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Abstract

Background: Accurate identification of perturbed signaling pathways based on differentially expressed genes between
sample groups is one of the key factors in the understanding of diseases and druggable targets. Most pathway analysis
methods prioritize impacted signaling pathways by incorporating pathway topology using simple graph-based models.
Despite their relative success, these models are limited in describing all types of dependencies and interactions that exist
in biological pathways.

Results: In this work, we propose a new approach based on the formal modeling of signaling pathways. Signaling
pathways are formally modeled, and then model checking tools are applied to find the likelihood of perturbation for
each pathway in a given condition. By adopting formal methods, various complex interactions among biological parts are
modeled, which can contribute to reducing the false-positive rate of the proposed approach. We have developed a tool
named Formal model checking based pathway analysis (FoPA) based on this approach. FoPA is compared with three
well-known pathway analysis methods: PADOG, CePa, and SPIA on the benchmark of 36 GEO datasets from various
diseases by applying the target pathway technique. This validation technique eliminates the need for possibly biased
human assessments of results. In the cases that, there is no apriori knowledge of all relevant pathways, simulated false
inputs (permuted class labels and decoy pathways) are chosen as a set of negative controls to test the false positive
rate of the methods. Finally, to further evaluate the efficiency of FoPA, it is applied to a list of autism-related genes.

Conclusions: The results obtained by the target pathway technique demonstrate that FoPA is able to prioritize target
pathways as well as PADOG but better than CePa and SPIA. Also, the false-positive rate of finding significant pathways
using FoPA is lower than other compared methods. Also, FoPA can detect more consistent relevant pathways than
other methods. The results of FoPA on autism-related genes highlight the role of “Renin-angiotensin system” pathway.
This pathway has been supposed to have a pivotal role in some neurodegenerative diseases, while little attention has
been paid to its impact on autism development so far.
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Background
Analysis of gene expression experiments comparing two
groups of samples (e.g., normal and diseased), typically
results in long lists of differentially expressed genes
(DEGs). These long lists of genes are often hard to be
interpreted by researchers. As a result, some methods

have been developed to transform the gene expression
data into meaningful sets. An example is to identify the
set of genes that function in the same pathway which is
commonly referred to as pathway analysis. This analysis
is appealing to researchers for two reasons: first, group-
ing thousands of genes by the pathways in which they
exist and involve, reduces the complexity to some
hundred pathways; second, it facilitates identifying gene
signaling networks relevant to a given condition which
can help in understanding the mechanisms of diseases
[1, 2], develop better drug production [3–5], personalize
drug regimens [5, 6], etc.
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The pathway analysis methods usually use two types of
data as inputs: the experimental data, like gene expressions
obtained when comparing two conditions and the pathway
knowledge, which was previously known and stored in
pathway databases. There exist several pathway databases
providing collections of pathways for various organisms,
most of which are drawn manually and updated regularly.
Examples of these databases include KEGG [7], BioCarta/
NCI-PID [8], PANTHER [9] and Reactome [10]. Pathway
analysis tools use one or more pathway database(s) as their
input and identify the pathways that are most relevant to a
given condition. For more information regarding the pros
and cons of various pathway analysis methods, please refer
to the review published by Khatri et al. [11].
The pathway analysis methods are classified into two

groups according to their strategy for incorporating the
pathway data into their analysis: The first group considers
pathways as simple gene lists [12–18] and the second
group incorporates pathway topology in the analysis [19–
26]. The former is usually referred to as ‘gene set based’ ap-
proach, and the latter is referred to as ‘Pathway Topology-
based’(PT-based) approach. PT-based approach adds path-
way topology in the analysis for utilizing the correlation be-
tween pathway components. The first proposed PT-based
method was named Pathway-Express, as part of the Onto-
tools suite [19]. Following that, some PT-based methods
have been proposed. A comparison of PT-based methods is
made by Mitrea et al. [27] with respect to their inputs,
output, and analysis strategies.
Most PT-based methods [20, 24] model the biological

pathways as simple graphs. They model genes as nodes
and interactions among them as directed edges between
nodes. This kind of modeling has some limitations: First,
simple graphs are limited in describing all types of rela-
tions among genes involved in the same interaction. As
some examples: (a) If a protein has some activators and
inhibitors, an inhibitor may prevent the activation of the
protein by each of its activators. Methods that use graphs
to model signaling pathways use + 1 weight edges for acti-
vation interactions and − 1 weight edges for inhibition
interactions, which does not accurately model the reality.
(b) The condition where some genes together activate a
gene; second, assume that a pathway is activated through
a single receptor. If that particular receptor is not
produced, the pathway will be probably completely shut
off [20]. This problem is not addressed correctly by the
graph modeling of signaling pathways; third, a simple
graph is unable to model the concurrent and stochastic
behavior of biological pathways.
Due to the similarity between biological systems and

distributed systems studied in computer science, model-
ing techniques developed in formal methods can be ap-
plied to biological systems as well [28]. Formal methods
are techniques for specification, verification, and analysis

of systems. Systems are described rigorously by formal lan-
guages that help to reduce any ambiguity in the system spe-
cification. Once a model is constructed, it can be translated
into a computer program for simulating the system under
specification. This program can be used for reasoning and
analyzing the system, predict the behavior of the system
with some initial conditions, validating new experimental
result, and identifying the inputs or parameters of the sys-
tem enforcing a desired behavior [29]. Regev et.al. [30] were
the first to propose considering signaling pathways as dis-
tributed computer systems. Since then, there has been a
successful development in using formal methods in analyz-
ing signaling pathways [31–33]. However, the objective of
them is to model specific pathways to describe and analyses
their dynamics rather than finding the most impacted sig-
naling pathways in a given condition, the primary objective
of this study. In this study, signaling pathways are formally
modeled initially, and then model checking is used to find
the likelihood of perturbation for each pathway in a given
condition. FoPA tool is implemented based on this ap-
proach. Model checking is an automatic verification tech-
nique for finite state concurrent systems that helps to
check whether a system model meets specified properties,
by exhaustively exploring all possible executions of the sys-
tem. In addition to the widespread application of this tech-
nique for ascertaining the correctness of distributed
systems in computer science, it has recorded a remarkable
success in analyzing biological signaling pathways [34, 35].
To the best of the authors’ knowledge, the proposed ap-
proach is the first attempt to use model checking to identify
the pathways that are significantly affected in a given
condition.

Methods
In this section, first, some related basic concepts and
primary definitions are briefly explained and then pro-
posed approach is described in more details.

Preliminaries
Probabilistic model checking is a variant of model checking
used for analyzing systems that exhibit probabilistic behav-
ior. A probabilistic model checker requires (a) a formal
description of the system (formulated in some precise
mathematical language), and (b) the specifications of one
or more desired properties of that system in temporal logic
(e.g., CTL or LTL). A model is typically a state-transition
structure in which each state represents a configuration,
and the transitions represent the evolution of the system
from one configuration to another. In probabilistic model
checking, the models are probabilistic (typically variant of
Markov chains), in the sense that they are augmented with
a probability of making a transition between states. As an
endpoint, a probabilistic model checker returns “yes” or
“no” indicating whether or not each property is satisfied, or
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the probability of some properties of the model, based on a
systematic and exhaustive exploration of the model.
PRISM [36, 37] is a probabilistic model checker used for

formal modeling and verification of quantitative properties
of systems that exhibit random or probabilistic behavior. It
can be used for analyzing different types of probabilistic
models: continuous-time Markov chains (CTMC), discrete-
time Markov chains (DTMC) and Markov decision pro-
cesses (MDP). Models must be specified with the PRISM
language, a simple language, based on the Reactive
Modules formalism [38]. Properties to be verified against
these models are expressed in probabilistic extensions of
temporal logic.
A model described in the PRISM language consist of a

set of modules that can interact with each other. The state
of each module is being represented by the value of a set of
finite-ranging variables. The global state of the whole
model is determined by the local state of all modules. The
behavior of each module is described by a set of commands
of the form:

a½ �guard→prob1 : update1 þ…þ probn : updaten;

The symbol a is an action label used for
synchronization. If a transition does not have to
synchronize with other transitions, then no action label
needs to be provided for that. The guard is a predicate
over all the variables in the model. When the guard is
true, the model is updated according to the transitions
and their probabilities described in the updates. The
transitions are specified by giving the new values of the
variables in the module, possibly as a function of other
variables. The primed variable is used to represent the
new values for the variables [39].
The P operator in the PRISM property specification

language is used to reason about the probability of an
event’s occurrence. For computing the actual probability
that some behavior of a model is observed, PRISM al-
lows the P operator to take the following form: P =?
[pathprop]. pathprop is a formula that evaluates to either
true or false for a single path in a model that describes
the desired behavior [40].

Model checking based approach
To understand the proposed approach, let’s formulate the
query solved by the approach. Given that we have that
two lists of genes R and R’ associated with the desired
phenotype (i.e., normal and diseased) and a list of path-
ways (i.e.., all signaling pathways of KEGG) the query is to
infer which one of the pathways are more related to the
given phenotype. Figure 1 shows the proposed approach
whose goal is to solve the query formulated above. The
proposed approach requires a formal description of the
behavior of the signaling pathways (formulated in some

formal languages: i.e.., Petri net or PRISM modeling lan-
guage). The differential expression of genes between the
conditions under study are used to estimate the parame-
ters of the model or define the initial configuration. Once
the model is specified by the proper language, it should be
converted into discrete time or continuous time Markova
chain model which is usually done by the chosen model
checking tool.
After that, the Markova chain model is given to score

calculator which allocates a score to each pathway by exe-
cuting its model with the help of a model checking tool. A
Model checking tool receives a model of the system and
checks whether this model satisfies given properties
expressed in logical formulas. Therefore, in our applica-
tion, the properties should be defined in a fashion that if
they are satisfied with the model, the model could be
considered related to the condition. An example of such
properties is to check that whether a high-level process
(e.g., apoptosis) in the given signaling pathway model is
activated differentially when the model is initialized with
the given differential expression of genes. The idea behind
this property is that the signal transduction is a process
that ultimately results in a cellular response.
The example property explained above is expressed by

PRISM notation in Fig. 1, which means the probability
of the apoptosis response being active eventually in the
future. The probabilistic model checker is employed to
check this property against the model. The probability
returned by the probabilistic model checker is used to
allocate a score to the pathway. The higher the score,
the higher the relevancy of the pathway to the given
phenotype (A toy example and more definitions and
proofs are provided in Additional file 1).

FoPA tool
A pathway analysis tool named FoPA is introduced here,
Fig. 2, using the approach proposed above. Gene expres-
sions of the desired condition and its matched controls
are converted to a list of differential gene expression,
which is fed into FoPA as input along with the signaling
pathways of KEGG. The output is a list of signaling
pathways sorted according to their relevance to the de-
sired condition.
FoPA, Fig. 3, consists of four parts: Parameter compu-

tation, Model builder, Score computation, and Signifi-
cance assessment. The Model builder constructs a
PRISM model for each pathway. The model parameters
(i.e., the probability of interactions and the initial state of
the model) are estimated by Parameter computation
using the KEGG pathways and gene expressions data.
Score computation defines the appropriate properties to
be checked by PRISM [37]. By computing the probability
of these properties, a score is allocated to each pathway.
This score is intended to reflect the relevancy of the
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pathway to the condition under study. However, this
score can take place just by chance. Thus, an assessment
of the significance of the measured score is required,
which is done by Significance assessment.

Model builder
KEGG signaling pathways consists of proteins/genes
(throughout this paper, gene is used instead of protein
and means protein-coding gene), small molecules and
their interaction which includes but not limited to acti-
vation, inhibition, phosphorylation, dephosphorylation,
and expression. They are represented by KGML format
which is an XML representation of KEGG pathway
maps. Model builder converts the KGML files into a
formal model that can be executed by the PRISM tool.
Before building a PRISM model, some editing steps in

KGML representation of signaling pathways have to be
taken. First, in cases that several nodes are annotated
with the same gene symbol, they are merged into a node,
sharing all incoming and outgoing edges of the original
nodes. Next, nodes representing small molecules and

other non-gene parts are removed in a fashion that the
parents and children of such a node stay connected.
For modeling the KEGG pathway by PRISM language,

a variable is assigned to each gene. This variable indi-
cates the state of the gene which can take on six values
where three of them correspond to no expression, ex-
pression, and differentially expression of the gene rela-
tive to the control expression level (e.g., as measured in
normal tissue) and encoded as 0, 1, and 2, respectively.
The value − 1 for the variable representing a gene indi-
cates that the variable is not initiated in the model yet.
The values 3 and 4 belong to the activated states of the
genes. When a gene is activated, it will move from one of
its states 1 or 2 to the states 3 or 4. It will move to state 4
if it is differentially activated. A gene is differentially acti-
vated if it is a member of the differentially expressed genes
and is activated, or it is activated by one of the members
of differentially activated genes. Otherwise, it is not differ-
entially activated and will move to state 3. By this type of
modeling, the amount that a pathway is affected by the
differentially expressed genes is considered. Interactions in

Fig. 1 Architecture of the Model checking based approach: Model checking based approach requires a formal description of the behavior of the
signaling pathways. The differential expression of genes between the conditions under study are used to estimate the parameters of the model
or define the initial configuration. Once the model is specified by the proper formal language, it should be converted into discrete time or
continues time Markova chains model which is usually done by the chosen model checking tool. After that, the model is given to score
calculator which allocates a score to each pathway with the help of a model checking tool. For example, Score computation requests the model
checking tool to compute the possibility of a cellular response activation
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KEGG pathways are modeled with PRISM commands
where the details of them are tabulated in Table 1.
In the following, modeling of interaction and inhib-

ition interactions are described, where the rest of the in-
teractions are modeled similarly.
In an activation interaction (A→ B), an active gene A

will activate gene B. The command for this interaction is
expressed as command (1) in Table 1. In this command, A
and B indicate the variables for modeling genes A and B.
If A is active, (i.e., it is in states 3 or 4) and B is expressed
either differentially (i.e., it is in state 2) or not (i.e., it is in
state 1), then B will be active with the probability probac-
tive, while with the probability 1-prob be not active. The
gene B moves to state 3 if neither A (the activator gene)
nor B (The activated gene) belongs to the differentially
expressed genes and it moves to state 4 if either A or B or
both belong to differentially expressed genes.
The inhibition interaction (A ⊣ B) indicates that A

inhibits the activation of gene B, that is, if A is active, B will
not be activated. This interaction is modeled with com-
mands (2) in Table 1. The first command indicates that if
gene B is expressed and gene A is not activated then the
gene B will be activated with probability probinhibit1. If gene
B belongs to differentially expressed genes, then it moves to
state 4, otherwise moves to state 3. The second command
indicates that if both genes A and B are active, A cause the
inactivity of gene B with probability probinhibit2.
In addition to commands for modeling each inter-

action, different commands are defined to initialize each

variable. The measurement errors of data are considered
in these commands. The command (9) in Table 1 shows
these initializations wherein A represents a desired gene.

Parameter computation
The model built by the Model builder is parametric.
These parameters are probactive (the probability of activa-
tion commands), probinhibit1 and probinhibit2 (the prob-
ability of inhibition commands), probinit (the probability
of activating a gene, which is not activated nor inhibited
by other genes in the pathway), prob1 and prob2 (the
probability of initializing the variables representing gens)
which are estimated by Parameter computation.
To estimate the probability of commands (A-B) pieces

of evidence are combined which are as follows:

probactive ¼ diff A;Bð Þ � P Að Þ � P A→Bð Þ ð1Þ
probinhibit1 ¼ P A⊣Bð Þ ð2Þ
probinhibit2 ¼ diff A;Bð Þ � P Að Þ � P A⊣Bð Þ ð3Þ

The diff(A,B) term in the Eqs. (1–3) is formulated in Eq.
(4). The reason behind the ratios in this equation is that
two class of genes is defined in FoPA: DEG (differentially
expressed gene) and notDEG (not differentially expressed
gene). So, there are three types of relationships considering
these classes: (a) notDEG – notDEG, (b) notDEG – DEG,
and (c) DEG – DEG. It is expected that when there are
more DEG-DEG relations in a pathway compared to

Fig. 2 General overview of the FoPA: A list of differentially expressed genes and the signaling pathways of KEGG are fed to FoPA as inputs, and
the output is a list of signaling pathways sorted according to their relevance to the differential genes
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Table 1 PRISM commands modeled signaling pathway
No. PRISM Language Specification

(1) A→ B Activation [ ]A > 2 & (B = 1 | B = 2)→ probactive : (B
′ = (A = 3 & B = 1) ? 3 : 4) + (1 − probactive) : (B

′ =
0);

(2) A ⊣ B Inhibition [ ]A < 3 & (B = 1 | B = 2)→ probinhibit1 : (B
′ = B + 2) + (1 − probinhibit1) : (B

′ = 0);
[ ]A > 2 & (B > 2)→ probinhibit2 : (B

′ = B − 2) + (1 − probinhibit2) : B
′ = 0;

(3) A →
þp

B Phosphorylation activation [ ]A > 2 & (B = 1 | B = 2)→ probactive : (B
′ = (A = 3 & B = 1) ? 3 : 4) + (1 − probactive) : (B

′ =
0);

(4) A ⊣+p B Phosphorylation inhibition [ ]A < 3 & (B = 1 | B = 2)→ probinhibit1 : (B
′ = B + 2) + (1 − probinhibit1) : (B

′ = 0);
[ ]A > 2 & (B > 2)→ probinhibit2 : (B

′ = B − 2) + (1 − probinhibit2) : B
′ = 0;

(5) A →
−p

B Dephosphorylation activation [ ]A > 2 & (B = 1 | B = 2)→ probactive : (B
′ = (A = 3 & B = 1) ? 3 : 4) + (1 − probactive) : (B

′ =
0);

(6) A ⊣−p B Dephosphorylation inhibition [ ]A < 3 & (B = 1 | B = 2)→ probinhibit1 : (B
′ = B + 2) + (1 − probinhibit1) : (B

′ = 0);
[ ]A > 2 & (B > 2)→ probinhibit2 : (B

′ = B − 2) + (1 − probinhibit2) : B
′ = 0;

(7) A → B Indirect effect [ ]A > 2 & (B = 1 | B = 2)→ probactive : (B
′ = (A = 3 & B = 1) ? 3 : 4) + (1 − probactive) : (B

′ =
0);

(8) A is not activated nor inhibited by other
genes

[ ] (A = 1 | A = 2)→ probinit : (A = A′ + 2) + (1 − probinit) : (A
′ = 0);

(9) initializing the
variables

A ∈ expressed genes [ ] (A = − 1)→ prob1 : (A
′ = 1) + prob2 : (A

′ = 2)

A ∈ differentially expressed genes [ ] (A = − 1)→ prob1 : (A
′ = 1) + prob2 : (A

′ = 2)

Activation, Phosphorylation activation, Dephosphorylation activation, and Indirect effect are all different types of activation in which gene A activates the
gene B. Thus, they model the same as the Activation relation. Likewise, the Inhibition, Phosphorylation inhibition, and Dephosphorylation inhibition are all
different types of inhibition in which gene A prevents the activation of gene B and they model the same as the Inhibition relations. The probs are the
parameters for the commands that are replaced with the appropriate values when the model is constructed. A and B in PRISM command are variables
indicating the states of the genes A and B respectively

Fig. 3 Different Parts of the FoPA: Model builder build a PRISM model for each pathway. The parameters of the model are estimated by
Parameter computation using the KEGG pathways and gene expressions data. The Score computation defines the appropriate properties to
check by PRISM. By computing the probability of these properties, a score is allocated to each pathway. An assessment of the significance of the
measured score is done by Significance assessment
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another pathway, the first one is more relevant to the con-
dition under study. For example, let’s suppose that two
pathways have the same number of DEG genes with differ-
ent numbers of DEG-DEG relations. In the absence of
other factors, the pathway with more DEG-DEG relations
seems to be more relevant to the condition under study.
Hence, a higher weight is assigned to DEG-DEG relations
than DEG-notDEG relations, and likewise, DEG-notDEG
relations are assigned higher weight than notDEG-notDEG
relations. The relative values 1, 2, and 3 are chosen to
weight these relations.
In diff(A,B), the value of α can be arbitrarily selected

from the interval [0, 1
3]. This interval has been chosen so

that the value of diff(A,B) does not exceed 1. Since the
pathway’s score are used to compare the pathways,
selecting an arbitrary value for α will not affect the re-
sults, because all pathway’s score are changed by a factor
of α. In FoPA, the value of α has been selected equal to 1

6

:

diff A;Bð Þ ¼
0 < α <

1
3
; A and B are not differentially expressed

2α; A or B is differentially expressed
3α; A and B are differentially expressed

8
><
>:

ð4Þ

By the second term in Eqs. (1, 3), P(A), the amount of
change of the gene A between two conditions of interest
is of concern by using the moderated t-score [41] of this
gene as follows:

P Að Þ ¼ T Að Þ:Fn Að Þj j ð5Þ

where T(A) is the moderated t-score of the gene A and
the weight, Fn(A), is the function of the frequency of the
gene A in the set of all pathways. The weight is defined
such that reduced the contribution of the overlapping
genes. The idea supporting this weighting is that when-
ever a differentially expressed gene appears in fewer
pathways, it is assumed that particular gene reveals the
evidence that those pathways are affected by the given
condition. Therefore, the frequently appearing genes are
assigned with a low weight close to the 0.0, while
pathway-specific genes are assigned with a high weight
close to the 1.0. Similar to what is done in Traca et al.
method [16] the weight Fn(A) is defined as the normal-
ized frequency of the gene A across all KEGG pathways
in the scale of (0,1) as follows:

Fn Að Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f Að Þ− min fð Þ

max fð Þ− min fð Þ

s
ð6Þ

where f(A) is the frequency of gene A, min(f ) is the mini-
mum frequency of genes and max(f ) is the maximum
frequency of genes in the set of all pathways.

The third term in Eqs. (1) and(3), is the probability of
interactions (A→ B) and (A ⊣ B). To estimate these
probabilities, the rational assumption is that the more
the number of pathways in which A and B interact with
each other than the number of pathways in which they
have not interact with each other, the more the likely the
interaction of A and B. Therefore, each pairwise inter-
action in the set of allpathways is checked against all the
pathways in KEGG database. To estimate the probability
of (A→ B) interaction, the number of pathways, where
there exist A→ B are counted. The number of pathways
where both A and B exist but have no activation associ-
ation is between are also counted. Likewise, the activa-
tion interaction is replaced by inhibition to estimate the
probability of inhibition interactions. Eqs. (7, 8) reveal
how the probability of activations and inhibitions inter-
actions are estimated, respectively.

P A→Bð Þ ¼ pathway ϵ KEGGf jA;B; A→Bð Þϵ pathwayj g j
pathways ϵ KEGGf j A;B ϵ pathwayj g j

ð7Þ

P A⊣Bð Þ ¼ pathway ϵ KEGGf jA;B; A⊣Bð Þϵ pathwayj g j
pathways ϵ KEGGf j A;B ϵ pathwayj g j

ð8Þ

The probinit parameter which is used in modeling the
activation of gene A that is not activated nor inhibited
by other genes in the pathway (Command (8) in Table 1)
is set equal to P(A).
To estimate the prob1, prob2 parameters available in the

Command (9) in Table 1, suppose, where the error for de-
termining differentially expressed genes is α, according to
which the equation set (9) is introduced as follows:

g∈expressed genes→prob1 ¼ 1−αð Þ; prob2 ¼ α

g∈differentially expressed genes→prob1
¼ α; prob2 ¼ 1−αð Þ ð9Þ

To estimate α, let’s suppose that, a cut off equal to v is
chosen for FDR adjusted p-values for discovering the
differentially expressed genes. It means that there is a v%
chance that we make the wrong decision. In other
words, the gene discovered as differentially expressed is
not differentially expressed with the probability v%.
Accordingly, α is chosen equal to the cut-off value v.

Score computation
Score computation defines PRISM properties to check
against the formal models of pathways. These properties
are sought to find the possibility that the final effector
genes (final genes that trigger cell responses) are differ-
entially activated; that is, they are in state 4. This prop-
erty is defined in PRISM language as:
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P ¼ ? F g ¼ 4ð Þ½ � ð10Þ

where F is a temporal operator means eventually in the
future, and g is a final effector gene. These probabilities
are computed for every final effector genes of the path-
way path, and their sum is used to assign a score to each
pathway as follows:

score ¼
X

g is a final effector gene of path
P ¼ ? F g ¼ 4ð Þ½ �: ð11Þ

Significance assessment
Pathway scores are intended to provide the amount of
change incurred by the pathway between two phenotypes
(e.g., normal and diseased). However, the amount of change
can take place by chance. Consequently, an assessment of
the significance of the measured changes is required.
To obtain the significance of the measured change the

null distribution must first be estimated. The null hy-
pothesis here is that the differential expression of the
genes does not associate with the condition under study.
Consequently, for constructing null distribution, the
pathway scores for the situations where the random
number of DE genes are scattered randomly in the path-
way are of interest.
Thus, the null distribution is constructed by permut-

ing the label of the normal and disease samples. This
procedure generates samples under the assumption that
no particular association between the gene differential
expressions and phenotype exist. Class label permuta-
tions allowed to maintain gene-gene relations but re-
move the association between differential expressions of
genes and the condition under study.
Thus to assess the significance of a pathway score, the

sample labels are swapped Nperm times and the score is
recalculated for these new samples. Finally, the signifi-
cant of pathway score is obtained as follows:

PF ¼
P

permI Scoreperm≥Scorereal sample
� �

Nperm
ð12Þ

where I(.) is an indicator function, path _ scorepermis the
score of the pathway for each permutation, path _ scorereal
_ sample is the score of the pathway for the main data and
Nperm is the number of permutations.

Data analysis
All 36 datasets in the mentioned benchmark of the target
pathway technique are available from the Gene Expression
Omnibus (GEO) (details for each dataset are given in Add-
itional file 2). These datasets are collected and normalized as
‘KEGGdzPathwaysGEO’ [42] and ‘KEGGandMetacoreDz-
PathwaysGEO’ [43] R packages. For all, a moderated t-test
between disease and normal groups is performed by using

the R limma package [44], followed by selecting genes with
FDR adjacent p-values [45] less than 0.05 as differential.

Evaluation
Comparing FoPA with other existing methods
Assessing the correctness of any pathway analysis
method in real experiments is a challenging task because
a real gold standard has been not proposed yet. Lack of
a definitive answer concerning the involvement of a
given pathway in a given condition makes it impossible
to calculate exact values for sensitivity, specificity, ROCs.
Under such circumstances, it is best to compare the re-
sults of the desired pathway analysis method with other
available and well-known methods.
Among available TP-based methods, the ones with avail-

able R scripts or packages for downloading are of concern
in this study. These methods are compared by Bayerlova et
al. [46]. In this comparison, centrality based pathway ana-
lysis (CePa-GSA) [24] indicates better results, therefore,
FoPA is compared with it. Moreover, signaling pathway im-
pact analysis (SPIA) [20] is chosen for comparison, because,
it is the first introduced PT-based method and almost, all
methods compare their results with it. Furthermore, some
gene set based methods are compared by Tarca et al. [47]
indicating that the pathway level analysis of gene expression
(Plage) [14], Globaltest [12] and pathway analysis with
down-weighting overlapping genes (PADOG) [16] outper-
form their counterparts. Because PADOG is newer and
ranks the target pathways better than the other two, it is
chosen for comparison here. In the following, these
methods are described briefly.
CePa_GSA incorporates network centralities to weight

gene-level statistics, and then these statistics transforms into
pathway level statistics. For gene level statistics the absolute
value of t-statistic is used as default, and the default function
for computing pathway level statistics is mean function.
SPIA is combining two scores. For computing the first

one, it is assumed the same as the simple ORA methods,
that the number of DEGs in a given pathway follows the
hypergeometric distribution. To obtain the second, so-called
perturbation score, the pathway topology information is in-
corporated into the analysis. First, to each gene in a path-
way a perturbation factor is assigned which is the logarithm
of the fold-change (logFC) of this gene and the sum of per-
turbation factors of its direct upstream genes normalized
by the number of all its downstream genes. The terms of
the sum are weighted by the type of interaction between
genes: 1 for activation and − 1 for inhibition. Next, the ac-
cumulated perturbation of each gene is computed by the
difference between the perturbation factor of that gene and
its observed logFC. Finally, the accumulated perturbations
of the pathway’s genes are aggregated in total pathway ac-
cumulated perturbation. The two scores are then combined
into a global score by using Fisher’s product test.
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Gene set scores in PADOG are computed by first calculat-
ing moderated t-scores for all the genes, and then integrat-
ing the weighted moderated t-scores in a global gene set
score. The weight of a gene in a gene set is down-weighted
if it is involved in multiple gene sets. Thus, the higher
weights are given to gene set specific genes, prioritizing their
effect in the scoring.

Target pathway technique
Most of the pathway analysis methods usually select a
few real datasets for comparing their methods with
others and then interpret the results either with the help
of a life scientist or by searching the published literature.
But since a large number of pathways are implicated dir-
ectly or indirectly in any biological condition, authors
may select specific literature as supporting evidence.
Thus, this type of validation may lead to biased results.
A better assessment approach must eliminate human bias

and be performed on a large number of datasets and condi-
tions. The validation approach introduced by Tarca et al.
[47] is reproducible, based on multiple datasets, and does
not require an expert human evaluation of the results.
In this approach, multiple microarray datasets are used as

a benchmark. Every dataset in this benchmark represents a
particular disease coming from different tissues and labora-
tories. Each dataset has been linked to a defined pathway
from the KEGG database which is considered to be the tar-
get pathway for that dataset. For example, a dataset com-
paring normal and cancerous colon would have ‘colorectal
cancer’ as its target pathway. It is expected from any path-
way analysis method to identify the colorectal pathway as
affected and rank it close to the top. Methods are compared
based on their performance in ranking the target pathways.
Based on the above explanations, the sensitivity of a

method is defined as the median p-value of the target
pathways over benchmark datasets (a lower p-value indi-
cates higher sensitivity). The prioritization of a method
is the medians of the rank percentage of the target path-
ways over benchmark datasets.

False positive rate
The disadvantage of the target pathway technique is fo-
cusing on only one pathway for each dataset, whereas the
behavior of a biological system may be governed by more
than one pathway in a given condition. Because in reality,
there is no a priori knowledge of all relevant pathways, the
simulated false inputs (permuted class labels and decoy
pathways) are chosen as a set of negative controls.
In the first, 50 trials are used wherein the class labels

(e.g., normal, disease) of the actual samples are randomly
permuted before the analysis. The percentage mean of
the significant pathway subject to this null hypothesis is
expressed as the false positive rate of the method. By
using this null hypothesis, the expression levels are

dissociated from the studied phenotypes while the
gene-gene correlations are preserved. In the second
technique, the simulated decoy pathways are chosen as a
set of negative controls. Decoy pathways are generated
using KEGG pathways. A decoy pathway maintains the
structure of the KEGG pathway that is made from, with
the difference that its genes are substituted with random
genes from the set of all genes. Compared methods are
run on both KEGG real and decoy pathways to check
their ability to distinguish decoy from real pathways.
The ROC curves are created by plotting the
true-positive rate (the rate of the real pathways) against
the false-positive rate (the rate of the decoy pathways) at
various threshold levels. The area under these curves is
defined as a measure of how methods can well distin-
guish between the decoy and real pathways.

Consistent results for related datasets
Dong et al. [17] assumed that a successful method
should produce consistent results for independent data-
sets under similar studying conditions. They select three
independent datasets and performed enrichment analysis
for them and then counted the number of overlapping
gene sets that are significant in at least two datasets at a
given rank threshold. Here, the same strategy is followed
to test the performance of the FoPA under similar con-
ditions. The analysis is performed for five independent
colorectal cancer datasets (GSE4107, GSE8671,
GSE9348, GSE23878, GSE4183). At a given rank thresh-
old (e.g., top 10, 20, …, 50 significant pathways) and for
each pair of datasets, the number of overlapping path-
ways that are identified relevant is counted. This value
demonstrates the consistency between the results of the
method for these five datasets.
Because of tumor heterogeneity nature of cancers in-

cluding colorectal cancer, another test for consistency
analysis is performed. In this test, instead of choosing in-
dependence datasets, a dataset with N sample is selected.
This dataset is randomly resampled to obtain datasets of
size n < N. The analysis is then performed on these new
resampled datasets. Since these datasets are chosen from
the same experiment, mehods should produce consistent
results on them.

Application of FoPA to real data samples
As an application of FoPA, it is applied to two real data
samples. The first one is the colorectal cancer dataset
used in the target pathway technique (GSE8671) and the
second one is a list of autism-related genes identified by
Rubies et al. [48].

Systematic analysis of the possible bias
The p-values produced for each pathway by a pathway
analysis method must be uniformly distributed in the
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interval [0,1] when the null hypothesis is true [49]. If the
p-values are not uniformly distributed, the result of the
pathway analysis method may be biased. For example,
pathways that have p-values biased towards zero may
often be falsely identified as significant.
In [49] an approach for constructing an empirical null

distribution for analysing the systematic bias of the
methods is proposed. In this approach, the expression data
related to the control samples of some independent Alzhei-
mer’s disease experiments are used. Half of these samples
are randomly labeled as disease, and the rest are labeled as
normal. This procedure is repeated many times to generate
different groups of control and disease samples. Groups
with fewer or more disease samples (e.g., 10 diseases and
20 normal or 20 diseases and 10 normal) are also generated
to eliminate the effect of sample size. Then, the p-values of
the KEGG signaling pathways are calculated for each group.
These p-values should be uniformly distributed.

The impact of pathway’s incompleteness and noise on
FoPA’s performance
Currently, available pathway databases are not complete
and may be noisy. To inspect how incompleteness and

noise affect FoPA’s performance, they are mimicked by
randomly removing or rewiring a portion (e.g., 10, 20,
30,40, and 50%) of interactions in a pathway.
By interaction removal, an interaction between genes

is removed and by interaction rewiring the endpoint of
an interaction is set uniformly to a new gene from the
pathway. The edge removal and edge rewriting will not
remove genes from the pathways but will make changes
in the gene-gene interactions.
At each portion of edge removal or rewriting for each

pathway, the procedure is repeated 100 times. The similar-
ity measure for each pathway is computed as the number
of generated pathways identified related or unrelated as the
main pathway divided by the number of genrated pathways.

Results and discussion
Target pathway technique
The median of p-values and the median of the ranks of
the target pathways over benchmark datasets are defines
as sensitivity and prioritization of the methods. The re-
sults considering both the rankings and P-values of the
target pathways associated with each dataset, Figs. 4 and
5, are assessed (for additional details see Additional file 3).
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Fig. 4 Comparing ranks of target pathways: Each box contains 36 data points representing the rank (%) of the target pathway in each method
when using as input an independent dataset. Methods are ranked from best to worst according to the median rank
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The summary of results for the four different methods
based on the panel of 36 datasets is tabulated in Table 2.
Out of the four compared methods, CePa ranks the 1st
regarding sensitivity, while it ranks the 3rd regarding
prioritization; PADOG ranks the 2nd regarding sensitiv-
ity, and the 1st regarding prioritization and FoPA ranks
the 3rd regarding sensitivity and the 2nd regarding
prioritization.
The mean and mean reciprocal ranks of the target

pathways are almost equal in PADOG, and FoPA sug-
gested that on average FoPA ranks the target pathways
as well as PADOG ranks them. This Wilcoxon signed
rank test which is done on the rank and p-value of
PADOG and FoPA also confirms this outcome and
shows that there is no statistically significant difference
between the distribution of ranks and p-values of FoPA
and PADOG. Thus, it can be concluded that PADOG
and FOPA are able to prioritize target pathways with
high sensitivity when compared with CePa and SPIA.

False positive rate
Two experiments are used to measure the false positive
rate of the methods. In the first, 50 trials of the original

datasets with randomly permutated class labels (e.g.,
normal, disease) are used. The percentage mean of the
significant pathway subject to these random datasets is
considered as the false positive rate of the methods. In
the second, the simulated decoy pathways generated by
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Fig. 5 Comparing p-values of target pathways: Each box contains 36 data points representing the p-values of the target pathway in each
method when using as input an independent dataset. Methods are ranked from best to worst according to the median p-value

Table 2 Comparison between 4 methods regarding
prioritization, sensitivity and the reciprocal ranks of the target
pathways

FoPA PADOG CePa SPIA

mean reciprocal rank 0.09 0.1 0.06 0.07

rank median 17.5 11.4 25.25 41.25

rank mean 21.52 21.91 33.55 44.07

p median 0.11 0.08 0 0.27

p mean 0.15 0.18 0.11 0.38

Wilcoxon rank Reference 0.9 0.008 5e-05

Wilcoxon p Reference 0.45 0.02 0.0001

The table shows the statistics computed from the p-values and ranks of the 36
target pathways identified by each method. The mean reciprocal rank is the
average of the reciprocal ranks of the target pathways computed by the

equation 1
N

PN
i¼1

1
ranki

. The results of comparing the ranks of each method

against FoPA (chosen as reference), using a paired Wilcoxon test are also
included. The best value for each measure is shown in bold
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connecting random genes using the same network struc-
ture as the KEGG pathways, are chosen as a set of nega-
tive controls. Compared methods are run on both
KEGG real and decoy pathways to check their ability to
distinguish decoy from real pathways.
The false-positive rate of all methods for different sig-

nificance threshold produced by analyzing 50 permuted
versions of original datasets is shown in Fig. 6. The per-
centage of all pathways found significant at different sig-
nificance thresholds is reported for each method with a
vertical bar which indicates that the FoPA false-positive
rate is less than that of other methods.
The results of three methods FoPA, CePa and PADOG

in ranking decoy and real pathways are shown as ROC
curves in Fig. 7. Two datasets (GSE6956C, GSE18842)
are chosen out of 36 datasets to feed into the methods
as inputs. No matter which datasets are selected, the
decoy pathways should not appear in high ranks of the
results for the input dataset. The results here have illus-
trated that the area under the curves ROC in FoPA is
greater for both datasets. That is FoPA outperforms
PADOG and CePa in distinguishing real from decoy
pathways.

Consistency result for independent experiments
An analysis is performed for five independent colorectal
cancer datasets (GSE4107, GSE8671, GSE9348,
GSE23878, GSE4183). The results of methods for these
datasets are assessed at multiple rank thresholds. At a

given rank threshold (e.g., top 10, 20, …, 60 significant
pathways) the overlapping pathways between the results
of each pair of datasets are counted which is shown in
Fig. 8a. In this experiment, FoPA identifies more over-
laps than PADOG and SPIA at almost all rank thresh-
olds. CePa recognizes more overlaps in ranks 10, 20, 30,
40. However, it seems the recognized list by CePa as
shown in Table 3, contains false-positive (The complete
results can be found in Additional files 4 and 5).
In Table 3, the ‘colorectal cancer’ and ‘Renal cell car-

cinoma’ are overlapped respectively among the signifi-
cant pathways found by PADOG in four and three of the
colorectal cancer datasets. However, the null distribution
analysis performed in [49] has shown that p-values pro-
duced by PADOG for the ‘colorectal cancer’ and the
‘Renal cell carcinoma’ pathways are biased towards zero,
that makes these pathways detected as significant re-
gardless of input dataset.
FoPA found the ‘Vasopressin-regulated water reabsorp-

tion’ and the ‘Aldosterone-regulated sodium reabsorption’
pathways overlapped between the significant pathways in
four colorectal datasets.
The presence of vasopressin receptors was reported in

transformed epithelial cells, as well as in a wide panel of
human tumor cell lines [50]. In addition, the expression
of vasopressin receptor is confirmed in commercially
available colon tumor samples [51]. Moreover, desmo-
pressin, a synthetic analogue of vasopressin, has shown
significant antitumor activity in preclinical murine
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Fig. 6 Comparing false-positive rates produced by four methods: The percentage of all pathways found significant at different significance
thresholds is reported for each method with a vertical bar (the scale is logarithmic). The horizontal lines indicate the expected number of false
positives at each threshold. Methods are ranked from best to worst according to their false positive rates
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models of colorectal cancer [52]. Therefore, finding the
‘Vasopressin-regulated water reabsorption’ pathway as an
overlapped pathway in colorectal cancer datasets is in
line with other findings.
We refer to the research done by Guo et al. [53] to indi-

cate that the second overlapped pathway, ‘Aldosterone-re-
gulated sodium reabsorption’, is also consistent with the
other findings. In this research, some colorectal datasets
are integrated to elucidate the potential key candidate
genes and pathways in CRC. The ‘Aldosterone-regulated
sodium reabsorption pathway’ is among the candidate
pathways that have been identified as common in CRC.

Consistency results for resampling datasets of one
experiment
From the five colorectal cancer dataset above, GSE8671 is
chosen, since it has more samples than the others. This
dataset is randomly resampled to obtain sub-datasets of
size 8, 16, and 32. This procedure is repeated 50 times to
create different groups of samples. The result of the four
methods for these datasets is assessed for consistency of
results. At each given rank threshold the average number
of overlapped pathways are shown in Fig. 8b. As it clear,
the average number of overlapped pathways identified by

FoPA is more than that of other methods in almost all
rank thresholds.

Pathways ranking on colorectal cancer dataset
As an example, the results of FoPA are analyzed on one
of the datasets used in the target pathway technique and
shown it is consistent with other available studies. This
dataset compares 32 pairs of samples collected from colo-
rectal adenomas with those of normal mucosa from the
same individuals [54] using Affymetrix HG-U133 Plus 2.0.
Microarray platform. This dataset is available via Gene Ex-
pression Omnibus (ID =GSE8671) (For details about the
differentially expressed genes in this dataset, refer to Add-
itional file 6). The KIA1199 gene is reported as the most
overexpressed gene in this study. There is an increasing
body of evidence that suggests the involvement of this gene
in cancer progression, metastasis and poor prognosis of pa-
tients with colorectal cancer [55]. Cancer data analysis indi-
cates that the expression of KIAA1199 and ‘Wnt-signaling
pathway’ genes are correlated [56]. Thus, ‘Wnt signaling
pathway’ is likely to be relevant to the condition under
study in this dataset. Four pathway analysis methods are
compared regarding their ability to identify the ‘Wnt signal-
ing pathway’ as relevant to the present dataset. The results
are tabulated in Table 4 (For complete results refer to

Table 3 Overlapped pathways in the top 10 significant pathways found by each method in five colorectal cancer datasets (GSE4107,
GSE8671, GSE9348, GSE23878, GSE4183)

Overlapping Pathways in four colorectal cancer datasets Overlapping Pathways in three colorectal cancer datasets

KEGG ID Name KEGG ID Name

FoPA 04962 Vasopressin-regulated water reabsorption 04976 Bile secretion

04960 Aldosterone-regulated sodium reabsorption 04064 NF-kappa B signaling pathway

04978 Mineral absorption

05010 Alzheimer’s disease

PADOG 05210 Colorectal cancer 05211 Renal cell carcinoma

05222 Small cell lung cancer

CePa 04310 Wnt signaling pathway 00051 Fructose and mannose metabolism

04514 Cell adhesion molecules (CAMs) 00563 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis

00430 Taurine and hypotaurine metabolism

04810 Regulation of actin cytoskeleton

04722 Neurotrophin signaling pathway

00250 Alanine, aspartate and glutamate metabolism

00983 Drug metabolism - other enzymes

05414 Dilated cardiomyopathy (DCM)

SPIA 4512 ECM-receptor interaction 3320 PPAR signaling pathway

4062 Chemokine signaling pathway

4110 Cell cycle

4725 Cholinergic synaps
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Table 4 The top 15 pathway retrieved by FoPA, PADOG, CePa and SPIA for the colorectal cancer (GSE8671) dataset

FoPA PADOG

Rank KEGG pathway KEGG
ID

PFoPA Rank KEGG pathway KEGG
ID

PPADOG

1 Non-small cell lung cancer 05223 0.0064 1 RNA transport 03013 0.0001

2 Intestinal immune network for IgA production 04672 0.0194 2 Cell cycle 04110 0.0001

3 Aldosterone-regulated sodium reabsorption 04960 0.0194 3 p53 signaling pathway 04115 0.0001

4 Tight junction 04530 0.038 4 Progesterone-mediated oocyte
maturation

04914 0.0001

5 p53 signaling pathway 04115 0.048 5 Colorectal cancer 05210 0.0001

6 Wnt signaling pathway 04310 0.05 6 Non-small cell lung cancer 05223 0.0001

7 Mineral absorption 04978 0.0679 7 Endometrial cancer 05213 0.01

8 Renin-angiotensin system 04614 0.067 8 Small cell lung cancer 05222 0.0299

9 Alzheimer’s disease 05010 0.07 9 Glioma 05214 0.0299

10 Vasopressin-regulated water reabsorption 04962 0.07 10 RNA degradation 03018 0.040

11 NF-kappa B signaling pathway 04064 0.07 11 Apoptosis 04210 0.040

12 Neurotrophin signaling pathway 04722 0.08 12 Prostate cancer 05215 0.040

13 Melanoma 05218 0.09 13 Prion diseases 05020 0.040

14 Colorectal cancer 05210 0.1 14 Gap junction 04540 0.050

15 Leukocyte transendothelial migration 04670 0.12 15 Pancreatic cancer 05212 0.050

… …

28 Wnt signaling pathway 04310 0.2

CePa SPIA

Rank KEGG pathway KEGG
ID

PCePa Rank KEGG pathway KEGG
ID

PSPIA

1 Cell adhesion molecules (CAMs) 04514 0.009 1 Chemokine signaling pathway 04062 0.001

2 Taurine and hypotaurine metabolism 00430 0.009 2 Cell cycle 04110 0.001

3 Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 00563 0.009 3 p53 signaling pathway 04115 0.001

4 Regulation of actin cytoskeleton 04810 0.009 4 ECM-receptor interaction 04512 0.001

5 Circadian rhythm 04710 0.009 5 Gap junction 04540 0.001

6 Neurotrophin signaling pathway 04722 0.009 6 Natural killer cell mediated cytotoxicity 04650 0.001

7 Alanine, aspartate and glutamate metabolism 00250 0.009 7 Fc gamma R-mediated phagocytosis 04666 0.001

8 Drug metabolism - other enzymes 00983 0.009 8 Cholinergic synapse 04725 0.001

9 Dilated cardiomyopathy (DCM) 05414 0.009 9 GABAergic synapse 04727 0.001

10 Wnt signaling pathway 04310 0.009 10 Regulation of actin cytoskeleton 04810 0.001

11 Fructose and mannose metabolism 00051 0.009 11 Aldosterone-regulated sodium
reabsorption

04960 0.001

12 NOD-like receptor signaling pathway 04621 0.009 12 HTLV-I infection 05166 0.001

13 Autophagy – animal 04140 0.009 13 Prostate cancer 05215 0.001

14 Glycosphingolipid biosynthesis - lacto and neolacto
series

00601 0.009 14 Systemic lupus erythematosus 05322 0.001

15 Arrhythmogenic right ventricular cardiomyopathy
(ARVC)

05412 0.009 … 0.001

123 Wnt signalling pathway 04310 0.97

'Wnt signaling pathway' and 'colorectal cancer' pathways shown in bold are expected to be impacted in GSE8671 dataset. These pathways are among the top-
ranked pathways found by FoPA
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Additional file 5). As illustrated, FoPA identifies the ‘Wnt
signaling pathway as significant’ (p-value < 0.05) and with a
lower rank than the other compared methods.
According to the analysis accomplished by FoPA, six

pathways (p-value < 0.05) are recognized as relevant to
colorectal adenoma (GSE8671). The first one is the ‘non--
small cell lung cancer signaling pathway’. This is consistent
with a recent study [57] shown that the majority of genes
for colon and lung cancer susceptibility are linked pair-wise
and are likely identical or related.
The second identified one is the ‘Intestinal immune net-

work for IgA production’. The differentially expressed
genes of the present dataset show that the expression of
the majority of genes in the ‘intestinal immune network
for IgA production’ pathway is lower than that in the nor-
mal mucosa. These include a series of human leukocyte
antigen (HLA) class II genes (HLA-DOA, DPA1, DPB1,
DQA1, DQA2, DQB1, DMB, DRA, DRB1, DRB3, DRB4,
and DRB5). These genes encode major histocompatibility
complex class II molecules in antigen presenting cells (B
lymphocytes, dendritic cells, and macrophages), which are
essential for the proliferation and differentiation of B cells
[58]. Since IgA-secreting cells contribute to reducing in-
flammatory response which is a strong risk factor for the
development of gastrointestinal adenocarcinomas, it is
likely that the impairment of IgA production may drive
further inflammatory responses and promote tumor
growth. This is consistent with prior studies that showed
the influence of IgA-secreting cells and B cells to colon tu-
mors progression [59, 60].
The third identified pathway is ‘Aldosterone-regulated

sodium reabsorption’. In this pathway, Aldosterone binds
MR (Mineralocorticoid Receptor), which translocate into
the nucleus and regulates gene transcription. A recent
study [61] have demonstrated that decreased MR expres-
sion can contribute to angiogenesis and poor patient sur-
vival in colorectal malignancies and they show MR
activation in the presence of a physiological amount of al-
dosterone exerts a negative role on angiogenesis.
The fourth pathway is ‘Tight Junction’(TJ) pathway.

Claudin family proteins consisting of at least 24 members
are essential for the formation of TJs and have a signifi-
cant effect on the biological behavior of tumor progres-
sion. Previous studies have demonstrated the several
claudin (claudin-1 [62, 63], claudin-3 [64, 65], claudin-4
[64], claudin-7 [65]) aberrant expression patterns in colo-
rectal cancer. Among them, claudin-1 and claudin-2 over-
expression are identified in the present dataset.
The fifth pathway is ‘p53 signaling pathway’ where its

dysfunction is highly prevalent in most cancers [66].
Autism exome sequencing study: Rubeis et al. [48] have

analyzed exome sequencing of autism patients and
healthy people and identified 22 autism-related genes.
Here, these genes are considered as differentially

expressed genes and the mutation rate of them as the
probability of each gene instead of t score in differen-
tially expressed genes analysis.
The results of applying FoPA to autism-related genes

are shown in Table 5 (More results are given in Add-
itional file 7). FoPA does not find any significant path-
way (p-value < 0.05). However, five high ranked
pathways worth to be considered as the likely related
pathways to autism. Through reviews of literature, pieces
of evidence are provided showing these pathways may
be related to autism.
It has been reported that atypical processing of odor

and taste stimuli is presented in autism spectrum disor-
ders (ASD) [67, 68]. A study [69] examined the relation-
ship between sensory responsiveness and social severity
in children with high functioning ASD. Analyses re-
vealed scores of oral sensory, olfactory, and touch as the
strongest predictors of greater social impairment in
autism.
Asthma is another identified KEGG pathway. Recently,

researchers at Sydney University’s Brain and Mind
Centre have published a study that shows a relationship
between a mother’s active immune response during
pregnancy to allergies and asthma and severe social im-
pairment symptoms in children with autism [70].
GABAergic synapse may be one of the important rele-

vant pathways to ASD. Several lines of evidence suggest
that an impairment of GABAergic transmission contrib-
utes to the development of ASDs. GABAergic signaling
dysfunction early in development leads to a severe exci-
tatory/inhibitory unbalance in neuronal circuits, a condi-
tion that may account for some of the behavioral deficits
observed in ASD patients [71].
The last pathway in the list is the Renin-angiotensin

system (RAS). This pathway has been hypothesized to
have a pivotal role in some neurodegenerative diseases,
such as Parkinson, Alzheimer, Huntington and Multiple
Sclerosis (MS) [72].
Angiotensin-converting enzyme (ACE) is the essential

enzyme in this pathway which plays a major role in the
degeneration of a family of neurotransmitters in the cen-
tral nervous system (CNS). The implication of neurotrans-
mitters in psychiatric disorders is supported by their

Table 5 results of applying FoPA to autism-related genes

KEGG ID KEGG pathway name Score PFoPA

1 05016 Huntington’s disease 2.1e-03 0.186

2 04742 Taste transduction 2e-04 0.22

3 05012 Parkinson’s disease 2.6e-06 0.23

4 05310 Asthma 1.7e-07 0.47

5 04727 GABAergic synapse 6.2e-05 0.48

6 04614 Renin-angiotensin system 3.01e-07 0.48
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function in the regulation of emotions, cognition, behav-
ior, and memory which are disrupted in autism [73].
This analysis highlights the role of Renin-angiotensin

system and GABAergic synapse pathways in ASD. It can
be concluded that there may exist relations between
GABAergic synapse pathway and RAS in the develop-
ment of autism. Further genetic studies can support this
finding.

Systematic analysis of the possible bias
To analysis, the possible bias of the FoPA, a total of
1000 resampled datasets from 41 control samples of 4
Alzheimer’s datasets (GSE5281_EC, GSE5281_HIP,
GSE5281_VCX, and GSE16759) is generated. Some of
them (18) are randomly labeled as disease and the
remaining marked as normal samples. This procedure is
repeated 500 times to create different groups of 18 dis-
ease and 17 control samples. To eliminate the effect of
the group size 100 datasets consisting of 10 control and
10 diseases, 200 datasets consisting of 10 control and 20
diseases and 200 datasets consisting of 20 control and
10 diseases samples are also generated. The p-values of
KEGG signaling pathways for each of the datasets are
calculated using FoPA. The results, Fig. 9, indicate that
the distributions of p-values cumulated from all KEGG
signaling pathways are a bit biased toward zero. How-
ever, it’s not so much that it can affect the performance
of the FoPA. The top 16 most biased pathways sorted by
their distributions means have also shown in Fig. 9. It is
showed that the distributions of p-values produced by

FoPA are reasonably uniform for each of these pathways,
while the results of the analysis in [49] have shown that
PADOG and SPIA are biased towards generating lower
p-values for some of the signaling pathways.

The impact of the pathway’s incompleteness and noise
on FoPA’s performance
Pathway database incompleteness and noise are mim-
icked by randomly removing or rewiring a portion (e.g.,
10, 20, 30, 40, and 50%) of the interactions in a pathway.
At each portion of edge removal or rewriting for each
pathway, the experiment is repeated 100 times. The
similarity measure for each pathway is computed as the
number of the generated pathways identified the same
as the main pathway (both relevant or both not relevant)
to the condition under study. The average of these mea-
sures for each pathway at each portion is illustrated in
Fig. 10. The results have shown that the average similar-
ity drop with an increase of perturbations. Interaction
rewriting has a more significant effect on FoPA than re-
moval does.

Conclusion
In this study, a new pathway analyzing approach is intro-
duced, that uses formal methods to rank pathways ac-
cording to their relevance to a given clinical condition
(e.g., disease). To the best of the authors’ knowledge, it
is the first attempt in using the formal methods in solv-
ing such a problem. Formal modeling has many advan-
tages over the modeling by graphs. It helps researchers
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to express any relations among biological components
involved in an interaction. This helps to create a reliable
model of signaling pathways that can be effective in re-
ducing the false results in pathway analysis studies. The
proposed tool named FoPA is constructed based on this
new approach. We have compared FoPA with three
other analysis methods, two topology-based (CePa,
SPIA) and one gene set-based (PADOG). These methods
are chosen regarding their performance in previous
comparisons.
Some techniques are used to evaluate the FoPA’s per-

formance and compare it with other methods. We have
assessed the results considering both rankings and
P-values of the target pathways. The results indicate that
PADOG and FoPA are able to prioritize target pathways
with high sensitivity when compared with CePa and
SPIA. However, considering the target pathway tech-
nique performance is not enough. Thus, the simulated
false inputs (permuted class labels and decoy pathways)
are created as a set of negative controls to measure the
false-positive rate of the methods. The number of signifi-
cant pathways identified by giving permuted class labels
to FoPA is less than the other three methods; that is,
FoPA differentiates significantly between actual and ran-
dom clinical data. Moreover, the area under the curve
ROC is greater in FoPA compared with PADOG and

CePa, which indicates that FoPA excludes more decoy
pathways from real ones.
The results of the methods on independent colorectal

cancer datasets indicate that, FoPA identifies more over-
laps than PADOG and SPIA at almost all rank thresh-
olds and its finding is in line with other researches.
Although CePa has found more overlaps in some rank
thresholds, these overlaps appear to have false pathways.
The consistency analysis is also performed on a group of
dependent datasets (datasets made by resampling). The
average overlapped pathways found by FoPA on these
datasets is more than that of other methods.
We also have demonstrated that there is no system-

atic bias in FoPA that makes some pathways detected
as significant regardless of the input differentially
expressed genes.
As an application of FoPA, we apply it to a list of

autism-related genes and show that FoPA can discover
pathways relevant to autism. This analysis highlights the
role of Renin-angiotensin system and GABAergic synapse
pathways in ASD.
These lines of evidence well demonstrate FoPA’s ad-

vantage over the other methods. One of the disadvan-
tages of FoPA may be its high running time compared
with available statistical methods. Though this running
time is tolerable, it will be decreased through the
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similarity measure is the number of the generated pathways identified the same as the main pathway
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improvement made in our modeling and also in formal
verification techniques.
The other disadvantage of FoPA is that it treats path-

ways as independent entities, and gives more focus on
pathway-specific genes rather than overlapped genes
among pathways. While some of these overlapped genes
will lead to “crosstalk” phenomenon that could influence
other pathways. As a result, considering cross-talk genes
and inter-pathway relations may lead to better perform-
ance of FoPA.
It is worth mentioning that FoPA is the first attempt

of using formal methods in pathway analysis. So, by add-
ing other details in model specification and considering
some other aspects such as pathway’s cross-talk, the re-
sult of the experiments would be improved significantly.
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