataset (Tables S7 and S8 in File S1). The example
of the TNN gene, which was reported as a marker of tumor
stroma [40-42], is shown in Figure S9 in File 81. In this case,
even with the germline SNVs, which were unfiltered in the
crude dataset (indicated by black in Figure S9 in File $1), the
enrichment of somatic SNVs in this domain was statistically
significant. In total, nine genes which identified as possessing
cancer-related SNVs from the refined dataset were also
detected in the crude dataset. On the other hand, two genes
from the refined dataset were not represented in the crude
dataset. In the pathway analysis, we identified 26 cancer-
related pathways which were identified from the refined
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dataset. In addition, 19 pathways were also represented in the
crude dataset as well as the refined dataset. The overlap
between the datasets is summarized in Table 3. It should be
noted that statistically enrichment analyses were possible even
at the current coverage of the filter dataset. With the expanded
external dataset, it would be more practical to subject the
candidates to the results of Sanger sequencing validations as
well as removing remaining germline SNVs.

Identification of prognosis related genes by using the
crude dataset

As one of the most important objectives of the cancer exome
studies, we investigated whether mutations affecting cancer
prognoses can be identified by using crude dataset (Table S9
and Figure S10 in File 81). In the Kaplan-Meier analysis, seven
patients who carried SNVs in the ATM gene (Figure 5A)
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Table 2. List of the identified possible cancer-related
pathways.

Number of
cancers with

KEGG ID Pathway definition SNVs P-value”
hsa05213 Endometrial cancer 72 3.1e-15
hsa04320 Dorso-ventral axis formation 48 4.4e-15
hsa05219 Bladder cancer 62 4.9e-14
hsa05223 Non-small cell lung cancer 66 7.1e-12
hsa05214 Glioma 70 6.5e-11
hsa05218 Melanoma 70 1.3e-9
hsa05212 Pancreatic cancer 68 6.9e-9
hsa05215 Prostate cancer 71 4.3e-7
hsa05216 Thyroid cancer 36 1.1e-6
hsa04520 Adherens junction 59 3.7e-6
hsa05210 Colorectal cancer 53 1.8e-5
hsa04012 ErbB signaling pathway 64 2.6e-5

Epithelial cell signaling in Helicobacter
hsa05120 53 4.8e-5

pylori infection
hsa04540 Gap junction 60 0.00024
hsa04912 GnRH signaling pathway 61 0.0011
hsa05217 Basal cell carcinoma 41 0.0020
hsa05222 Small cell lung cancer 52 0.0069
hsa05220 Chronic myeloid leukemia 46 0.010
hsa05160 Hepatitis C 67 0.012
hsa05014 Amyotrophic lateral sclerosis (ALS) 36 0.014
hsa04977 Vitamin digestion and absorption 20 0.015
hsa05416 Viral myocarditis 40 0.028
hsa04512 ECM-receptor interaction 47 0.034
hsa02010 ABC transporters 29 0.035
hsa04510 Focal adhesion 78 0.037

Arrhythmogenic right ventricular
hsa05412 40 0.039
cardiomyopathy (ARVC)

"P<0.05
doi: 10.1371/journal.pone.0073484.t002

showed statistically significant poor prognoses (P = 9.6e-6,
Figure 5B). Three SNVs in the ATM gene were significantly
enriched in the the phosphatidylinositol 3-/4-kinase catalytic
domain (P = 0.014). ATM senses DNA damage and
phosphorylates TP53, which, in turn, invokes various cellular
responses, such as DNA repair, growth arrest and apoptosis,
and collectively prevents cancer progression (Figure S11 in
File S1) [43,44].

We also examined whether other frequently mutated genes
were associated with better or worse prognoses. We found that
patients with PAPPA2 mutations showed prolonged survival
times (P = 0.026, Figure 5C and D). PAPPA2 proteolyzes
IGFBP5 [45,46], which is an inhibitory factor for IGFs [47].
Mutations in the PAPPA2 gene may result in the accumulation
of IGFBP5, and the resulting decrease in IGF signaling may
impair the proliferation of cancer cells [48]. Again, it should be
noted that for both the ATM and PAPPA2 genes, the statistical
significance of the prognostic difference persisted both before
(black line) and after (red line) the remaining germline
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mutations were removed, which was validated by Sanger
sequencing (Figure 5B, D and Table S10 in File S1).

Conclusions

We have identified and characterized the SNVs in lung
adenocarcinoma in a Japanese population. Further biological
evaluations of the discovered SNVs will be described
elsewhere. In particular, information of transcriptome and
epigenome should be important for further analyses of cancer
genomes, as they would shed new lights on the cancer biology
(Table S1) [49]. In this study, we also presented a useful
approach for the analysis of cancer exomes, without the need
to sequence the normal tissue counterpart. We believe that the
approach not only lowers the barriers in cost, time and data
fidelity in the exome analysis, but also enables exome analysis
of archive samples, for which normal tissue counterparts are
not always available.

Materials and Methods

Ethics statement

All of the samples were collected by following the protocol
(and written informed consent) which were approved by Ethical
Committee in National Cancer Center, Japan (Correspondence
to: Katsuya Tsuchihara; ktsuchih@east.ncc.go.jp).

Case selection and DNA preparation

All of the tissue materials were obtained from Japanese lung
adenocarcinoma patients with the appropriate informed
consent. Surgically resected primary lung adenocarcinoma
samples with lengthwise dimensions in excess of 3 cm were
selected. Data on the 52 patients who had relapses and other
clinical information about the 97 cases are shown in Table S11
in File 81. All 97 cancer and normal tissues were extracted
from methanol-fixed samples by laser capture microdissection.
DNA purification was performed using an EZ1 Advanced XL
Robotic workstation with EZ1 DNA Tissue Kits (Qiagen).

Whole-exome sequencing

Using 1 pg of isolated DNA, we prepared exome-sequencing
libraries using the SureSelect Target Enrichment System
(Agilent Technologies) according to the manufacturer's
protocol. The captured DNA was sequenced by the illumina
Genome Analyzer lIx platform (lllumina), yielding 76-base
paired-end reads.

Somatic SNV detection

The methods that were used to detect the SNVs, including
BWA, SAMtools [50] and GATK, are shown in Figure S2 in File
S1. Using data from NCBI dbSNP build 132 and one Japanese
genome [51], major germline SNVs were excluded. In addition,
rare germline SNVs were discarded using 97 exomes from
normal tissue counterparts, 73 Japanese exomes provided
from the 1000 Genomes Project (the phase1 exome data,
20110521) and 48 in-house Japanese exomes. We also
validated a portion of the SNV datasets by the Sanger
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Figure 2. The EGFR/Ras pathways in Japanese and Caucasian populations. (A) Mutation patterns in the endometrial cancer
pathway that was detected in the enrichment analysis are shown. The size of the circle represents the population of the cancers
harboring the SNVs in the corresponding gene (percentage is also shown in the margin). SNVs in this study and the external
dataset in Caucasian populations are shown in red and blue circles, respectively. n.a.: mutation frequencies were not available. (B)
Comparison of mutation ratio of EGFR, KRAS and TP53 genes among both datasets. The p-values were calculated by two-sample

test for equality of proportions.
doi: 10.1371/journal.pone.0073484.9g002

sequencing of cancer tissues and their normal tissue
counterparts (Figure S12 in File S1).

Identification of highly mutated genes

We detected genes which were significantly enriched with
SNVs by calculating the expected number of cancers with
SNVs in the gene. The length of total CDS regions was
represented in N (approximately 30.8 M bases). When one
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patient harbored total of m SNVs, the probability that the
patient harbors SNVs in the gene t (length: n) was calculated
as P:

mi\n
Pm,t,n=1_(1_ﬁ)

The sum of P in 97 cancers was represented in the expected
number of cancers with SNVs in the gene t. The p-values of the
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Figure 3. Fidelity of the germline SNV detection in cancer exome analysis. Somatic SNV candidates were identified by using
26 cancer exomes and each normal counterpart. Correct somatic SNVs and false positives were shown in pink and blue bars,
respectively. The 26 cancers used for the analysis were sorted by the increasing total number of SNVs (x-axis).

doi: 10.1371/journal.pone.0073484.g003

observed number were calculated by the Poisson probability
function using R ppois.

Statistical approach to enrichment analyses

To examine the enrichment of mutations in functional protein
domains, we mapped the SNVs to domains using InterProScan
[52] and assigned them to the Catalogue of Somatic Mutations
in Cancer (COSMIC). We analyzed the enrichment of the SNVs
in the same domains as the mutations that were provided by
the COSMIC. The p-values for the observed mutations in these
domains were calculated using their hypergeometric
distributions (R phyper). Briefly, the domains in which the SNVs
were enriched statistically significantly than the expected
number of SNVs in the given length of the domain were
selected. For estimating the expected number, the total number
of the SNVs belonging to the gene was divided by the gene
length. For this analysis, we used genes harboring five or more
SNVs in the coding region and three or more SNVs in the
domain.

PLOS ONE | www.plosone.org

We assigned SNVs to pathways as described by the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and calculated
the enrichments of the SNVs in the pathways. The mutation
rate M represented the ratio of the average number of mutated
genes to the total number of genes (17,175) that were used in
our study. The expected value for the number of cancers with
SNVs in pathway t was designated A and calculated from the
mutation rate M and the number of genes in the pathway n as
follows:

A ={1-(1=M)"}x97

The p-value for the observed number of cancers with SNVs
in pathway t was calculated by the Poisson probability function
using R ppois.
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Figure 4. Discriminative powers of detecting germline SNVs using external references. (A) The power of detecting germline
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of the graph. Fitting curve of the graph is also shown. (B) Discriminative powers of three different ethnic groups for the germline
SNVs in 97 Japanese cancers. Sensitivities for detecting germline SNVs are shown by the following colors; green: Chinese; purple:
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doi: 10.1371/journal.pone.0073484.9g004

normal tissue exomes from others and 121 additional
Japanese exomes) were randomly selected, and their

Estimate of discriminative power for exclusion of
germline SNVs by considering mutual overlaps

We estimated the discriminative power for the exclusion of
germline SNVs by considering those from other non-cancerous
exomes. Germline SNVs from 97 paired tumor-normal exomes
were used as reference datasets. Up to 217 samples (96
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sensitivities and specificities for detecting the germline SNVs
were detected by taking the averages of either all of the
combinations or a subset of approximately 10,000
combinations. We also estimated the discriminative power with
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Figure 5. Identification of the putative prognosis-related genes. (A) SNVs in the ATM gene. The SNVs that were identified in
the initial screening and those remaining after the Sanger sequencing validation of the normal-tissue counterpart were shown in
black and red, respectively. TAN: Telomere-length maintenance and DNA damage repair; PI3_PI4 kinase: Phosphatidylinositol 3-/4-
kinase, catalytic. (B) Survival analysis of patients with and without ATM SNVs. The datasets before and after the Sanger
sequencing validation are represented by black and red lines, respectively. Statistical significance was calculated using a log-rank
test (P < 0.05). Note that the survival differences for individuals with SNVs in the non-Sanger-validated dataset were significant
before the Sanger validation. (C, D) Results of a similar analysis as that described in A and B for the PAPPA2 gene. In this case,
the patients with the SNVs showed better prognoses. ConA like sub: Concanavalin A-like lectin/glucanase, subgroup; N: Notch
dimain; Peptidase M43: Peptidase M43, pregnancy-associated plasma-A.

doi: 10.1371/journal.pone.0073484.9g005

Table 3. Comparison of the results in the enrichment
analyses between the crude and refined dataset.

Number of identified genes/pathways

Crude” Refinedt Overlapt
Genes 16 11 9
Pathways 23 26 19

" Identified using the crude dataset.

1 Identified using the refined dataset.

t Significant in both crude and refined datasets.
doi: 10.1371/journal.pone.0073484.t003

PLOS ONE | www.plosone.org

data from the 1000 Genomes Project for four ethnic groups (73
JPT, 90 CHS, 81 YRI and 64 CEU) using similar trials. Whole-
exome sequences (the phase1 exome data, 20110521) were
obtained from the ftp site in the 1000 Genomes Project.

Kaplan-Meier curves

The Kaplan-Meier method was used to test the relations of
the observed mutations to survival time, and calculations were
performed using the R software package. Changes in survival
rates that were correlated with SNVs were examined using the
log-rank test (R survdiff).
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Data access

Full raw datasets will be shared with researchers upon
request. The information of somatic mutations at the respective
genomic coordinates has been provided in Table S2.

Supporting Information

File S1. Figures S1 to S12 and Tables S3 to S11 are
included.

(PDF)

Table S1. The comparison of our dataset with the other

different study. We provided the comparison of our dataset
with the genes identified in the other different study with
transcriptome and epigenome data in lung cancers.

(XLSX)

Table S2. The list of somatic mutations identified from the
refined dataset. All mutations described in this table are
somatic and non-synonymous mutations.
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