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Eukaryotic circadian clocks include transcriptional/translational feedback loops that drive 24-h rhythms of transcription.
These transcriptional rhythms underlie oscillations of protein abundance, thereby mediating circadian rhythms of be-
havior, physiology, and metabolism. Numerous studies over the last decade have used microarrays to profile circadian
transcriptional rhythms in various organisms and tissues. Here we use RNA sequencing (RNA-seq) to profile the circadian
transcriptome of Drosophila melanogaster brain from wild-type and period-null clock-defective animals. We identify several
hundred transcripts whose abundance oscillates with 24-h periods in either constant darkness or 12 h light/dark diurnal
cycles, including several noncoding RNAs (ncRNAs) that were not identified in previous microarray studies. Of particular
interest are U snoRNA host genes (Uhgs), a family of diurnal cycling noncoding RNAs that encode the precursors of more than
50 box-C/D small nucleolar RNAs, key regulators of ribosomal biogenesis. Transcriptional profiling at the level of in-
dividual exons reveals alternative splice isoforms for many genes whose relative abundances are regulated by either period
or circadian time, although the effect of circadian time is muted in comparison to that of period. Interestingly, period loss of
function significantly alters the frequency of RNA editing at several editing sites, suggesting an unexpected link between
a key circadian gene and RNA editing. We also identify tens of thousands of novel splicing events beyond those previously
annotated by the modENCODE Consortium, including several that affect key circadian genes. These studies demonstrate
extensive circadian control of ncRNA expression, reveal the extent of clock control of alternative splicing and RNA
editing, and provide a novel, genome-wide map of splicing in Drosophila brain.

[Supplemental material is available for this article.]

Circadian timekeeping in all eukaryotes involves networks of

genes that interact in transcriptional/translational feedback loops

to generate oscillations of RNA transcript and protein abundance

with period lengths of ;24 h (Ko and Takahashi 2006). The mo-

lecular mechanisms underlying circadian rhythms are remarkably

well conserved between mammals and Drosophila melanogaster, in

many cases involving homologs of the same proteins (Yu and

Hardin 2006; Allada and Chung 2010). For example, the ortholo-

gous Drosophila and mammalian period genes encode crucial com-

ponents of the transcriptional repressor complex that closes the

negative-feedback loop essential for circadian oscillation. In the fly,

the central circadian timekeeper that controls daily rhythms of rest

and activity is a network of so-called clock neurons that integrate

entraining environmental inputs, such as light and temperature,

and drive behavioral output rhythms (Nitabach and Taghert 2008;

Allada and Chung 2010). Transcriptional/translational oscillations

within clock neurons drive rhythms of neuronal activity and neuro-

peptide release, ultimately resulting in daily rhythms of locomotor

behavior (Nitabach and Taghert 2008; Allada and Chung 2010).

This central clock also orchestrates autonomous circadian oscilla-

tions in peripheral tissues to generate rhythms of metabolism and

physiology (Hastings et al. 2003; Kornmann et al. 2007). In both

central and peripheral tissues, oscillations in abundance of key

components of the circadian timekeeping mechanism—such as

Clock and period—drive transcriptional rhythms of clock output

genes that are not involved in the timekeeping mechanism itself,

but underlie behavioral and physiological circadian rhythms

(Doherty and Kay 2010).

Extensive, genome-wide efforts have been made to identify

circadian-regulated genes in various tissues of flies and mammals,

starting ;10 yr ago. In the case of Drosophila, five studies were

published in close succession using microarrays to identify rhyth-

mic transcripts in fly heads in both entrained (12 h:12 h light:dark)

and free-running (24 h dark) conditions, as well as in mutant

backgrounds with disrupted circadian oscillations (Claridge-Chang

et al. 2001; McDonald and Rosbash 2001; Ceriani et al. 2002; Lin

et al. 2002; Ueda et al. 2002). Fly heads contain multiple tissues,

including the compound eye and other sensory organs, the fat body

(functionally analogous to the mammalian liver), and brain. These

studies individually discovered between several dozen and several

hundred rhythmic transcripts, but outside of a restricted set of key

genes underlying the circadian oscillator mechanism, there was

surprisingly little agreement in the identities of these rhythmic

transcripts (Jackson and Schroeder 2001; Etter and Ramaswami

2002; Duffield 2003). A variety of reasons likely underlie these dif-

ferences, including methods of data condensation (Walker and

Hogenesch 2005), statistical approaches for discovering rhythmic

transcripts (Wijnen et al. 2006; Keegan et al. 2007), and time-point

sampling density (Hughes et al. 2007). To reconcile these differ-

ences, two meta-analyses have standardized data condensation and

statistical analyses while leveraging the additional statistical power

afforded by the consolidation of multiple data sets (Wijnen et al.

2006; Keegan et al. 2007). Taken together, 45 genes (;60%) were
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found to be rhythmic by both meta-analyses, thus comprising a

canonical set of circadian-regulated genes, many of which have

been further validated by Northern blot analysis and quantitative

PCR (qPCR) (Wijnen et al. 2006; Keegan et al. 2007). Additionally,

more than 100 transcripts were identified that show statistically

significant oscillations in at least one of the two meta-analyses,

providing a secondary list of high-confidence candidates for clock

regulation.

More recently, microarray studies of the fly circadian tran-

scriptome have been refined to more specific cell and tissue types.

A pair of studies used the Gal4/UAS binary expression system to

fluorescently label specific subsets of circadian clock neurons in

dissociated brain tissue. These labeled neurons were, in turn, man-

ually isolated and transcriptionally profiled, resulting in the iden-

tification of transcripts enriched in clock neurons and a more

refined list of cycling candidates whose transcriptional oscillations

occur specifically in central clock neurons (Kula-Eversole et al. 2010;

Nagoshi et al. 2010). In another case, the fat body was dissected from

adult flies and analyzed with microarrays to identify cycling tran-

scripts in a non-neuronal tissue (Xu et al. 2011). Interestingly, this

study identified several cycling genes whose orthologs also cycle in

the mouse liver (Hughes et al. 2009), suggesting common mecha-

nisms of peripheral circadian output in mammals and flies. Finally,

microRNA (miRNA)–specific microarrays have been used to detect

several oscillatory miRNAs in the fly head, providing evidence for

both circadian regulation of miRNA abundance and reciprocal

miRNA-mediated regulation of circadian oscillations (Yang et al.

2008; Kadener et al. 2009).

Recent advances in high-throughput RNA sequencing (RNA-

seq) methods offer the potential to dramatically improve on these

prior studies (Marguerat and Bähler 2010). Using RNA-seq, vast

numbers of RNA molecules from a sample of tissue or cells are se-

quenced in a highly parallel fashion. These sequences are then

aligned to a reference genome or transcriptome, and the expression

level of any given genomic feature can be inferred from the depth of

sequencing coverage (i.e., the number of sequenced reads aligning

to that feature). As a result, the expression values derived from

RNA-seq data are more highly quantitative than microarrays,

with considerably larger dynamic ranges (Wang et al. 2009). Unlike

microarrays, RNA-seq is largely unbiased by existing genome and

transcriptome annotations, and thus results are not constrained by

the probesets that happen to be included on a given chip. Conse-

quently, RNA-seq may be used to detect novel transcripts and

splicing events that would not otherwise have been detected

(Graveley et al. 2011; Ozsolak and Milos 2011). Importantly, RNA-

seq data can be used to detect and quantify alternative splicing and

RNA editing events at a much higher resolution than traditional

microarrays (Graveley et al. 2011; Ozsolak and Milos 2011).

These advantages over microarrays have been dramatically

highlighted by the recent publication of fly transcriptome RNA-seq

analyses performed by the modENCODE Consortium and others

(Daines et al. 2011; Graveley et al. 2011). By sequencing and cata-

loging RNA harvested from Drosophila at numerous time points

throughout development, these studies have significantly expanded

our catalog of the number of transcripts, splicing events, and RNA

editing events in the fly transcriptome (Graveley et al. 2011). As

a consequence, we have a much greater understanding of the scale

and nature of complexity of Drosophila developmental gene ex-

pression. This tremendous and hitherto undiscovered complexity of

the fly developmental transcriptome suggests that applying RNA-

seq to the circadian transcriptome will be equally valuable in dra-

matically expanding our understanding of circadian biology.

Here we use RNA-seq to profile the circadian transcriptome of

Drosophila brain in wild-type and period-null mutant (per0) animals.

Our results substantially agree with legacy data sets, including the

transcriptional profiles of key clock genes as well as the number

and identity of other transcripts regulated by period and the cir-

cadian clock. However, the use of RNA-seq allowed us to identify

many oscillatory transcripts (especially noncoding RNAs) that

were not accessible using previous generations of microarrays and,

in some cases, entirely unknown before the recent publication of

the modENCODE fly developmental transcriptome (Graveley et al.

2011). By comparing our results to modENCODE annotations, we

identified novel splicing events in several genes (including key

clock components) that have not been accounted for in existing

gene models. Furthermore, the single-base resolution of RNA-seq

allowed us to globally assess two outstanding questions in the

circadian field: the degree to which the clock regulates differential

splice isoform abundance and whether it regulates RNA editing.

We found that period loss of function dramatically changes both

splice isoform regulation and RNA editing, while time of day has

a much more muted effect on both.

Results

Sample collection, sequencing, and alignment

Canton-S (wild-type) and per0 flies (in a Canton-S background)

were raised in a 12 h:12 h light:dark (LD) environment throughout

pupation and for 3–5 d after eclosion. Behavioral monitoring

confirms that wild-type flies have normal locomotor rhythms with

peak activity concentrated around dawn and dusk (Fig. 1A). These

wild-type flies show expected levels of anticipatory behavior with

activity levels ramping up immediately before both lights-on and

lights-off. In contrast, per0 flies show no significant anticipatory

behavior, consistent with their complete absence of circadian

transcriptional feedback oscillations (Fig. 1A; Konopka and Benzer

1971; Hardin 2006).

Ten to 12 fly brains were collected every 6 h for two consec-

utive days in LD conditions from both genotypes (Fig. 1A). In

contrast to previous microarray studies, total RNA was purified

from manually dissected brains rather than the entire fly head

(Claridge-Chang et al. 2001; McDonald and Rosbash 2001; Ceriani

et al. 2002; Lin et al. 2002; Ueda et al. 2002). Since the fat body, fly

eye, and other sensory organs are major contributors to the RNA

isolated from fly heads (Wijnen et al. 2006), this difference from

previous studies will enrich our data set for transcripts cycling in

the brain while dramatically diminishing RNA contributions from

non-brain tissue. Total RNA was amplified, and ribosomal RNA was

depleted, using a non-poly(A)-based amplification kit, which sig-

nificantly diminishes the 39 bias in downstream libraries used for

RNA-seq (see Methods). Sequencing libraries were prepared from

amplified RNA using standard techniques and then sequenced on

an Illumina GAIIx high-throughput sequencer using one flow-cell

lane per sample to generate 100-bp paired-end reads. On average,

each sample generated more than 40 million high-quality short

nucleotide reads (Table 1).

Two additional complementary data sets were collected and

analyzed in parallel. First, brain samples were dissected from Canton-S

(wild-type) and y w, per0 flies spanning two time points (Zeitgeber

Time [ZT] 0 and 12, corresponding to lights-on and lights-off,

respectively) over two consecutive days. These samples were ampli-

fied using a poly(A)-based kit and sequenced with single-end, 75-bp

reads (Supplemental Table S1). This data set was used to assess the
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bias introduced by an alternative amplification methods and exam-

ine the reproducibility of period-regulated genes in an independent

genetic background (see Methods).

Second, brain samples were collected from Canton-S and per 0

flies on the second and third days of constant darkness (DD). This

data set was used to identify circadian-regulated transcripts in the

absence of zeitgebers. In constant conditions, wild-type flies main-

tain daily rhythmicity with a period length slightly shorter than

24 h (Supplemental Fig. S1A). In contrast, per0 flies were arrhythmic

in this condition (Supplemental Fig. S1B). Samples were collected

every 4 h for two consecutive days, starting on the first subjective

day (CT24). These samples were amplified using a non-poly(A)-

based kit and sequenced with paired-end, 75-bp reads (Supple-

mental Table S2).

Raw reads for all three data sets were aligned to the genome

and transcriptome using RUM (RNA-seq Unified Mapper) (Grant

et al. 2011). The gene models used for these alignments were de-

rived from the recently published modENCODE fly transcriptome

(Graveley et al. 2011), ensuring that the resulting alignments are based

on the most comprehensive transcriptome annotations available. On

Figure 1. RNA-seq accurately measures circadian transcriptional rhythms. (A) Locomotor activity rhythms were monitored using an automated infrared
beam-break apparatus in wild-type and per0 flies entrained to a 12 h:12 h light:dark (LD) environment (N = 32 flies for each experiment). Plots are histograms
of beam-breaks binned at a 20-min resolution. At the times indicated in red, brains were dissected and total RNA was purified for amplification and RNA-seq
analysis. (B) Raw RNA-seq reads were aligned to the reference fly genome and transcriptome using the RUM read mapping algorithm, and expression levels
(presented as reads per kilobase per million reads, RPKM) were calculated. Transcript expression levels exhibit a high degree of reproducibility between
biological replicates with R-squared values on the order of 0.99. Expression profiles for Clock (C ) and timeless (D) show consistent patterns of circadian
oscillation in wild-type brains (solid lines) as measured by RNA-seq. Period-null mutation (dashed lines) disrupts the normal circadian rhythmicity of each of
these transcripts. Clock and timeless oscillate in both LD (red) and DD (blue) with expected phases, and their amplitudes are damped in DD relative to LD, also
as expected. The x-axis labels show the Zeitgeber time (ZT) for LD experiments and circadian time (CT) for wild-type Canton-S flies in DD.
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average, RUM uniquely aligned 24.8 million reads per sample in

the LD samples (61.0% of total reads). Including multiple-aligning

reads (i.e., reads that align to multiple sites within the genome and

thus cannot be unambiguously mapped to a single locus), a total of

28.3 million reads (70.0% of total reads) per sample were success-

fully aligned by RUM (Table 1; as well as Supplemental Tables S1,

S2). Multiple-aligning reads can occur when they represent highly

conserved sequences of genes within families containing multiple

members. Taken together, these data represent more than 1.2 bil-

lion short nucleotide reads and 140 Gb of successfully aligned se-

quence, thus constituting the deepest sequencing by far of any

circadian transcriptome to our knowledge.

Expression levels were computed as reads per kilobase per

million reads (RPKM) for individual transcripts. On average, the

reproducibility between replicate samples (i.e., samples from the

same genotype and time point on different days) was excellent,

with average R2 values approaching 0.99 (Fig. 1B; Table 1; Sup-

plemental Tables S1, S2). RPKMs calculated for individual exons

(Supplemental Fig. S1C) and introns (Supplemental Fig. S1D) also

show good levels of reproducibility with R2 values equal to 0.99

and 0.80, respectively. As expected, introns show considerably

lower average expression levels than exons (Supplemental Fig. S1),

although the presence of significant sequencing depth within

some introns suggests both the retention of introns in some tran-

scripts as well as the presence of transcription units not accounted

for by current gene models. Consistent with the first possibility, in

some cases, we detect reads that span intron:exon junctions (data

not shown). The RPKM values calculated solely from uniquely

aligning reads generally agreed with the RPKMs calculated from all

aligning reads. However, the R2 values of replicate pairs are consis-

tently higher when RPKMs are calculated from all aligned reads

(Supplemental Fig. S1E), suggesting that non-unique reads convey

significant information about transcript expression levels.

To verify that our samples and our analytical approach accu-

rately measure circadian transcriptional rhythms, we manually

examined the expression pattern of known cycling genes. We

found that Clock (Fig. 1C) is rhythmic in both LD and DD, with

peak expression in the morning and trough expression in the

evening, as expected from previous work (Claridge-Chang et al.

2001; McDonald and Rosbash 2001; Ceriani et al. 2002; Lin et al.

2002; Ueda et al. 2002). Conversely, timeless (Fig. 1D), period, and

vrille (data not shown) exhibit peak expression in the evening and

trough expression in the morning. Notably, the amplitude of clock

genes is damped in DD vs. LD. In addition, peak expression on

day 2 is generally higher than peak expression on day 3, indicating

a progressive diminishment of amplitude in constant conditions.

Also consistent with previous studies, every transcript examined

is nonrhythmic in per0 flies. Specifically, Clock is maintained at a

constitutively low expression level, and period, timeless, and vrille at

a constitutively high expression level (Hardin 2006). Finally, we

compared the expression levels of these genes as measured by RNA-

seq with samples independently assayed by quantitative PCR

(qPCR). In every case, qPCR and RNA-seq profiles show close agree-

ment (Supplemental Fig. S1F; data not shown). Taken as a whole,

these results establish that RNA-seq quantification accurately reflects

circadian transcriptional activity.

Differential expression and identification of rhythmic
transcripts

A variety of statistical approaches have been used to detect rhyth-

mic components in complex, genome-scale data sets, including

curve fitting (Panda et al. 2002; Michael et al. 2008), Fourier

transforms (Wichert et al. 2004; Wijnen et al. 2005), and auto-

correlation (Levine et al. 2002). In every statistical approach used,

application of a false discovery rate correction is essential to ac-

curately estimate the number of true positives at any given statis-

tical threshold. Previous analyses of circadian microarray experi-

ments in flies revealed that a prescreening step to exclude any

obviously nonrhythmic transcripts from further consideration

significantly improved the power of subsequent statistical tests

(Wijnen et al. 2006; Keegan et al. 2007). To this end, we filtered

out all transcripts whose median expression level across every

sample was fewer than 5 RPKM. As a second filter, we performed

a two-way ANOVA statistical analysis on these data with factors

of genotype and time-of-day in order to (1) identify transcripts

whose expression levels are regulated by period and (2) identify

and exclude transcripts whose expression shows no detectable

dependence on either time of day or genotype.

Table 2 shows the number of transcripts with statistically

significant differences in LD conditions due to time, genotype, or

the interaction of the two. At every statistical threshold examined,

Table 1. RUM alignment statistics

Sample Genotype Time point
Replicate
number

Total reads
(millions)

Uniquely aligned
reads (millions)

Total aligned
reads (millions)

Transcripts with
>1 RPKM

R-squared transcript
RPKMs (all reads)

1 Wild-type ZT0 1 37.3 23.7 (63.5%) 27.0 (72.2%) 30,534 (70.4%) 0.997
2 Wild-type ZT0 2 37.7 23.3 (61.8%) 27.6 (73.1%) 29,907 (69.0%)
3 Wild-type ZT6 1 42.7 17.3 (40.6%) 22.3 (52.3%) 29,830 (68.8%) 0.982
4 Wild-type ZT6 2 32.4 20.6 (63.7%) 24.0 (74.1%) 30,795 (71.1%)
5 Wild-type ZT12 1 41.8 29.2 (70.0%) 32.6 (77.9%) 30,706 (70.9%) 0.988
6 Wild-type ZT12 2 43.2 28.6 (66.3%) 31.5 (72.8%) 30,178 (69.6%)
7 Wild-type ZT18 1 44.1 28.6 (64.9%) 31.9 (72.3%) 31,088 (71.7%) 0.993
8 Wild-type ZT18 2 42.8 28.9 (67.6%) 32.1 (74.9%) 31,279 (72.2%)
9 per0 ZT0 1 44.4 28.3 (63.7%) 31.4 (70.7%) 30,872 (71.2%) 0.976

10 per0 ZT0 2 41.0 20.1 (49.0%) 24.7 (60.2%) 30,390 (70.1%)
11 per0 ZT6 1 42.6 22.8 (53.2%) 26.6 (62.3%) 30,958 (71.4%) 0.993
12 per0 ZT6 2 42.8 27.7 (64.4%) 30.9 (72.2%) 30,411 (70.2%)
13 per0 ZT12 1 44.1 24.5 (55.5%) 28.4 (64.3%) 31,803 (73.4%) 0.996
14 per0 ZT12 2 42.2 24.8 (58.8%) 28.5 (67.6%) 30,911 (71.3%)
15 per0 ZT18 1 42.8 27.3 (63.7%) 30.1 (70.2%) 31,227 (72.1%) 0.963
16 per0 ZT18 2 28.7 21.8 (75.9%) 23.4 (81.5%) 28,987 (66.9%)

Average 40.7 24.8 (61.0%) 28.3 (70.0%) 30,617 (70.7%) 0.986
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period loss of function (i.e., genotype) affected considerably more

transcripts than time of day. This observation is consistent with

previous microarray studies (Lin et al. 2002) and indicates that

complete loss of period function has greater effects on the fly

brain transcriptome than daily oscillations of period expression

levels. To explore the transcriptional

changes downstream from period further,

we applied three post hoc statistical crite-

ria to identify a set of high-confidence

transcripts differentially expressed in per0

brains. First, we reasoned that most tran-

scriptional changes due to period loss of

function should be independent of the

genetic background in which the data

were collected. Thus, we required that ev-

ery candidate have a false discovery rate

(i.e., q-value) <0.2 in both data sets (Can-

ton-S vs. per0, and Canton-S vs. y w, per0).

Second, the direction of differential ex-

pression (i.e., up- or down-regulation) had

to be identical between the two data sets.

Third, to eliminate modest expression-

level changes of doubtful functional sig-

nificance, the magnitude of change in

both data sets must have been >50% (i.e.,

a fold-change that could be reliably vali-

dated by qPCR).

Based on these criteria, we identified

1167 transcripts derived from 545 genes

that are significantly regulated by period

loss of function in LD (Supplemental Ta-

ble S3). Since our purpose for this analysis

was to identify the highest-confidence

hits possible, we have chosen deliberately

stringent criteria. However, it is impor-

tant to note that many true positives may

have been excluded based on q-values or

fold-changes that narrowly missed in-

clusion in one data set or the other. We

also note that 913 of these 1167 (78.2%)

differentially regulated transcripts in LD

were also differentially regulated (q < 0.2)

in DD, thereby increasing the confidence

in the accuracy of these identifications

(Supplemental Table S4).

Importantly, the period-regulated

transcripts identified by this analysis sub-

stantially overlap with previous micro-

array studies. We reanalyzed a previously

published y w, per0 data set (Lin et al. 2002) using two-way ANOVA

and false discovery corrections based on the method of Storey et al.

(Storey and Tibshirani 2003; Storey et al. 2005). Of the 545 genes

identified as differentially expressed in our data set, 350 were in-

cluded in the probesets of the microarrays used in this previous

study (Lin et al. 2002). Of these 350 genes, 41.7% exhibit q-values

below 0.05 in the microarray data set. This agreement in the genes

identified as period-regulated between these experiments is remark-

able considering the differences in tissue (brains vs. heads), back-

ground genotypes (Canton-S vs. y w), and expression assays (RNA-

seq vs. microarrays) (Supplemental Table S5).

The expression profiles of the period-regulated genes we have

identified are plotted as heatmaps in Figure 2. Although period en-

codes the canonical transcriptional repressor of the circadian feed-

back oscillator, the number of transcripts up- vs. down-regulated

is approximately equal, again consistent with microarray analyses

of clock gene mutations (Lin et al. 2002; Xu et al. 2011). Pre-

sumably, period influences the expression level of many transcripts

Table 2. Number of statistically significant differentially
regulated transcripts in LD conditions by two-way ANOVA

ANOVA P-value

Genotype
(wild-type
vs. per0 )

Time
(ZT0, ZT6,

ZT12, ZT18)
Interaction

(genotype + time)

p < 0.001 1200 (0.01) 73 (0.25) 22 (1.0)
p < 0.01 3517 (0.05) 556 (0.35) 188 (1.0)
p < 0.05 7529 (0.11) 2382 (0.42) 1064 (1.0)

The false-discovery rate is in parentheses (Storey and Tibshirani 2003;
Storey et al. 2005).

Figure 2. Transcripts differentially regulated by period. Two-way ANOVA was used to identify tran-
scripts differentially regulated by per0 in both non-poly(A)- (A) and poly(A)-amplified (B) data sets.
Median-normalized expression levels have been sorted by fold change (FC) (average wild-type ex-
pression in RPKM divided by average per0 expression in RPKM) and are represented as a heatmap for
each transcript (vertical axis) at each time point (horizontal axis) surveyed, with yellow indicating high
levels of expression, and blue, low levels. White and black bars represent light and dark, respectively, in
the LD environmental regimen under which these samples were collected. The order of transcripts along
the vertical axis is identical in A and B. Tequila-RB (C ) and Cyp4p1-RA (D) are examples of transcripts
whose expression is significantly altered between wild-type (blue) and Period loss-of-function (red).
(Error bars) Mean 6 standard error of the mean.
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(particularly those that are down-regulated by per loss of function)

via indirect mechanisms. Two examples of transcripts regulated by

period are shown in Figure 2, C and D. Tequila, down-regulated by

period loss of function by at least fourfold at every time point, is an

endopeptidase thought to regulate long-term memory formation

(Didelot et al. 2006). Cyp4p1 is a cytochrome P450 gene (Dunkov

et al. 1996) and is up-regulated by at least fourfold in every sample.

We performed Gene Ontology (GO) analysis using NCBI’s DAVID

resource to identify enriched ontological categories within these

genes (Supplemental Table S6; Huang et al. 2008) and determined

the molecular function for each gene based on FlyBase annota-

tions (Supplemental Fig. S2). There were several ontological cate-

gories that were modestly enriched in the set of genes differentially

regulated by period (e.g., genes involved in drug metabolism and

phototransduction) (Supplemental Fig. S2A,B), but on the whole,

period loss of function influences a wide array of molecular and

biological functions (Supplemental Fig. S2C).

We also used two-way ANOVA to exclude transcripts whose

expression shows no dependence on either period or time of day

(p > 0.1 in all ANOVA comparisons) from further consideration,

similar to the approach taken by previous analyses of fly transcrip-

tional rhythms (Wijnen et al. 2006; Keegan et al. 2007). Transcripts

not excluded by this criterion were analyzed using two different

statistical methods for detecting oscillations: JTK_Cycle (Hughes

et al. 2010) and Fisher’s G-test (Wichert et al. 2004). Table 3 shows

the number of rhythmic transcripts identified by these algorithms at

particular P-value thresholds and the corresponding false discovery

rates (FDRs). At a cutoff of p < 0.01, these algorithms each detect

>100 cycling transcripts in LD and DD, roughly consistent with

previous microarray studies (Claridge-Chang et al. 2001; McDonald

and Rosbash 2001; Ceriani et al. 2002; Lin et al. 2002; Ueda et al.

2002). In LD we detect 415 transcripts with statistical evidence for

rhythmicity (p < 0.01 for either JTK_cycle or Fisher’s G-test) corre-

sponding to 182 distinct genes. At the same statistical cutoff, we

detect 424 cycling transcripts in DD, corresponding to 159 distinct

genes. Only nine cycling genes in LD were also found to cycle in DD

at this statistical threshold, including most components of the core

molecular oscillator. This is consistent with a significant divergence

between the oscillatory transcriptome in LD vs. DD, and also con-

sistent with previous comparisons of DD and LD using microarrays

(Lin et al. 2002). Estimated FDRs for both JTK_Cycle and Fisher’s

G-test in both data sets are shown in Table 3. These FDRs are ex-

pected given the temporal sampling density of our data set, and

they are consistent with excellent integrity of the underlying bi-

ological samples (Hughes et al. 2007, 2009). We have identified with

good confidence a large number of transcripts oscillating with

circadian periods, and in both LD and DD, the cycling profiles of

known circadian genes were in precise agreement with expectations.

The complete list of cycling transcripts and all associated statistics

are provided in Supplemental Tables S7 (LD) and S8 (DD).

The expression levels of cycling transcripts are plotted as

a heatmap for both wild-type and per0 brains, ordered by the phase

of peak expression in wild-type animals (Fig. 3A,B). While two clear

peaks of expression occurring at roughly the same time on the 2 d of

the experiment are seen in wild-type brains, the same transcripts are

largely arrhythmic in per0. At every statistical threshold examined,

wild-type brains exhibit considerably more cycling transcripts than

per0, and FDRs in per0 are equal to 1.0 even at extremely low P-value

cutoffs. This indicates weak or severely dampened circadian tran-

scriptional output in these animals, consistent with the expectation

that genuine circadian-regulated genes will be arrhythmic in per0

(Table 3). We detect a small number of transcripts with extremely

low P-values in both wild-type and per0 brains in LD, suggesting that

these transcripts are driven primarily by environmental light cycles

rather than the circadian clock (Supplemental Table S9).

RNA-seq is capable of accurately quantifying expression levels

over five orders of magnitude. In both LD and DD, the amplitudes

of most cycling genes are in a narrow range on the order of twofold

or less (Fig. 3C,D). At the same time, a minority of circadian tran-

scripts (principally clock genes involved in the timekeeping mech-

anism itself) oscillate at high amplitude. This bimodal distribution is

consistent with previous studies in both mammals and flies (e.g.,

Hughes et al. 2009). Interestingly, although the bulk of cycling

genes in both LD and DD show the same range of amplitudes, core

clock components are damped in DD (for examples, see Fig. 1C,D).

This observation was independently confirmed by qPCR for addi-

tional clock genes (data not shown) and is consistent with previous

immunocytochemical studies of central clock neuron oscillation in

DD (Nitabach et al. 2006).

To assess agreement between our RNA-seq experiments and

previous microarray studies, we considered the 45 genes that were

identified as cycling in both previous microarray meta-analyses

(Wijnen et al. 2006; Keegan et al. 2007). In our LD RNA-seq data

set, 16 of these 45 genes (36%) have P-values <0.05 using either

JTK_Cycle or Fisher’s G-test (Supplemental Table S10). This degree

of overlap is similar to that found between the original fly micro-

array studies (Claridge-Chang et al. 2001; McDonald and Rosbash

2001; Ceriani et al. 2002; Lin et al. 2002; Ueda et al. 2002), al-

though less than the ;60% agreement seen between the two meta-

analyses (Wijnen et al. 2006; Keegan et al. 2007). Similarly, 11 of

these 45 genes were found to cycle in our DD data set, including

three genes that were not identified as cyclers in LD. There is less

agreement in the identity of LD environmentally driven genes

between our study (Supplemental Table S9) and the legacy fly head

microarray data sets (Wijnen et al. 2006), but many of the genes

previously identified are enriched in eye tissue (Wijnen et al. 2006)

and are thus depleted from our data set.

Given the differences in background

genotypes, sampling density, statistical

methodology, tissue type, and expression

analysis, there is remarkable consistency

between our RNA-seq results and previous

microarray studies. This strongly supports

the conclusion that our RNA-seq analysis

accurately reflects the underlying circa-

dian biology of Drosophila brain.

The proteins encoded by these cy-

cling genes possess a wide array of molec-

ular functions, notably including kinases,

GTPases, and nucleotide binding proteins

Table 3. Number of cycling transcripts detected by JTK_Cycle and Fisher’s G-test in LD and
DD conditions

Wild-type per0

JTK_Cycle Fisher’s G-test JTK_Cycle Fisher’s G-test

LD DD LD DD LD DD LD DD

p < 0.001 17 (0.15) 47 (0.25) 24 (0.42) 15 (0.50) 0 (1.0) 5 (1.0) 4 (1.0) 3 (1.0)
p < 0.01 337 (0.30) 230 (0.57) 125 (0.73) 281 (0.56) 71 (1.0) 59 (1.0) 44 (1.0) 95 (1.0)
p < 0.05 870 (0.39) 771 (0.77) 782 (0.81) 1214 (0.66) 262 (1.0) 332 (1.0) 302 (1.0) 486 (1.0)

The false-discovery rate is in parentheses (Storey and Tibshirani 2003; Storey et al. 2005).
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in both LD (Fig. 3E) and DD (Fig. 3F). Interestingly, ;10% of the

cycling genes we have identified are noncoding RNAs (ncRNAs).

The ncRNA subset of the circadian transcriptome has not pre-

viously been systematically cataloged. Many of these ncRNAs

(e.g., nc_11800.b and nc_22683.a) have no known function and

had not been previously annotated until the recent release of the

modENCODE developmental fly transcriptome (Graveley et al.

2011). Notably, a pair of U snoRNA host genes (Uhg1 and Uhg4)

have P-values <0.05 for both JTK_Cycle and Fisher’s G-test. Closer

examination of this family of genes indicates that seven of the

eight Uhgs (all but Uhg7) show evidence of rhythmic and/or time-

dependent behavior in LD, either by ANOVA, JTK_Cycle, or Fisher’s

G-test (Supplemental Table S11).

Like typical protein-coding genes, each Uhg contains mul-

tiple exons that are spliced together into a mature transcript. Unlike

protein-coding genes, however, almost all mature Uhg transcripts

are never translated and instead are targeted for degradation

(Tycowski and Steitz 2001). The excised Uhg introns do not encode

Figure 3. Twenty-four-hour transcriptional rhythms. The fold-changes (FC) of median-normalized cycling transcripts (p < 0.05, Fisher’s G-test) are
plotted as a heatmap for LD (A) and DD (B) samples. Transcripts are ordered by phase, as measured by JTK_Cycle. The order of transcripts along the vertical
axis is identical between wild-type and per0. Distribution of amplitudes (maximum expression divided by minimum expression) of cycling transcripts for
LD (C ) and DD (D) samples; (inset) individual amplitudes of transcripts encoding key circadian clock components. Molecular functions as annotated in
FlyBase of cycling genes are displayed as a pie chart for LD (E ) and DD (F ) (p < 0.05 for both JTK_Cycle and Fisher’s G-test).
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proteins and are further processed to generate mature small nu-

cleolar RNAs (snoRNAs), which participate in ribosomal RNA

(rRNA) processing (Kiss 2002). One of the rhythmic Uhgs is shown

in Figure 4. Uhg6/Nop60B is the sole Uhg whose spliced exonic

transcript encodes a protein. The Uhg6/Nop60B coding sequence

is separated from the more typical Uhg domains by a long intron;

the 39 end of the gene does not encode protein and instead con-

tains the introns that will ultimately be processed into mature

snoRNAs. Figure 4A shows the time-dependent profile of the depth

of RNA-seq coverage for this gene. These expression values are

quantified in Figure 4, B and C. The first six exons of Uhg6/Nop60B

show little evidence of circadian rhythmicity (Fig. 4B). In contrast,

the seven noncoding exons at the 39 end show high-amplitude os-

cillations with peak expression during the light phase of the LD

cycle (Fig. 4C). We speculate that the difference between the cycling

profiles of these two subsets of Uhg6/Nop60B exons may be due to an

internal transcriptional start site specifically regulating the non-

coding 39 portion of this gene. High-amplitude oscillation of the

noncoding exons of Uhg6/Nop60B suggests that the snoRNAs they

host may also cycle. The RNA purification, amplification, and se-

quencing protocols we used to generate libraries for RNA-seq are

biased toward longer RNAs. Thus the depth of sequencing coverage

for small RNAs like snoRNAs is significantly lower than for mRNAs

or long ncRNAs. In addition, it is uncertain whether reads aligning

to snoRNA regions derive from mature snoRNAs, unprocessed

excised introns, or unspliced precursor transcripts. Interestingly,

however, all five of the small RNA sequences in Uhg6/Nop60B that

were detectable in our RNA-seq data set oscillate in phase with the

noncoding exons of the host gene (Fig. 4D).

The LD transcriptional profiles of rhythmic transcripts from

seven Uhgs are plotted as a heatmap in Figure 5A. All seven of these

genes exhibit peak expression during the light phase of the LD

cycle. These rhythms have been validated independently of RNA-

seq using semiquantitative reverse-transcriptase PCR (Supplemental

Fig. S3). Many of these genes exhibit similar, but phase-delayed,

oscillations in per0 brains, raising the possibility that these rhythms

are regulated by both the circadian timekeeper and light input.

Uhg1, for example, is among the genes we identified as being driven

by light in both wild-type and per0 (Supplemental Tables S6, S9). As

mentioned above, it is difficult to distinguish reads aligning to

mature snoRNAs vs. those aligning to the excised, but unprocessed,

introns, or to unspliced precursor transcripts. Regardless, RNA-seq

read depth of the snoRNA sequences in these genes also oscillates in

phase the underlying Uhg rhythms (Fig. 5B), suggesting that Uhg

oscillations result in rhythms of snoRNA

abundance.

To determine whether Uhg oscilla-

tions persist in the absence of zeitgebers,

we assessed their expression levels in DD.

Every Uhg gene tested was entirely ar-

rhythmic or severely damped under con-

stant conditions. In fact, the expression

levels of practically all Uhg transcripts are

considerably lower in DD compared with

their peak expression in LD (Fig. 5C).

There are only two exceptions to this

observation: (1) Uhg7-RA, which is ar-

rhythmic in LD; and (2) Nop60B/Uhg6-RA,

which does not include the snoRNA host

region and is also arrhythmic in LD (see

Fig. 4B).

It is important to note that other

components of the snoRNA machinery

are not oscillatory in our data set. For

example, Fibrillarin (Fib), the enzyme re-

sponsible for methylating rRNA in con-

junction with snoRNAs, is nonrhythmic

in both LD and DD (Supplemental Fig.

S4A,B). Likewise, no other snoRNA host

gene in Drosophila shows rhythmic ex-

pression in our data set (Supplemental

Fig. S4C). Based on these results, we con-

clude that Uhg family members—and

only Uhg family members—are snoRNA

host genes whose expression is driven by

light cues, and potentially influenced by

the circadian clock.

Given the oscillatory behavior of

lncRNAs and snoRNAs in these data, it

would be of interest to identify miRNAs

that are similarly regulated. Unfortu-

nately, given the size cutoff of our RNA

purification and amplification, depth of

sequencing coverage at miRNA loci was

Figure 4. The noncoding region of Nop60B (Uhg6) oscillates with peak expression at ZT6. (A) The
Nop60B.a transcript includes six protein-coding exons and seven noncoding exons ([solid black bars]
exons) separated by a large intron (thin blue line). Smaller introns separating exons 7–13 are excised
from Nop60B.a transcripts and processed to form mature snoRNAs and snmRNAs. (Black boxes) Mature
ncRNAs expressed at detectable levels; (gray boxes) undetectable ncRNAs. (Red histograms) The depth
of sequencing coverage in this region at ZT0, ZT6 (peak), ZT12, and ZT18 (trough). (B) Expression levels
of Nop60B’s coding exons show weak or nonexistent circadian oscillations while the noncoding exons
(C ) and (the median-normalized) ncRNAs they encode (D) oscillate with peak expression at ZT6.
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insufficient to detect oscillations reliably. From this observation, we

conclude that a fully comprehensive analysis of oscillatory ncRNA

will require additional focused study.

Detection of novel splicing events

One key advantage of RNA-seq over microarrays is the ability to

detect and quantify novel splicing events (Wang et al. 2009). For

example, the modENCODE Consortium used RNA-seq to identify

more than 23,000 hitherto unobserved splicing events in the

Drosophila transcriptome (Graveley et al. 2011). Furthermore, the al-

gorithm we use here for aligning reads to the genome/transcriptome,

RUM, is particularly adept at mapping gapped reads to novel splice

junctions (Grant et al. 2011). Accordingly, we manually curated the

reads mapping to key clock genes involved in the generation of

circadian rhythmicity to determine whether our data set reveals

previously unannotated splice isoforms in the fly brain.

Both Clock and timeless contain alternative 59 untranslated re-

gions (UTRs) that were not previously annotated in either FlyBase or

modENCODE gene models (Fig. 6). Depth

of sequencing coverage was low at the 59

ends of these genes in the modENCODE

developmental transcriptome, suggesting

that these splice isoforms are indeed novel

identifications. In the case of Clock, there

are two regions of significant sequencing

depth in our RNA-seq data set within the

first intron of the canonical gene models

(Fig. 6A). Several hundred gapped reads

also map to these regions and connect

to the canonical exon 2 (Fig. 6A). In con-

trast, the canonical exon 1 (containing the

presumed transcriptional start site, TSS)

shows low depth of coverage and no

gapped reads spanning intron 1 (Fig. 6A).

The time-dependent transcriptional pro-

files of these regions further support the

presence of previously unannotated TSSs.

The canonical intron 1 (containing the

postulated alternative 59 UTRs) shows

oscillatory behavior with a phase and

amplitude in agreement with the coding

exons of Clock (Fig. 6B), and the same

region is arrhythmic and damped in per0

samples (data not shown). In contrast,

the canonical exon 1 shows weak expres-

sion and low-amplitude oscillatory be-

havior (Fig. 6B). We validated these novel

splicing events using rtPCR (Fig. 6C) and

DNA sequencing of the resulting ampli-

fied products (data not shown). In every

case, occurrence of these novel splicing

events was verified and their oscillatory

behavior confirmed (Fig. 6C).

Similarly, we observe substantial read

depth in the 59 introns of timeless as well as

gapped reads that link these regions to

canonical, coding exons (Fig. 6D). The

expression level of these putative, novel

exons oscillates in phase with the rest of

timeless’s exons (Fig. 6E) and was arrhyth-

mic in per0 samples (data not shown).

These results were confirmed by rtPCR and DNA sequencing of

the resulting amplified products (Fig. 6F; data not shown). In-

terestingly, rtPCR with primers spanning the canonical intron 1

and exon 3 shows an unexpected, smaller PCR product (Fig. 6F).

We cloned and sequenced these bands and found that in a mi-

nority of cases, the canonical second exon of timeless is excluded

from the mature transcript. Similar to the novel splicing events

discussed above, this exon-skipping event only affects the 59 UTR

while leaving the coding sequence of timeless unchanged.

We also identified gapped reads that map to novel splicing

events in the UTRs of Pdp1, cwo, CKIIa, and CKIIb (data not shown),

indicating the presence of previously unanticipated complexity in

the splicing of UTRs in circadian clock genes in the fly brain.

Motivated by these observations, we next assessed splicing events

across the entire genome spanned by gapped reads in our data set.

We sorted the splicing events revealed by these reads into three cat-

egories: (1) canonical splice junctions annotated by modENCODE

gene models; (2) novel splice junctions with canonical splice accep-

tor/donor sites; and (3) novel splice junctions lacking canonical

Figure 5. Multiple Uhg-family members oscillate with peak expression during the light phase. (A)
Fold-changes of median-normalized expression levels of Uhg-family members are shown as a heatmap.
(White and black bars) The LD regimen under which these samples were collected. The order of tran-
scripts along the vertical axis is identical between wild-type and per0. Note that in per0 brains, peak Uhg
expression is phase-delayed by ;6 h. (B) The fold-changes of all snoRNAs and snmRNAs encoded by Uhg
genes and expressed at a detectable level are median-normalized and displayed as a heatmap. (C )
Expression levels of all cycling Uhg-family members in DD are damped relative to the light phase of LD.
The light phase is defined as ZT0 and ZT6 for LD samples, and CT0, CT4, and CT8 for DD samples. (Error
bars) Mean 6 standard error of the mean.
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splice acceptor/donor sites. The vast majority of gapped reads in

our data set map to splice junctions previously annotated by the

modENCODE Consortium (Fig. 7A). However, the majority of

unique splicing events detected in our data set have not been pre-

viously built into any Drosophila gene model and are thus con-

sidered to be novel (Fig. 7A). This difference between total gapped

reads and unique junctions is explained by the depth of RNA-seq

coverage of canonical vs. novel splicing events (Fig. 7B). As

expected, the most commonly identified splice junctions (and

thus the most abundant in transcriptome data sets) have been

identified by previous studies; the novel splice junctions we detect

in our data are expressed at considerably lower levels on average (Fig.

7B). However, we detect >2000 novel splice junctions supported by

at least 100 gapped reads, and at least 10,000 novel splice junctions

supported by at least 10 gapped reads (Supplemental Table S12).

To assess the biological relevance of these novel splicing

events, we computationally identified every gene containing at

least one novel splice junction with canonical acceptor/donor sites

and supported by at least 10 gapped reads. As expected, given that

the source of RNA for our experiments was from brain, we find

significant enrichment in genes that are involved in neuronal

function, including differentiation, synaptic transmission, ion

transport, and circadian behavior (Supplemental Table S13). To

survey the various species of novel splicing events occurring in

Drosophila brain, we manually curated all of the novel splicing

events (N = 371) in genes annotated as ion channels (Fig. 7C). Novel

events were of a variety of types, including variants of canonical

exons, novel exons, and novel exon skipping events. We identified

11 novel exon skipping events within fly ion channel genes, nine of

which were independently validated by rtPCR and DNA sequencing

of the resulting amplified products (data not shown), further sup-

porting the conclusion that our RNA-seq data accurately reflect the

complexity of RNA splicing in the fly brain.

Clock regulation of alternative splicing and RNA editing

Previous work in a variety of model systems has identified several

examples of alternative splice isoforms that are differentially reg-

Figure 6. Novel transcriptional start sites in clock genes. The 59 UTR and nearby coding exons are shown for Clock (A) and timeless (D). (Solid black bars)
Exons; (thin blue lines) introns. (Red histograms) The depth of sequencing coverage at ZT0 and ZT12; (dark blue brackets, top) the number of gapped
reads spanning previously annotated splice junctions; (green brackets) the number of gapped reads spanning novel splice junctions. (Arrows, bottom) PCR
primers used to assay for the presence of a given splicing event, with blue indicating previously annotated and green indicating novel. (E) Exon primer; (I)
intron primer. The expression levels of individual exons and introns are shown for Clock (B) and timeless (E ). (C,F ) rtPCR was used to detect the presence of
splicing events using indicated primer pairs that span a given junction in brains of independent biological replicates collected at ZT0 and ZT12.
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ulated by the circadian clock and has also demonstrated the im-

portance of alternative splicing to circadian output (Collins et al.

2004; Majercak et al. 2004; Colot et al. 2005; Diernfellner et al.

2005, 2007; Schöning et al. 2007; Filichkin et al. 2010; Sanchez

et al. 2010). To assess the degree to which circadian rhythms reg-

ulate alternative splicing at a genome-wide scale, we calculated

the splicing index (alternative exon expression divided by

average expression of constant exons) for every alternative exon

in every sample within our data set. We applied two-way ANOVA

to these splicing indices to identify exons regulated by time of day,

genotype, or their interaction. In parallel, we also used JTK_Cycle

and Fisher’s G-test to identify oscillations of alternative splicing.

ANOVA reveals a large number of alternative exons whose

splicing ratios are differentially regulated in per0 vs. wild-type brains

(Table 4; Supplemental Table S14). In contrast, time of day has

a much more limited effect on alternative exon regulation, partic-

ularly when considering the FDRs of these analyses (Table 4). Sim-

ilarly, neither JTK_Cycle nor Fisher’s G-test reveals large-scale

rhythmicity in splicing indices at acceptably low FDRs (data not

shown). Nevertheless, there are some clear examples in our RNA-

seq data set of rhythmic alternative splicing. Figure 8 shows two

examples of alternative exons regulated by either period loss-of-

function or time of day. LOLA is a DNA binding protein that is widely

expressed in the nervous system and plays a significant role in axon

guidance, targeting, and cell death (Giniger et al. 1994; Goeke et al.

2003; Bass et al. 2007). We observe three alternative TSSs of lola

expressed at detectable levels (Fig. 8A). Two of these alternative

exons show significant differences in expression between wild-type

and per0 (genotype P-values < 0.001),

while the third alternative exon and the

constant coding exons show no signifi-

cant difference in expression. lola-RR exon

1 is down-regulated ;30% in per0, while

lola-RD exon 1 is more than twofold up-

regulated in per0, indicating that period acts

as a switch to regulate the preferred TSS of

lola. PRL-1, a protein tyrosine phospha-

tase, has alternative TSSs that are differ-

entially regulated by time (Fig. 8B). PRL-1’s

constant exons oscillate (exon 2 JTK_Cy-

cle P-value = 0.007, exon 3 JTK_Cycle

P-value = 0.12) with peak expression at

ZT12. PRL-1-RB exon 1 oscillates with

phase and amplitude consistent with

these rhythms (JTK_Cycle P-value =

0.002). In contrast, PRL-1-RA exon 1 is

expressed at a lower level and shows no

evidence of circadian oscillation (JTK_

Cycle P-value = 1.0). These data suggest

that PRL-1-RB oscillates and is the pre-

dominant isoform of PRL-1, while PRL-1-

RA is expressed at lower, time-invariant

levels.

Relatively few alternative splice iso-

forms are regulated as a function of time

of day. In contrast, at a P-value threshold

<0.001, more than 600 alternative exons

are differentially regulated by per0 at a

FDR of 0.02. At the same P-value cutoff

(and with a FDR of at least 0.53), only a

few dozen alternative exons are differen-

tially regulated by time or the interaction

of time and genotype (Table 4). Examples like PRL-1 are the ex-

ception rather than the norm within our data set. We manually

curated the top 100 differentially regulated alternative exons (by

both time of day and genotype) to determine the types of splice

isoforms being regulated. More than 75% of these exons are either

alternative 59 UTRs or coding exons downstream from alternative 59

UTRs, indicating that differential regulation of isoform abundance

by time and per0 is happening primarily at a transcriptional level, via

alternate TSS selection. Some alternative isoforms generated by al-

ternative splicing (e.g., exon skipping, cassette exons, alternative

acceptor/donor sites) are found to be differentially expressed, but

constitute a minority of the statistically significant hits (Supple-

mental Table S14).

Unlike alternative splice isoforms, there have been no reports

to our knowledge providing evidence of circadian regulation of

Figure 7. Novel splicing events in the brain transcriptome. (A) The majority of gapped reads map to
previously annotated splice junctions (left); however, the vast majority of unique splice junctions
detected in the brain transcriptome have not been previously annotated (right). (Blue) Splice junctions
previously detected by the modENCODE Consortium (Graveley et al. 2011). (Green) Novel splice
junctions with (dark green) or without (light green) canonical 59 and 39 acceptor/donor splice sites. (B)
The depth of coverage of unique splicing events is plotted as a histogram. Not surprisingly, the more
abundant a splice junction, the more likely it has been previously annotated. (C ) The molecular identity
of novel splicing events within ion channel genes was manually curated, with relative abundance
plotted as a pie chart.

Table 4. Number of statistically significant differentially
regulated alternative exons by two-way ANOVA

Genotype
(wild-type
vs. per0)

Time
(ZT0, ZT6,

ZT12, ZT18)
Interaction

(genotype 3 time)

p < 0.001 625 (0.02) 34 (0.53) 22 (1.0)
p < 0.01 2083 (0.07) 248 (0.77) 152 (1.0)
p < 0.05 4863 (0.14) 1163 (0.80) 736 (1.0)

The false-discovery rate is in parentheses (Storey and Tibshirani 2003;
Storey et al. 2005).
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RNA editing. RNA editing is mediated by the adar enzyme, which

catalyzes adenosine-to-inosine conversions in mRNA (Bass 2001).

The modENCODE Consortium and others have identified 972

distinct RNA-editing sites in the Drosophila transcriptome (Stapleton

et al. 2006; Graveley et al. 2011). Of these, 385 are found in our

data set with a depth of coverage of at least five reads in each

sample. To examine whether circadian rhythms regulate the fre-

quency of RNA editing at a genome-wide scale, we calculated the

editing ratio (G/(G+A)) for each of these known RNA-editing sites.

Editing ratios were then analyzed with two-way ANOVA as well as

Fisher’s G-test and JTK_cycle (Fig. 9; Supplemental Table S15).

Based on both the ANOVA and cycling statistics, we find no evi-

dence to support regulation of RNA editing by time of day (Sup-

plemental Table S15). In contrast, per0 has a substantial effect, with

>10% of the editing sites showing significantly altered editing ra-

tios (N = 40, ANOVA genotype, q < 0.05) (Supplemental Table S15).

Two examples are shown in Figure 9. CG42613 is a protein-coding

gene with no known molecular function. Its expression levels

show only weak evidence of regulation by time of day or per0

(Fig. 9A), but one of its known RNA-editing sites (Chr3R:

14797034) (Supplemental Fig. S5) is edited four times more fre-

quently in per0 (Fig. 9B). Conversely, the frequency of RNA editing

in retinophilin is dramatically lower in per0

brains (Fig. 9C,D). We validated these

RNA-seq results by directly cloning and

sequencing transcripts from these and

other genes (Supplemental Fig. S6). In ev-

ery case tested, these results confirm our

RNA-seq data. Moreover, we sequenced

genomic DNA to verify that neither fly

strain contained a genetic polymorphism

responsible at these loci (Supplemental

Fig. S6). Although RNA editing does not

show any evidence of circadian oscilla-

tion, the dramatic change in editing ratio

in per0 brains suggests a role for this key

circadian gene in regulating the frequency

of RNA editing at specific sites.

Discussion
In this study, we present analysis of the

circadian transcriptome of the fly brain

based on >1.2 billion short nucleotide

reads and 140 Gb of aligned sequence.

This analysis reveals extensive circadian

regulation of ncRNAs and identifies several

previously unannotated splice isoforms in

key circadian genes. To our knowledge, this

is the first comprehensive analysis of cir-

cadian regulation of alternative splicing

events and RNA editing. Perhaps most

interestingly, per0 was found to either in-

crease or decrease the frequency of RNA

editing in a wide array of transcripts with-

out an obvious effect on the expression or

activity of ADAR.

This study demonstrates the power

of RNA-seq as an analytical tool for

studying circadian transcriptional output.

While the statistical analysis of rhyth-

micity in our study is modestly underpowered because of the

somewhat sparse temporal sampling resolution, we find consider-

able agreement between the results presented here and legacy

microarray data sets (Supplemental Tables S5, S10). Our results

highlight the limitations of microarray approaches and the advan-

tages of RNA-seq. Points of agreement include (1) robust oscillations

of key circadian timekeeping genes (Fig. 1); (2) similar numbers of

cycling transcripts (Table 3); (3) similar identities of circadian- and

per-regulated genes (Supplemental Tables S5, S10); (4) similar dis-

tribution of amplitudes and phases of clock output genes (Fig. 3);

and (5) the expected loss of the vast majority of transcriptional

rhythms in per0 samples (Fig. 3A,B). Beyond these points of agree-

ment, however, by applying circadian analyses to RNA-seq data

based on the modENCODE gene models, we detect numerous,

novel cycling genes that have not been previously assayed by

microarray-based studies (because the microarrays lacked appro-

priate probesets). For example, ;10% of the cycling genes detected

in our data set are ncRNAs (Fig. 3E). Although technical constraints

limited our ability to assess the previously established reciprocal

regulation between the circadian clock and miRNAs (Cheng et al.

2007; Yang et al. 2008; Kadener et al. 2009), our findings suggest

that the circadian timekeeping system may be regulating (and being

Figure 8. Examples of alternative splice isoforms regulated by per loss-of-function and time-of-day. The
59 UTR and nearby coding exons are shown for lola (A) and PRL-1 (B). (Solid black bars) Exons; (blue lines)
introns. (Red histograms, top) The depth of sequencing coverage for wild-type and per0 samples (lola) or
ZT0 and ZT12 (PRL-1). Bar graphs or line graphs show the expression levels of individual exons (bottom).
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regulated by) a substantial number of heretofore unstudied ncRNAs,

such as snoRNAs and lncRNAs.

Among these ncRNAs, seven of eight Uhg-family members

oscillate in the fly brain with peak expression occurring during the

light phase of LD and appear to be driven by light (Fig. 5; Sup-

plemental Table S9). Uhgs are ncRNAs whose excised introns are

ultimately processed into snoRNAs, key regulators of ribosomal

biogenesis. snoRNAs fall into two functional classes: box C/D,

which mediate site-specific 29-O-ribose methylation; and box

H/ACA, which guide pseudouridylation of rRNAs (Smith and Steitz

1997; Huang et al. 2005). Previous studies have demonstrated that

the vast majority (51 of 53) of snoRNAs encoded by Uhgs in Dro-

sophila are C/D box (Huang et al. 2005). This leads to the hypothesis

that the time of day regulates rRNA methylation and, thus, the

translational machinery via oscillations of snoRNA abundance. This

possibility dovetails with previous studies showing a link between

circadian oscillations and translational regulation (Lim et al. 2011).

We acknowledge that our evidence for circadian regulation of

snoRNAs themselves is indirect being based on oscillation of their

host genes. Definitive evidence to verify oscillation of snoRNA

abundance, determine their mechanism of activity, and test their

effect on rRNA methylation will require biochemical experi-

ments beyond the scope of this study. However, daily oscillation of

snoRNA host genes supports this hypothesis, which is the subject of

ongoing work in our laboratory.

We also note that snoRNAs have been shown to methylate

mRNA as well as rRNA (Kishore et al. 2010). Given the widely ac-

cepted role for C/D-box snoRNAs in regulating the assembly of

ribosomes, we favor the hypothesis that cycling snoRNAs regulate

the translational machinery. Nevertheless,

we found that Uhg-encoded snoRNAs have

complementary sequences in their D-box

to more than 100 expressed mRNA tran-

scripts (Supplemental Table S16), includ-

ing the known circadian gene takeout

(to). We speculate that snoRNA-mediated

methylation of mRNA may provide an al-

ternative regulation point for circadian

transcriptional output.

In addition to identifying cycling

transcripts that are not detectable by

conventional microarrays, RNA-seq also de-

tects novel splicing events. We exploited

this to identify novel splice isoforms of

key circadian clock genes, including Clock,

timeless, cwo, Pdp1, CKIIa, and CKIIb (Fig. 6).

The presence of circadian-regulated, al-

ternative 59 UTRs within these genes

suggests a previously unanticipated level

of complexity in their regulation. Al-

though the functional significance of these

novel 59 UTRs is unknown, we speculate

that they may participate in the regula-

tion of clock gene expression levels in

different cell types and environmental

conditions.

Expanding this analysis to the entire

genome, we have detected thousands

of novel splicing events that are not incor-

porated in either FlyBase or modENCODE

gene models (Fig. 7; Supplemental Table

S12). Four factors likely explain why we

have detected numerous novel splicing events. First, the alignment

of raw RNA-seq reads was made to the published gene models from

modENCODE. Any detected splicing event not supported by these

gene models was thus deemed to be novel. However, modENCODE

identified many thousands of splicing events that have not yet

been incorporated into gene models (Graveley et al. 2011). At a

minimum, our data will provide independent confirmation of

such splicing events and thus contribute to the continued im-

provement of Drosophila gene models. Second, although the size of

our data set is not of the same magnitude as modENCODE, 140 Gb

of aligned sequence from our study is considerable, particularly

since it is focused solely on the adult brain. The fact that most

novel splicing events detected in our fly brain transcriptome have

relatively low depth of coverage suggests that these novel splice

junctions may be rare events below the detection limit in other

data sets (Fig. 7B). Third, the RNA amplification method we used

enriched our data set for mRNA without necessitating a poly(A)-

based selection step. Consequently, the 39 bias typically seen in

RNA-seq data sets is less pronounced, resulting in greater depth of

coverage at the 59 end of transcripts. Consistent with this, the

novel splicing events detected in our data set are biased toward the

59 transcript ends (Fig. 7C). Fourth, the alignment algorithm we

used, RUM, is especially advantageous for detecting novel splice

junctions (Grant et al. 2011). It will be of interest in future studies

to determine whether realigning the modENCODE reads with

RUM can confirm the presence of novel splicing events detected

in our data. Taken as a whole, and independently of our circadian

analyses and conclusions, our brain transcriptome is an impor-

tant advance relative to the modENCODE fly developmental

Figure 9. Period alters RNA editing frequency in CG42613 and retinophilin. (A) Expression levels of
CG43216-RC transcript are largely unchanged by period (B). The frequency of RNA editing in per0 is
fivefold greater vs. wild-type (ANOVA, p < 5.5 3 10�11, ANOVA, q < 5.0 3 10�9). Similar to CG42613,
expression levels of retinophilin-RA transcript are not dramatically changed by period (C ). The frequency
of RNA editing at Chr3R:1062097 is dramatically decreased in per0 brains (ANOVA, p < 8.0 3 10�11;
ANOVA, q < 1.1 3 10�10) (D). (Error bars) Mean 6 standard error of the mean.
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transcriptome, particularly with respect to the identification of

novel splicing events.

Alternative splicing and RNA editing are two methods by

which cells increase the diversity of mRNA and protein encoded

by the genome. Given the broad influence the circadian clock

has over transcription, assessing whether the clock also regulates

mRNA post-transcriptionally is of great importance to our un-

derstanding of circadian output mechanisms (e.g., Sanchez et al.

2010). Our data indicate that period loss of function exerts a sub-

stantial effect on both alternative splice isoform abundance and

the frequency of RNA editing (Figs. 8, 9). Especially interesting is

our observation that per0 increases the frequency of RNA editing at

some sites while decreasing editing at other sites (Fig. 9; Supple-

mental Table S15). This suggests that RNA editing does not occur at

a constant level across the brain transcriptome, but is instead

regulated on a site-by-site basis. Unlike period loss of function, time

of day did not show any significant effect on RNA editing fre-

quencies and only exerted a modest effect on the abundance of

alternative exons. The majority of differential isoform regulation

by both period and the circadian clock occurred in alternative 59

UTRs, suggesting that most of these effects are mediated by selec-

tion of alternative TSSs rather than via alternative splicing. As

mentioned above, the temporal sampling density of this study

has led to modestly underpowered statistical tests. Thus, there may

be additional alternative exons regulated by the clock that we did

not detect. Moreover, previous reports (Collins et al. 2004; Majercak

et al. 2004; Colot et al. 2005; Diernfellner et al. 2005, 2007;

Schöning et al. 2007; Filichkin et al. 2010; Sanchez et al. 2010) along

with examples such as PRL-1 (Fig. 8B) indicate that the circadian

clock does regulate alternative isoform abundance and can be

highly significant to proper clock output. However, using identical

statistical thresholds, we detected considerably more alternative

splice isoforms differentially regulated by per than time of day,

suggesting that circadian regulation of alternative splicing is a lim-

ited and infrequent occurrence in the fly brain.

Methods

Fly stocks and behavioral monitoring
Wild-type Canton-S flies, y w, per0, and per0 in a Canton-S back-
ground were raised on standard food at 25°C. per0 Canton-S flies
are direct descendants of the original pero mutant generated by
EMS mutagenesis of Canton-S flies (Konopka and Benzer 1971).
yw, per0 flies were generated by recombination with the per0 allele.
Individual 3- to 5-d-old male flies were placed in locomotor activity
monitor tubes and were entrained to 12 h:12 h light:dark (LD)
conditions for 5 d before being released into free-running condi-
tions of constant darkness. Automated TriKinetics infrared beam-
crossing monitor systems were used to assay locomotor activity.
Twenty-minute bin-size double-plotted actograms and Lomb-
Scargle periodograms for assay of free-running period were gener-
ated using Actimetrics Clocklab software, running on MATLAB
(Mathworks). Averaged activity histograms in Light/Dark were
generated by averaging the binned activity profiles for 3 d in LD,
then averaging across animals.

Tissue collection

Three to five days after eclosion, brains from 10–12 female flies per
sample were manually dissected in PBS at the time points indicated
in Figure 1A, transferred into 100 mL of extraction buffer (Molecular
Devices), vortexed for 30 sec, and incubated at 42°C to homogenize

the tissue. Total RNA was purified with the PicoPure RNA Purifica-
tion kit (Molecular Devices) using the manufacturer’s protocol and
quantified using a NanoDrop spectrophotometer (ThermoFisher).
mRNA was amplified (and rRNA depleted) using either the poly(A)-
based RiboAmp RNA Amplification kit (Molecular Devices) or the
non-poly(A)-based Ovation RNA-seq Amplification kit (NuGEN
Technologies).

Library preparation

Five micrograms of amplified RNA was randomly fragmented by
heating to 94°C; fragments were concentrated by ethanol pre-
cipitation. First-strand cDNA was synthesized by reverse transcrip-
tase, and the RNA strand from the resulting cDNA/RNA duplex was
degraded by RNase H. Second-strand cDNA was synthesized by DNA
polymerase I, and the double-stranded cDNA fragments were end-
repaired with a combination of T4 DNA Polymerase, Klenow Frag-
ment Polymerase, and poly nucleotide kinase to ensure blunted
ends, and then adenylated with a single A-base at the 39 end of the
fragment by the Klenow 39–59 exo� enzyme. This A-tail allowed li-
gation of the proprietary Illumina adapters, facilitated by T4 DNA
Ligase. The adaptor-ligated sample was size-selected by electropho-
resis and selectively enriched by PCR using primers that only anneal
to adaptor-ligated fragments. The adaptor sequences were annealed
to the primers on the Illumina flow cell lanes during bridge PCR,
which generated the clusters necessary to view fluorescence during
the sequencing-by-synthesis process.

RNA sequencing

For LD experiments, one sample was loaded per lane on an Illu-
mina GAIIx sequencer for a total of 24 lanes (Table 1; Supplemental
Table S1). For the DD experiment, cDNA libraries were molecu-
larly bar-coded using Illumina primers and loaded onto two lanes
of an Illumina HiSeq. cDNA libraries were diluted to 10 nM, and
12–15 pmol of material was loaded onto each lane. Template
hybridization, extension of the template, amplification of the tem-
plate, cluster generation, sequencing primer addition, and paired-
end ‘‘turn-around’’ chemistry were performed using C-BOT (formerly
known as Cluster Station). Base calls were made using CASAVA
(Illumina).

Alignment

The RNA-seq Unified Mapper (RUM) was used to align sequenced
reads to the genome and transcriptome of Drosophila melanogaster
(Grant et al. 2011). The Berkeley Drosophila Genome Project
(BDGP) Release 5 (April 2006) genome assembly was used as the
template genome (Celniker et al. 2002), and the newly released
modENCODE gene annotations were used as the template tran-
scriptome (Graveley et al. 2011). RUM was implemented using
Amazon Elastic Cloud Computing (EC2) web services with 64-bit
Linux AMI, 8 core, 64 GB memory machines. RUM was run using
the following parameters: ‘‘-limitBowtieNU -limitNU 25.’’ Raw
data as well as the results of alignments are freely available on GEO
(accession numbers: GSE29972 and GSE36108).

Analysis

RPKMs were calculated for transcripts, exons, and introns by RUM
using scripts written in Perl. Histograms showing the depth of se-
quencing coverage were generated using UCSC’s Genome Browser.
Detection of cycling was performed using JTK_Cycle (Hughes et al.
2010) and Fisher’s G-test (Wichert et al. 2004) and implemented in
R (64-bit, version 2.12.1). Two-way ANOVA and false discovery rate
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(FDR) calculations (Storey and Tibshirani 2003; Storey et al. 2005)
were made using custom scripts and implemented in R. Amplitude
estimates and comparisons were performed as previously described
(Miyazaki et al. 2011). Heatmaps were generated using scripts for
MATLAB (version R2010b; Mathworks). Splicing indexes and RNA
editing indexes were calculated using custom scripts written in
Ruby. DAVID analyses were performed as previously described
(Huang et al. 2008). All code and analyses are available on demand.

Quantitative and reverse transcriptase PCR

One microgram of total RNA was used to generate cDNA with the
HighCapacity cDNA Archive Kit using the manufacturer’s protocol
(Applied Biosystems). Quantitative PCR reactions were performed
on independent biological replicates using iTaq PCR mastermix
(Bio-Rad) in combination with gene expression assays (Applied
Biosystems) on a 7900HT Taqman machine (Applied Biosystems).
The Taqman probes used include Rpl32, Dm02151827_g1 (endog-
enous control); Period, Dm01843684_g1; Clock, Dm01795382_g1.
Semiquantitative reverse transcriptase PCR (Fig. 6; Supplemental
Fig. S3) was performed with 1–35 ng of cDNA template using the
Advantage PCR kit (Clontech). Validation of novel slice sites (e.g.,
Fig. 6) was performed on independent biological replicates; valida-
tion of Uhg cycling (Supplemental Fig. S3) was done using Nugen
Ovation-amplified templates. The primers used include ClkE,
GGCAAAAGGCATTACAACAGA; ClkI1, GAGCGCGCAGTTATTG
TTTT; ClkI2, GTACTTGGCCGATCTGAAGC; ClkI3, TCTGTGTGC
GCCAGTCTATC; ClkE2, CAAAATGTGGCATATTGAGCA; ClkE3,
TCAGGACCGTGGACTTATCC; TimI1, TGTGAAACGTCTGTGA
GGAA; TimI2, TTGCATTTTACATAAGCCAACAA; TimE2, TGCAA
AGAAACCCAAAAAGTG; TimE3, ATTCGGGTTGACCACATAGG;
EIF4G-F, TCCATCAAACGTCGCTAAAA; EIF4G-R, TGTTTCCGTC
AATCCTCTGA; UHG1-F, TGTTGACTGACAGCCGATTT; UHG1-R,
TTGCAGGGTAGATAGACTTTTTCC; UHG2-F, ATTTGCCTGCGA
TAAACCAC; UHG2-R, TTGAAACCCTAAGCATTTGGA; UHG3-F,
GCGGATCACGAGAAACGAG; UHG3-R, AGAAACATCAGTTTTT
CTGCATT; UHG4-F, TCGGTCTTTCGATTTGGATT; UHG4-R, AGA
GATCCTTGTTTGGGCATA; UHG5-F, CATCCATCAGATACATGG
AAAA; UHG5-R, GACCGTAAGAGTCCCTCGAT; UHG6-F, GGCG
GAACGAAAACTAAAAA; UHG6-R, TTCCTGTGGCATTCAATGAT;
UHG7-F, AATCCATTAATCGGGCCACT; UHG7-R, TCAATCTGGC
TCGTATCTGG; UHG8-F, GGGAGCCTGGGATACAATCT; UHG8-R,
AGGTTTTTCCAACCGAATCA.

Data access
All raw data have been submitted to the NCBI Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion numbers GSE29972 and GSE36108, and are freely available.
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