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Abstract

Gefitinib (Iressa) is an inhibitor of the epidermal growth factor receptor (EGFR) that has shown promising activity in the
treatment of patients with non-small cell lung cancer (NSCLC). However, adverse side effects of gefitinib treatment, such as
respiratory dysfunction, have limited the therapeutic benefit of this targeting strategy. The present results show that this
adverse effect can be attributed to the inhibition of the novel gefitinib target GAK (Cyclin G-associated kinase), which is as
potently inhibited by the drug as the tyrosine kinase activity of EGFR. Knockout mice expressing the kinase-dead form of
GAK (GAK-kd) died within 30 min after birth primarily due to respiratory dysfunction. Immunohistochemical analysis
revealed that surfactant protein A (SP-A) was abundant within alveolar spaces in GAK-kd+/+ mice but not in GAK-kd-/- pups.
E-cadherin and phosphorylated EGFR signals were also abnormal, suggesting the presence of flat alveolar cells with thin
junctions. These results suggest that inhibition of GAK by gefitinib may cause pulmonary alveolar dysfunction, and the
present study may help prevent side effects associated with gefitinib therapy in NSCLC patients.
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Introduction

EGFR is a membrane receptor tyrosine kinase that is activated

by ligand binding and dimerization, resulting in the activation of a

signaling pathway that controls cell proliferation, differentiation,

and survival [1]. Constitutively active EGF-EGFR signaling due to

overexpression of mutated or wild-type EGFR is found in a broad

range of human carcinomas, leading to the activation of anti-

apoptotic pathways and uncontrolled cell proliferation [2], [3].

EGFR selective tyrosine kinase inhibitors (TKIs) such as gefitinib

(Iressa) and erlotinib (Tarceva) that bind to the adenosine

triphosphate (ATP)-binding site of the enzyme have been used

as successful treatments for NSCLC patients, particularly in the

presence of activating mutations within the EGFR gene [4], [5].

Although occurring at low frequency, progressive respiratory

dysfunction, including acute interstitial pneumonia (IP) is the most

severe adverse effect of gefitinib [6], which has limited the

therapeutic benefit of this drug. Tumor regression in gefitinib

treated NSCLC patients is at least partly due to apoptotic death of

tumor cells. Shutdown of the EGFR-MEK-ERK signaling cascade

induces activation of the proapoptotic BH3-only protein BIM,

causing gefitinib-induced tumor cell apoptosis [7]. Moreover,

induction of another BH3-only protein, p53 up-regulated

modulator of apoptosis (PUMA), by p73, is also involved in

EGFR inhibitor-induced apoptosis [8], [9]. However, the

molecular mechanisms underlying the development of IP in

response to gefitinib treatment and the selectivity of the drug for its

cellular targets are not fully understood.

Two protein kinases were identified by liquid chromatography

(LC)-MS/MS as novel gefitinib targets [10], namely a negative

regulator of EGFR signaling, GAK [11] and Rip2/RICK

(receptor-interacting caspase-like apoptosis-regulatory kinase), a

signal transducer and integrator of signals for both the innate and

adaptive immune systems that functions through the promotion of

nuclear factor kappa B and caspase activation [12], [13]. Both

targets are affected by gefitinib as potently as the tyrosine kinase

activity of wild-type EGFR in vitro [10]. Although the physiological

significance of these phenomena needs to be elucidated for the

selection of EGFR-directed drugs with minimal side effects, there

is little data presently available.

The ubiquitously expressed kinase GAK was first identified as a

cyclin G1-binding protein [11]. As suggested by its strong homology

to the neuronal-specific protein auxilin, a Hsc70 cochaperone with a

role in uncoating clathrin vesicles [14], GAK regulates clathrin-

mediated membrane trafficking as an essential cofactor for the

Hsc70-dependent uncoating of clathrin-coated vesicles [15].
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Moreover, down-regulation of GAK by a small hairpin RNA

enhanced the levels of expression and tyrosine kinase activity of

EGFR and altered the spectrum of downstream signaling, at least

partly due to alterations in receptor trafficking [16]. However, GAK

harbors a Ser/Thr kinase domain that is absent in auxilin, and

forms a complex with Cyclin G and the protein phosphatase 2A

(PP2A) B’c subunit [17], [18], which suggests that it may play yet

unidentified roles in cellular events other than membrane

trafficking. In support of this hypothesis, GAK acts as a

transcriptional coactivator of the androgen receptor (AR; a

ligand-dependent transcription factor), and GAK expression was

significantly increased in hormone refractory prostate cancer [19].

Moreover, both GAK and its association partner clathrin heavy

chain (CHC), localize to both the cytoplasm and nucleus with

distinct association modes, and CHC colocalizes with GAK in the

nucleus, while Cyclin G and PP2A B’c are also present in the

nucleus [17], [20], [21]. Moreover, siRNA-mediated GAK

knockdown caused cell-cycle arrest at metaphase, which revealed

two novel functions of GAK: maintenance of proper centrosome

stability and of mitotic chromosome congression [22].

In the present study, knockout mice expressing a kinase-dead

form of GAK (GAK-kd) were generated to examine the in vivo

effect of inhibition of the kinase activity of GAK. In contrast to the

embryonic lethality of GAK (full size) knockout mice [23], GAK-

kd-/- mice survived until immediately after birth, which allowed

the establishment of a mouse embryonic fibroblast (MEF) primary

cell line for GAK-kd-/- mice. Caesarian section and rescue of pups

revealed that all GAK-kd-/- mice died from respiratory dysfunc-

tion within 30 min after resuscitation. Notably, lungs of GAK-

kd-/- mice showed alterations in the distribution of surfactant

protein A (SP-A), which appeared to be the cause of respiratory

dysfunction. The present findings may provide potential ways of

enhancing and predicting the sensitivity to EGFR-targeted

therapies in NSCLC.

Results

Generation of a mouse strain harboring the incomplete
kinase domain of GAK

To examine the effect of inhibition of GAK kinase activity,

knockout mice lacking the essential part of the GAK kinase

domain were generated. A gene-targeting vector was constructed

by replacing exons 2, 3 and 4 of mouse GAK with the neomycin

selection cassette PGK-neo, flanked by 2.4 and 8.0 kb of GAK

homologous sequences (Figure 1A), which resulted in deletion of

its kinase domain (GAK-kd). The linearized targeting vector was

introduced into C57BL/6-derived ES cells by electroporation, and

G418-resistant ES cell clones were identified by Southern blot

analysis using two kinds of probes (Figure 1A and B, probe 59 and

probe 39). On the short arm, an EcoRV digest generated a 23.9 kb

fragment from the WT allele and a 7.5 kb fragment from the

targeted allele. On the long arm, an EcoRV digest generated a

23.9 kb fragment from the WT allele and a 13.6 kb fragment from

the targeted allele. The targeted allele was confirmed further by

PCR using two pairs of primers (Figure 1A and unpublished data).

Ten out of 383 ES clones had the correct targeting (Figure. 1B,

clone No. 2 and 3). These clones were injected into blastocysts that

were transferred into pseudopregnant females to generate

chimeras. This process yielded four chimeric mice that produced

offspring with germline transmission of the disrupted GAK gene.

Germline transmission of the targeted GAK gene in embryos and

heterozygous mice was confirmed by PCR (Figure 1C and D).

GAK-kd heterozygous (GAK-kd+/-) mice were born healthy,

grew normally when checked at day 28 of postnatal life and were

fertile. Unlike the embryonic lethality of GAK (full size) knockout

mice [23], 12 homozygous (GAK-kd-/-) newborn mice (day 0-1)

were detected among the 67 newborn pups born to heterozygous

intercrosses, but none of them were found at day 28 (Figure 1E

and F). The ratio of wild-type (GAK-kd+/+), GAK-kd+/- and

GAK-kd-/- genotypes for E16.5–E18.5 embryos was 10:19:11

(Mendelian distribution), whereas that of newborn pups was

18:37:12 (non-Mendelian distribution), suggesting that GAK-kd

deficiency results in neonatal lethality. The morphology of

embryos was analyzed and the results showed that they were

healthy until 18.5 days post coitus (dpc). Here, all F1 hybrid

offspring were produced by natural mating, and the morning of

the day of discovery of the vaginal plug was considered 0.5 dpc.

GAK-kd-/- cells lacked kinase activity
Survival of GAK-kd-/- embryos until 18.5 dpc enabled the

generation of littermate MEFs and the establishment of an

immortalized cell line. The disruption of the kinase domain was

confirmed by PCR using MEF genomic DNA (Figure 2A); mRNA

expression of the kinase-deleted form of GAK in GAK-kd MEFs

was assessed by RT-PCR (Figure 2B, 424 bp), and the disruption

of the kinase domain was confirmed by DNA sequencing

(Figure 2C). Western blot analysis confirmed that the absence of

the kinase domain resulted in a GAK-kd-/- protein band

(arrowhead) that was smaller in size than the band for GAK-

kd+/+ protein (arrow) in the whole cell extract (Figure 2D). We also

confirmed the identity of these bands as GAK by western blot

analysis (data not shown) with several homemade antibodies and

epitope search (Figures S1, S2). The abolishment of the kinase

activity was also confirmed by testing auto-phosphorylation and

phosophorylation of Thr104 on the PP2A B’c subunit, a

phosphorylation target of GAK, by in vitro kinase assays

(Figure 2E).

Membrane trafficking is normal in GAK-kd-/- MEFs
Based on the role of GAK in clathrin mediated membrane

trafficking (14), the potential effect of the kinase deficiency of GAK

on this process was examined. The phosphorylation status of T156

of AP2M1, a putative phosphorylation target of GAK involved in

the regulation of AP2-dependent membrane trafficking [24], was

assessed in GAK-kd-/- cells. An anti-phospho-AP2M1-T156 (AP2-

pT156) antibody was raised and its specificity was confirmed by

peptide dot blot analysis (Figure 3A), peptide competition

experiments (Figure 3B) and western blot analysis (Figure 3C).

Immunofluorescent analysis with the AP2-pT156 antibody

revealed a weak signal in GAK-kd-/- cells (Figure 3D). Total

abolishment of the immunoreactive signals was not observed due

to the activity of adaptor-associated kinase 1 (AAK1), which also

phosphorylates AP2M-T156 [25].

Analysis of early endosomal antigen 1 (EEA1), a cis-Golgi

matrix protein (GM130), lysosome associated membrane protein 1

(LAMP-1) and clathrin light chain (CLC) showed a normal

distribution in GAK-kd-/- cells (Figure S3A). The subcellular

localization of clathrin heavy chain (CHC) after EGF treatment to

induce endocytosis followed a normal pattern in GAK-kd-/- cells

compared to GAK-kd+/+ cells (Figure S3B). Furthermore,

visualization of the internalization of the transferrin receptor also

revealed a normal phenotype in GAK-kd-/- cells (Figure S3C).

These results indicate that the kinase activity of GAK is not

required for proper membrane trafficking and that the disruption

of the kinase domain does not affect the function of the auxilin-like

region of GAK as a membrane trafficking regulator.

As the neonatal lethality of the GAK-kd-/- pups followed a

similar pattern than that observed in cases of deficiencies in

Gefitinib Causes Pneumonia via GAK
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autophagy (26), MEFs were immunostained with the autophagy

marker LC3 1 h after serum starvation, which revealed no

impairments in autophagy in GAK-kd-/- cells (Figure S3D).

Disruption of the kinase domain of GAK caused neonatal
death due to pulmonary dysfunction

To investigate the cause of neonatal lethality, we delayed the

birth of pups by injecting female mice subcutaneously with

progesterone, which allowed us to control the timing of the birth of

the pups by Caesarian section and examine their phenotypes

immediately after birth (Figure 4A). After Caesarian section at

19.5 dpc, we cut the umbilical cord to separate the pups, and

observed their behavior after resuscitation with physical stimula-

tion. All of the 10 GAK-kd-/- pups examined looked whitish

(rightmost pup in Figure 4B) and died around 20 min after

resuscitation except for two GAK-kd-/- pups which survived a little

longer; GAK-kd+/+ and GAK-kd+/- pups survived up to 4 hrs

when they were sacrificed for further analysis (Figure 4C).

Figure 1. Generation of GAK kinase dead mice and establishment of MEFs. (A) Schematic representation of the wild-type mouse GAK locus
(top), targeting vector (middle), and targeted locus (bottom). The coding exons are indicated as black boxes. To delete the kinase domain of GAK, the
coding exons 2 (Ex2), 3 (Ex3), and 4 (Ex4) were replaced with a neomycin selection cassette (Neo). The diphtheria toxin A gene (DT-A) was used for
negative selection. The arrows indicate the position and orientation of PCR primers for genotyping. The position of Southern blotting probes (probe
59 and 39) are shown as red and blue boxes on the first line, respectively. The restriction fragments of wild-type (WT) and targeted kinase (KO) are
shown below. (B) Southern blot analysis of genomic DNA from ES clones. Homologous recombination of the targeting vector into the GAK locus
generates two additional EcoRV sites. Genomic DNA was digested with EcoRV and hybridized with 59 (left panel) and 39 (right panel) probes. Wild
type (23.9 kb) and mutated fragments (7.5 and 13.6 kb) are indicated. WT lane is a negative control. (C) PCR analysis of genomic DNA from the tails of
GAK-kd adult mice. Amplification products corresponding to WT and mutated (KO, knockout) alleles (691 and 997 bases, respectively) are shown. (D)
PCR analysis of genomic DNA of embryos obtained from heterozygote intercrosses. (E) Genotypic ratio of embryos (embryonic days 16.5–18.5),
newborns (containing pups delivered by Cesarean section), and weanlings (postnatal days 28) obtained from heterozygote intercrosses. (F) Gross
morphology of newborns obtained from heterozygote intercrosses.
doi:10.1371/journal.pone.0026034.g001
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To examine the cause of death of these pups, a histological

analysis was performed that revealed defects in lung tissue in

newborn pups (Figure 5A), although their morphologies were

normal in E18.5 embryos (Figure S4). By contrast, lungs of GAK-

kd-/- pups corresponding to E19.5 embryos were more elaborately

compartmentalized into smaller alveolar lumens (Figure 5A),

which was confirmed by observing a statistically significant

increase in the total number of alveolar compartments

(Figure 5B) and decrease in the total area of alveolar compart-

ments (Figure 5C). Moreover, the thickness of the septa of GAK-

kd-/- pups was thinner than that of GAK-kd+/+ pups (Figure 5D).

Western blot analysis of lung tissue revealed normal amounts of

relevant proteins including, EGFR, E-cadherin, an epithelial

lateral membrane marker, and surfactant protein A (SP-A), a

Figure 2. Phenotypes of GAK-/- MEFs. (A) PCR analysis of genomic DNA of MEFs from heterozygote intercrosses. (B) RT-PCR analysis showing
expression of GAK-wt (660 bp) and GAK-kd (424 bp) in GAK+/+, GAK+/-, and GAK-/- MEFs (upper panel). GAPDH was used as a loading control (bottom
panel). (C) Amino acid sequence comparisons between prospective translational products from GAK-wt (GAK+/+) and GAK-kd (GAK-/-) genes. Deleted
amino acids in GAK-kd (GAK-/-) are indicated by dashed lines. Identical amino acids are indicated by asterisks. A red letter, K, indicates a lysine residue
in the ATP-binding site essential for the kinase activity. (D) Western blot analysis of the cell extracts of GAK-wt and -kd MEFs with an anti-GAK
polyclonal antibody. An arrow and an arrowhead indicate the GAK-wt and GAK-kd protein, respectively. (E) In vitro kinase assay using purified GST-
fused polypeptides corresponding to each kinase domain of GAK derived from GAK-wt and -kd MEFs. The kinase domain of GAK-kd is partially
deleted as shown in C. Purified proteins from the PP2A-B’c subunit (WT and T104A) were used as suitable substrates (indicated with an asterisk).
Staining with Coomassie Brilliant Blue G250 (Simply BlueTM, Invitrogen) shows a loading control (left panel). An arrowhead indicates auto-
phosphorylation of GST-GAK.
doi:10.1371/journal.pone.0026034.g002
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marker of IP (Figure 5E). However, immunohistochemical analysis

(Figures. 5F, S5) revealed alterations in the distribution of SP-A,

which was observed in abundance within the alveolar spaces of

GAK-kd+/+ pup lungs, but not in GAK-kd-/- pups (Figures. 5F, a

and b). Striking differences between the two types of mice were

also detected by immunohistochemistry probing for E-cadherin. In

GAK-kd+/+ pup lungs, E-cadherin signals were detected strongly

and linearly along the lateral membranes of bronchiolar cells, and

distributed in a punctate pattern along the alveolar luminal

margins, suggesting a flat morphology of alveolar cells with thin

junctions between them (Figure 5F, c). By contrast, E-cadherin

signals were distributed in a membranous staining pattern nearly

Figure 3. Membrane trafficking is normal in GAK-kd-/- MEFs. (A)
Peptide dot blot analysis of the antibody (AP2-pT156) generated using
the KLH-conjugated phosphopeptide CEEQSQITSQV(pT)GQIGWRR. This
antibody recognizes the phosphopeptide more intensely than it does
the unphosphorylated peptide. (B) Peptide competition analysis. Pre-
incubation of the pT156-peptide (antigen; 1 mg) with the pT156
antibody (0.6 mg) for 40 min before performing immunostaining is
successfully competitive and abolishes the immunostained signal in
HeLa S3 cells. (C) Western blot analysis of the 293T cell extract
expressing FLAG-AP2 protein, FLAG-Cyclin G1 (loading control,
arrowhead) or vector alone (negative control) (i), or affinity purified
GST-AP2 protein (ii) with anti-AP2-pT156 antibody. The identity of the
AP2 band (arrows) was confirmed by probing the blots with anti-FLAG
antibody (i) or anti-GST (ii) antibody. GAPDH protein level was also
examined as a loading control (i). Asterisks indicate nonspecific bands
(i). (D) The intensity of the image recognized by AP2-pT156 is
conspicuously reduced in GAK-kd-/- MEFs compared with GAK-kd+/+

MEFs, as detected by an anti-AP2-T156 antibody. Clathrin heavy chain
(CHC) was immunostained as a marker of cytosolic membrane structure.
Nuclear DNA was stained with Hoechst33258. Fluorescence was
visualized using a fluorescence microscope (Olympus BX51) and the
fluorescence images were acquired using Photoshop 7.0 (Adobe).
Bar = 10 mm.
doi:10.1371/journal.pone.0026034.g003

Figure 4. The phenotypes of GAK-kd-/- pups that were born by
Caesarian section. (A) Caesarian section strategy for the generation
of GAK-kd-/- pups. (B) Gross morphology of newborn pups obtained by
Caesarian section. (C) Genotypes of newborn GAK-kd pups as
determined by PCR (see Figure 1).
doi:10.1371/journal.pone.0026034.g004
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homogenously throughout the lung parenchyma of GAK-kd-/-

pups (Figure 5F, d), although the protein expression level was

normal (Figure 5E). Since commercially available anti-EGFR

antibodies were not suitable for immunohistochemistry, we used

two kinds of antibodies against phosphorylated forms of EGFR

(EGFR-pS1047 and -pT654). Both antibodies revealed a similar

restricted distribution of EGFR within bronchiolar cells in GAK-

kd+/+ pups, whereas the signals were detected evenly in the

bronchioles and alveoli of GAK-kd-/- pup lungs (Figure 5F, e-h).

These results suggest that abnormal development of alveolar cells

caused the neonatal death of GAK-kd-/- pups.

Distribution of EGFR during the development of the
pulmonary system was altered in GAK-kd-/- lungs

Most of the immunostained cells that lined the alveolar lumens

of GAK-kd-/- pups were cuboidal in shape, possibly reflecting the

effects of changes in the distribution of EGFR on the development

of the pulmonary system. To investigate this phenotype further, we

performed PAS (periodic acid-Schiff) staining of lungs from GAK-

kd+/+ and GAK-kd-/- neonates (Figure 6). In GAK-kd+/+ lungs,

PAS-positive signals were detected in bronchial epithelial cells

(closed arrowhead), but not in alveolar lining cells, indicating that

alveolar cell maturation from types II to I is associated with loss of

Figure 5. Histological analysis revealed defects in lung tissues in GAK-kd-/- pups. (A) Histological phenotypes of the lung of GAK-kd+/+ and
GAK-kd-/- pups. Sections of their lungs were stained with hematoxylin and eosin. Bar = 50 mm. (B and C) Total number (B) and total area (C) of alveolar
compartments were counted in the images of four GAK-kd+/+ pups and five GAK-kd-/- pups. The average values of the bars were calculated in 4
independent areas under a microscope for each pup using Image J (version 1.44) public domain Java image processing package (National Institute of
Health, Bethesda, Maryland, USA). Standard deviations are shown as error bars, which were calculated using excel 2003 software. The average values
of the bars (blue and yellow) were calculated from average values of four GAK-kd+/+ and five GAK-kd-/- pups, and the values were statistically
significant (**; P,0.01, *; P,0.05). Error bars indicate standard deviations (Student’s t-test is used throughout). (D) Comparison of the thickness of the
alveolar septum (mm) measured on the images of two independent areas (a and b) of four GAK-kd+/+ and five GAK-kd-/- pups. The results were
statistically significant (*; P,0.05). (E) Western blotting using antibodies against EGFR, SP-A, E-cadherin and GAPDH (loading control) of lung extracts
of GAK-kd+/+ and GAK-kd-/- pups. (F) Immunostaining of the lungs of GAK-kd+/+ and GAK-kd-/- pups with antibodies against SP-A, E-cadherin, EGFR-
pS1047 and EGFR-pT654. The images show the enlarged views of the regions indicated by squares in Figure S5. Images were recorded using a
microscope (BX51, Olympus) equipped with a CCD camera (DP72, Olympus). Bar = 50 mm.
doi:10.1371/journal.pone.0026034.g005
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cellular glycogen storage (Figure 6A). In contrast, considerable

numbers of alveolar lining cells (open arrowhead) as well as

bronchial epithelial cells were PAS-positive in GAK-kd-/- lungs. In

addition, numerous PAS-positive cells (white asterisk) were

recognizable in the inter-alveolar region. These distributions of

PAS signals were similar to those of E-cadherin-positive cells (black

asterisk), suggesting that E-cadherin-positive, cuboidal cells in

GAK-kd-/- lungs were PAS-positive epithelial or alveolar cells

(Figure 6B). Therefore, we do not consider that the uniform

staining pattern of E-cadherin represented loss of epithelial cells or

progression of the epithelial-mesenchymal transition (EMT)-like

process. Instead, we speculate that GAK-kd-/- lungs may have an

excess number of immature alveolar cells because of a defect in the

differentiation process of bronchial epithelial cells to alveolar cells,

and/or in the maturation process of alveolar cells.

Discussion

The present study used GAK-kd-/- mice to show that deficiencies

in the kinase activity of GAK cause the neonatal death of mice

(Figures 1, 2). Neonatal lethality in GAK-kd-/- mice was attributed

to an aberrant organization of the pulmonary alveolar epithelium

that was revealed by alterations in the distribution of SP-A, E-

cadherin and EGFR using immunohistochemcal analysis (Figure 5).

This abnormal protein distribution may cause aberrant organiza-

tion of the pulmonary system. In contrast, the regulation of clathrin-

mediated membrane trafficking, which is an important function of

GAK, was not altered in GAK-kd-/- MEFs (Figures S3), suggesting

that this process was not involved in neonatal lethality.

The present results suggest that the development of a gefitinib-

derived drug designed to selectively inhibit EGFR but not GAK

may reduce the occurrence of IP related to gefitinib therapy. The

low frequency of occurrence of IP as an adverse effect of gefitinib

therapy and the presence of missense mutations in the GAK

coding region (http://www.ncbi.nlm.nih.gov/projects/SNP/

snp_ref.cgi?locusId = 2580) also suggest that SNPs may become

useful prognostic markers, which will be the focus of our future

work.

Materials and Methods

Generation of the GAK-kd targeted allele
The GAK-kd targeting vector was designed to replace exons 2

to 4 encoding an essential portion of the kinase domain of GAK

with a PGK-neomycin resistance cassette (Figure, 1A). The 2.4 kb

short (BamHI-SpeI) and 8.0 kb long (SpeI-SacI) arm genomic DNA

fragments were obtained from the C57BL/6 mouse Bac genomic

clone (ID: RP23-91J21, Roswell Park Cancer Institute) or C57BL/

6-derived ES genome by PCR using primers containing additional

restriction enzyme recognition sites for subcloning (short arm: NotI

and XhoI; long arm: ClaI, KpnI, and SalI). The targeting vector was

constructed by subcloning short and long arm fragments into the

pBS-NEO-DTA vector (Uniqtech, Chiba, Japan), based on

pBlueScriptII SK+ (Stratagene, La Jolla, CA). All genomic

sequences were confirmed by DNA sequencing. The targeting

plasmid was linearized by NotI digestion, and electroporated into

C57BL/6-derived embryonic stem (ES) cells. Homologous recom-

bination was confirmed in G418-gancyclovir-resistant clones by

Figure 6. PAS and E-Cadherin staining of the lungs of GAK-kd+/+ and GAK-kd-/- pups. (A) PAS positive signals obtained by standard
methods using the PAS stain were detected in bronchial epithelial cells (closed arrowhead), alveolar lining cells (open arrowhead), and cells present in
the inter-alveolar region (white asterisk). (B) E-Cadherin positive signals obtained by immunostaining with anti- E-Cadherin antibody were detected in
bronchial epithelial cells (closed arrowhead), alveolar lining cells (open arrowhead), and cells present in the inter-alveolar region (black asterisk).
Images were recorded using a microscope (BX51, Olympus) equipped with a CCD camera (DP72, Olympus). Bar = 50 mm.
doi:10.1371/journal.pone.0026034.g006
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Southern blotting and PCR. To generate chimeric mice, a

targeted ES clone was injected into C57BL/6 blastocysts. These

chimeric males were mated to C57BL/6 females, resulting

heterozygous F1 offspring. Heterozygous offspring were inter-

crossed to generate homozygous embryos. For genotyping

analysis, genomic PCR was performed using a common primer

(neo Rv-3, 59-ATAGTCCTGTATCGAAACCGATGGG-39) in

combination with primers discriminating wild-type GAK alleles

(6092Fw-1, 59-TGGGTTCTCTGCAAGAGCAGGAGTG-39) and

targeted alleles (6782Rv-1, 59-AAGAGATTGAGTCGGAAGG-

GTTACG-39). PCR conditions were a pre-heating step (94uC
for 3 min), 40 cycles of a reaction step (94uC for 30 sec, 54uC for

30 sec, 72uC for 1 min 15 sec), and an additional elongation step

(72uC for 4 min) using TaKaRa Ex Taq polymerase (Takara,

Shiga, Japan) with the PCRx Enhancer System (Invitrogen,

Carslbad, CA).

Isolation of mouse embryos, cultured MEFs, and
treatments

Mouse embryos at the indicated embryonic days were removed

from the uterus, and then the yolk sac or a part of the embryos was

used for genotyping. Primary MEFs were obtained from mouse

embryos at 15.5 dpc using established procedures [27]. The

seeding of trypsinized embryos into Q6 cm dishes was defined as

passage P0 (PDL = 0), and the first replating into 10 cm dishes as

passage P1 (PDL = 1). MEFs were cultured at 37uC in a 5% CO2

atmosphere in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% heat-inactivated fetal bovine serum (FBS),

100 U/mL penicillin G, 100 mg/mL streptomycin sulfate and

50 mM 2-mercaptoethanol.

Caesarian delivery
Pregnant female mice were subcutaneously injected with 2 mg

of progesterone (Teikoku Hormone Mfg. Co.) on 18.5 dpc to

delay birth as described previously [26]. Newborn pups were

obtained by Caesarean delivery at 19.5 dpc, separated from

umbilical cord, resuscitated by physical stimulation and placed in a

humidified, thermostat-controlled chamber (30uC). GAK-kd-/-

pups were immersed in 10% neutral buffered formalin immedi-

ately after death. Other pups were nursed in the chamber (30uC)

for 4 hr and were then sacrificed by decapitation and immediately

immersed in 10% neutral buffered formalin according to NIH

guideline (http://oacu.od.nih.gov/ARAC/documents/Rodent_

Euthanasia_Pup.pdf).

Histological analysis
For histological analysis, lung tissues were fixed with 4%

paraformaldehyde (or 10% formalin), embedded in paraffin, cut

into 4-mm sections, and stained with hematoxylin and eosin

(H&E). For immunohistochemistry, deparaffinized sections were

autoclaved in 0.1 M citrate buffer, then blocked with bovine

serum albumin (BSA), and incubated with primary antibodies as

indicated in PBS containing 2% BSA as described previously [28].

Second antibody and signal enhancement reactions were per-

formed using Histofine Simple Stain kit (Nichirei, Tokyo, Japan),

and color was developed with aminoethylcarbazole (Impact AEC;

Vector Laboratories, Burlingame, CA). Sections were counter-

stained with hematoxylin for cell nuclear visualization before

mounted with Ultramount Aqueous Permanent Mounting Medi-

um (DakoCytomation, Glostrup, Denmark). In some experiments,

sections from GAK-kd+/+ and GAK-kd-/- lungs were processed by

standard methods using the PAS stain (Merck, Whitehouse

Station, NJ).

For statistical analysis, four microscopic fields (each about

0.19 mm2 at 200 fold magnification) were randomly selected from

each tissue section stained with the H&E. The ImageJ (version

1.44) public domain Java image processing package (National

Institute of Health, Maryland) was used for analyses of alveolar

compartment number and the thickness of alveolar septa.

Statistical significance was examined by Student’s t-test using

Microsoft’s Excel 2003. The number of alveolar compartments

was counted by segmenting through a threshold (,120 mm2)

setting that masked the alveolar space. The minimum thickness

(mm) of each alveolar septum was measured on the microscopic

images of two independent areas in four GAK-kd+/+ and five

GAK-kd-/- pups.

Antibodies
Antibodies against the following proteins were purchased from

the indicated companies: EGFR (Cell Signaling Technology Inc.,

Danvers, MA), EGFR-pS1047 (Abcam, Cambridge, MA),

EGFR-pT654 (Abcam), Flag M2 (Sigma-Aldrich, St Louis,

MO), GAK (Santa Cruz Biotechnology, Inc., Santa Cruz, CA)

and GAPDH (Fitzgerald Industries International, Inc., Concord,

MA). Anti-GAK polyclonal and monoclonal antibodies were

prepared as reported previously [13], [18]. Anti-AP2-pT156

polyclonal antibody was produced by immunizing rabbit with a

peptide, CEEQSQITSQV(pT)GQIGWRR, by GenScript (Pis-

cataway, NJ).

Immunoprecipitation and western blotting
Cell were lysed in lysis buffer (25 mM Tris-HCl pH 8.0,

120 mM NaCl, 0.5% Nonidet P-40) supplemented with protease

and phosphatase inhibitors (2 mg/mL aprotinin, 2 mg/mL leu-

peptin, 1 mg/mL pepstatin A, 50 mg/mL PMSF, 1 mM Benza-

midine, 1 mM Na3VO4, 1 mM NaF). The extract was clarified by

centrifugation at 17,400 g for 30 min, and aliquots of the

supernatant were pre-cleared using protein-A-sepharose for 1 h

at 4uC. The pre-cleared lysates were subsequently incubated with

an anti-GAK polyclonal antibody overnight and immune

complexes were harvested by the addition of 50% protein-A-

sepharose slurry (Amersham Pharmacia Biotech, Piscataway, NJ)

followed by five washes with lysis buffer.

Kinase assay
Kinase assays in vitro were performed with equal amount of

GST-purified WT or GAK-kd GAK using GST-purified WT or

T104A PP2A B’c as substrates for 30 min at 30uC in kinase buffer

(10 mM HEPES, pH 7.5, 50 mM NaCl, 10 mM MgCl2, 5 mM

MnCl2, 1 mM DTT, 5 mM NaF, 50 mM b-glycerophosphate)

containing 5 mM ATP and 10 mCi [c-32P]ATP.

RT-PCR
Total RNA was extracted from MEFs and the cDNAs was

synthesized from 3, 30 or 300 ng of RNA using the High-Capacity

cDNA Archive Kit (Applied Biosystems, Foster City, CA). PCR

was performed with the following primers pairs: mouse GAK:

forward, 59-ATAGGCGCGCCAATGTCGCTGCTGCAGTC-

TGCGCTGG-39, reverse, 59-TATGGTACCTCACATCACTG-

CAATTCTGGATGTGATG -39; mouse GAPDH: forward, 59-

TCACCATCTTCCAGGAGCGAG-39, reverse, 59-GCTGTAG-

CCGTATTCATTGTC-39, using the following cycle profile:

94uC for 2 min, 94uC for 30 s, 53uC for 30 s, 72uC for 1 min

10 s or 1 min, for 30 or 25 cycles, followed by extension at 72uC
for 5 or 4 min. PCR products were subjected to agarose gel

electrophoresis, followed by ethidium bromide staining.
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Fluoroimmunostaining
MEFs were cultured on coverslips immersed in culture dishes

(Q= 3.5 cm) and fixed by sequential treatments at room

temperature with 3.7% formaldehyde in PBS (-), 0.1% Triton

X-100 in PBS (-), and 0.05% Tween-20 in PBS (-). Coverslips

containing cells were blocked with 5% fetal bovine serum (FBS) in

TBST buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.05%

Tween-20) for 60 min at room temperature. Subsequently, 5%

fetal bovine serum (FBS) in TBST and each one of the primary

antibodies were spotted on parafilm. The coverslips were lifted and

placed cell-side down on the liquid. After incubation at room

temperature for 3 h, the coverslips were rinsed cell side up in

TBST. Subsequently, cells were incubated in the presence of

AlexaFluor 488 and 594 (Molecular probes, Eugene, OR)-

conjugated anti-rabbit/mouse IgG in TBST for 90 min at room

temperature and rinsed three times as described above. DNA was

stained with Hoechst 33258 (Sigma, St Louis, MO). Fluorescence

was visualized and images were recorded using a BX51

fluorescence microscope (Olympus).

Preparation of GST- and GFP-fusion constructs
To create plasmid constructs that express GST or GFP-fusion

proteins, the relevant primer pairs were designed to allow the open

reading frame (ORF) of each cDNA to be inserted in-frame via

AscI-NotI sites. For example, to obtain cDNA inserts for human

GAK carrying in-frame AscI-NotI sites, oligonucleotides with

sequences around the initiation codon and the termination codon

that contained an AscI site and a NotI site, respectively, were

synthesized and used as PCR primers for PCR with the relevant

cDNA substrate. The identity of each gene was confirmed by

DNA sequencing of four independent clones, and the plasmid

DNA without a mismatched DNA sequence was selected and cut

with AscI and NotI. The resulting cDNA inserts were incorporated

into the GST or GFP-vector. All plasmid constructs were

transfected into HeLa S3 cells by using TransITTM polyamine

transfection reagents (Pan Vera Corporation, Madison) according

to the manufacturer’s protocol.

Purification of recombinant proteins
Each fragment was inserted into the GEX vector and

introduced into the BL21 strain. The cultures were induced with

0.5 mM IPTG and incubated overnight at 20uC. The cells were

then collected and lysed in PBS containing 1% Triton X-100,

1 mg/mL leupeptin, 1 mg/mL aprotinin, 1 mg/mL pepstatin A,

1 mM benzamidine, 100 mg/mL PMSF, 1 mM NaF and 1 mM

Na3VO4 by brief sonication. After centrifugation, the clear lysate

was adsorbed to Glutathione Sepharose 4B (Amersham Pharmacia

Biotech) and eluted with 10 mM reduced glutathione.

Ethical permission
All of the animal experiments were performed with the approval

of the Animal Experiments Committee of Osaka University

(#BikenA-H19-37-0).

Supporting Information

Figure S1 Epitope search for the anti-GAK antibodies.
(A) Schematic presentation of the GFP- or GST-fused fragments

or peptides of human GAK used for the western blot analysis for

epitope search. Since human GAK and full size rat GAK was too

unstable to prepare proper amount of protein, we utilized the N-

terminal kinase domain of rat GAK as an antigen. (B) Western blot

analysis using the extracts of HeLa cells that express GFP-fused

GAK fragments (1st-4th). Anti-GFP antibody was used to show that

almost equal amount of proteins were loaded. (C) Western blot

analysis using the extracts of E. coli cells that express GST-fused

GAK peptides (#1-#7). Although coomasie blue staining showed

that the loaded amount of #1 GST-peptide was smaller than

other GST-peptides probably due to its unstable nature, this does

not change the conclusion for the specificity of the recognized

peptides. (D) GAK antibodies (pGAK and 3H9) are useful for IP/

western using cell extract of mouse embryonic fibroblast cells

(MEFs). Whole cell extract (WCE) was immunoprecipitated by

pGAK or IgG (negative control) and then 3H9 was used for

western blot analysis. Arrowhead denotes the band for GAK,

whereas asterisks indicate the putative degradation bands.

(TIFF)

Figure S2 Nucleotide and amino acids sequences of the
N-terminus GAK that covers the N-terminal half of the
kinase domain. Exons are distinguished by the colored font in

the nucleotide sequence; exon 1 (black), exon 2 (red), exon 3 (blue),

exon 4 (green), and exon 5 (pink). Amino acids with purple font

signifiy the epitope for 3H9 monoclonal antibody. Epitope for GD

antibody exists in the exon 5. K in red font indicates the lysine

residue essential for GAK’s kinase activity. Nucleotide and amino

acids sequences in italic font denote the N-terminal portion of

GAK outside the kinase domain. Turquoise font signifies the SNP

(gakL120F).

(TIFF)

Figure S3 Membrane trafficking and autophagy are
normal in GAK-kd-/- cells. (A, B, D) GAK-kd+/+ and GAK-

kd-/- cells were immunostained with the antibodies against the

following proteins; EEA1, GM130, LAMP-1 and CLC (A), CHC (B)

and LC3 (D). Cells were treated with EGF to induce the membrane

trafficking (B). (C) Fluorescence-conjugated transferrin was moni-

tored during the internalization process in GAK-kd+/+ and GAK-

kd-/- cells. (D) Cells were either in rich medium or in serum-deficient

medium (for 1 h) when they were probed with an autophagy marker

LC3. Photographs were taken and the images were recorded using

fluorescence microscope (Olympus BX51) and the fluorescence

images were acquired using Photoshop 7.0 (Adobe). Bar = 10 mm.

(TIFF)

Figure S4 Histological phenotypes of the lung in E18.5
embryos of GAK-kd+/+. (A) and GAK-kd-/- (B) mice. Sections

of their lungs were stained with hematoxylin and eosin. Enlarged

views of the regions indicated by squares are shown in right panels.

(TIFF)

Figure S5 Immunostainig images of low magnification
(x200) of the lung from GAK-kd+/+ and GAK-kd-/- pups
as detected by the denoted antibodies. Enlarged views of

the regions indicated by squares are shown in Figure 2C.

Bar = 100 mm.

(TIFF)
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