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Integrated CNV‑seq, karyotyping 
and SNP‑array analyses for effective prenatal 
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Abstract 

Background:  Emerging studies suggest that low‐coverage massively parallel copy number variation sequencing 
(CNV-seq) more sensitive than chromosomal microarray analysis (CMA) for detecting low-level mosaicism. However, 
a retrospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of CNV-seq compared 
with CMA is warranted.

Methods:  A total of 72 mosaicism cases identified by karyotyping or CMA were recruited to the study. There were 67 
mosaic samples co-analysed by CMA and CNV-seq, comprising 40 with sex chromosome aneuploidy, 22 with autoso-
mal aneuploidy and 5 with large cryptic genomic rearrangements.

Results:  Of the 67 positive mosaic cases, the levels of mosaicism defined by CNV-seq ranged from 6 to 92% com-
pared to the ratio from 3 to 90% by karyotyping and 20% to 72% by CMA. CNV-seq not only identified all 43 chromo-
somal aneuploidies or large cryptic genomic rearrangements detected by CMA, but also provided a 34.88% (15/43) 
increased yield compared with CMA. The improved yield of mosaicism detection by CNV-seq was largely due to the 
ability to detect low level mosaicism below 20%.

Conclusion:  In the context of prenatal diagnosis, CNV-seq identified additional and clinically significant mosaicism 
with enhanced resolution and increased sensitivity. This study provides strong evidence for applying CNV-seq as an 
alternative to CMA for detection of aneuploidy and mosaic variants.

Keywords:  Chromosomal microarray analysis (CMA), Copy number variation sequencing (CNV‐seq), Copy number 
variations (CNVs), Prenatal diagnosis, Mosaicism
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Background
Chromosomal mosaicism is defined by the presence of 
two or more cell populations within the body and results 
from either gamete meiotic or mitotic cleavage-stage 
errors in the early preimplantation embryo [1]. Based 
on the differentiation stage when mosaicism arises, 

the aneuploid cells can reside only in extra‐fetal tissues 
(e.g. the placenta), only in the fetus, or in both. There-
fore, mosaicism and the level detected has an important 
impact on the phenotype of first generation carriers but 
also on the recurrence risk with implications for prenatal 
counselling [2].

Karyotyping, with a maximum resolution of 3 Mb [3], 
has been used as the  golden standard for identifying 
chromosomal abnormalities in prenatal diagnosis for 
more than 50  years. In general, the lower limit of true 
mosaicism detectable by karyotyping is around 5% [4]. 
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However, in some cases, low level mosaicism can be due 
to culture artifacts. Chromosomal microarray (CMA) 
conducted on uncultured fetal cells from chorionic vil-
lus sampling or amniocentesis has gradually replaced 
conventional karyotyping for all prenatal diagnosis indi-
cations owing to a higher diagnostic yield, quicker turna-
round time and elimination of cultural artifacts (pseudo 
mosaicism) [5]. Although it has been demonstrated to be 
a powerful tool to detect mosaicism at levels as low as 5% 
[6], it still remains difficult to detect mosaicism in clini-
cal research when the ratio of euploid to aneuploid cells 
is below 20%. This is mainly due to platform differences, 
quality of the biopsy samples and maternal cell contami-
nation (MMC). Besides, the efficiency to detect segmen-
tal mosaicism can be limited by probe design and genome 
location.

More recently, low‐coverage massively parallel copy 
number variation sequencing (CNV-seq) has emerged 
as a high-resolution and low-cost technology for detect-
ing CNVs in clinical samples [5]. CNV‐seq can detect 
structural abnormalities larger than 100  kb and mosai-
cism as low as 5% [7, 8]. More and more studies have sup-
ported a higher sensitivity for low-pass GS in identifying 
low-level mosaicisms of both numerical disorders and 
submicroscopic rearrangements compared with routine 
CMA [5, 9, 10]. However, there is limited retrospective 
back-to-back comparison study to evaluate the accuracy 
and efficacy of CNV-seq compared with CMA has been 
reported in routine prenatal diagnosis. Herein, we con-
ducted a study to evaluate the diagnostic outcome and 
technical limitations of CMA and CNV-seq for detection 
of mosaicism.

Methods
Study subjects
Prenatal diagnosis by karyotyping or CMA identified 
72 fetuses with chromosome mosaicism from routine 
clinical samples collected in the Department of Medical 
Genetics of Hunan Provincial Maternal and Child Health 
Care Hospital between May 2018 to November 2019. The 
primary prenatal indications for the 72 women were: 21 
(29%) for advanced maternal age (AMA, > 35  years), 13 
(18%) with abnormal ultrasound structure scans (aUS), 
19 (26%) with a high-risk maternal serum screening 
(hMSS) results, 54 (69%) high-risk z-scores for T21/T18/
T13 by noninvasive prenatal screening (NIPS) and 3 (4%) 
had poor fertility histories (see Table 1 for case details).

Sample preparation
Genomic DNA (gDNA) was extracted from amniotic 
fluid (approximately 8 mL) or fetal cord blood (approxi-
mately 200µL) by using DNA Extraction Kit (Tissue and 
cells) and QIAamp DNA Blood Mini Kit (QIAGEN, 

Hilden, Germany) respectively. The quality and concen-
tration of gDNA from the samples was assessed using 
the Qubit 2.0 Fluorometer (Thermo Fisher Scientific, 
Waltham, Massachusetts, USA). Multiplex fluorescent 
PCR using 21 short tandem repeat (STR) markers was 
performed using the MicroreaderTM 21 Direct ID Sys-
tem (Suzhou Yuewei Gene Technology corporation, 
China) to measure MMC and identify polyploidy [11]. All 
72 samples had MCC levels less than 5% and qualified for 
CMA and CNV-seq analysis.

Karyotyping
Amniotic fluid and fetal cord blood samples were 
obtained under sterile conditions. For all prenatal sam-
ples, two cell cultures were set up by  trypsin-Giemsa 
banding, seeding the flasks with either 10 mL of amniotic 
fluid or 0.2 mL of cord blood. Amniotic and cord blood 
cultures were expanded for 8 and 3  days, respectively, 
and then G-banded (320–400 bands) karyotyping analy-
ses were performed on metaphases cells according to 
standard protocols. According to established guidelines 
[12], analysis of at least 50 metaphases cells was used to 
diagnose mosaicism. Mosaicism was defined as either 
level I/II pseudomosaicism or level III true mosaicism. 
Level I pseudomosaicism denotes the presence of a single 
aneuploid cell whereas level II pseudomosaicism denotes 
two or more aneuploid cells from one primary culture 
only. Level III is the presence of multiple aneuploid cells 
from at least two primary cultures and was classified as 
true mosaicism. In this study, with the exception of case 
27, all mosaic samples were diagnosed with level II true 
mosaicism.

CMA analysis
SNP array analysis was performed using Affymetrix 
CytoScan®750  K Array (Affymetrix Inc, CA, USA), 
according to the manufacturers protocol. Array results 
were analyzed using Chromosome Analysis Suite Soft-
ware (ChAS; version 4.0). All genomic coordinates were 
taken from the February 2009 (hg19) human reference 
sequence (NCBI Build 37). Genes and Online Mendelian 
Inheritance in Man (OMIM) references were from Ref-
Seq and OMIM entries, respectively. The theoretical val-
ues for the detection of a single copy gain or loss were 
applied as previously reported [13, 14].

CNV‐seq analysis
Genomic DNA (10 ng) was fragmented and DNA library 
was constructed as previously described [7]. Multiple 
libraries were indexed and pooled into a single lane and 
sequenced on the Nextseq CN500 instrument (Illumina, 
Inc.) to produce approximately 5 million single-end reads 
of 45  bp (including the 8  bp index sequence). For each 
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sample, approximately 2.8–3.2 million uniquely and pre-
cisely mapped 36  bp reads were aligned to the human 
reference genome using the Burrows–Wheeler mapping 
algorithm [15] and then allocated to 20-kb bins sequen-
tially across each of 24 chromosomes. Binned read data 
of all samples were compared internally with each other 
as described previously [8], and then log2 of the mean 
CNV of each sequencing bin along the length of each 
chromosome was plotted with log2[0] representing two 
copies (normal), log2[1.5] three copies (duplication) and 
log2[0.5] one copy (deletion). Trisomic mosaicism was 
defined by a mean chromosome copy number between 
2.05 (5%) and 2.95 (95%) whereas monosomic mosai-
cism was defined as a mean chromosome copy number 
between 1.05 (5%) and 1.95 (95%).

Results
Following prenatal diagnosis of 5,367 pregnancies with 
karyotyping and CMA, 72 fetuses were identified with 
mosaic results, including 22 with autosomal aneuploidy 
(30%), 40 with sex chromosome aneuploidy (n = 56%) 
and 10 with large cryptic genomic rearrangements (14%). 
Five samples with large cryptic genomic rearrangements 
were excluded from the analysis due to a lack of DNA fol-
lowing CMA testing (Additional file 1: Table S1). There-
fore, 67 samples (40 sex chromosome aneuploidies, 22 
autosomal aneuploidies and 5 large cryptic genomic rear-
rangements) were eventually analyzed by both CMA and 
CNV-seq (Fig. 1).

Diagnostic concordance of CNV‑seq and CMA 
versus karyotyping
For the 65 of 67 samples identified as mosaic by karyo-
typing, 41(63%) were also confirmed by CMA (Fig.  1). 
Of the 41 positives, 37 showed low levels of mosaicism 
around 20%. Two samples normal by karyotyping, we 
revealed as mosaic trisomy 8 and mosaic partial trisomy 
8 by CMA. In comparison, CNV-Seq not only identi-
fied all 43 mosaics detected by CMA, but also identified 
an additional 15 mosaic samples, increasing the yield of 
mosaic detection by 35% over CMA. The levels of mosai-
cism defined by CNV-seq ranged from 6 to 92%. Further, 
the chromosomal map intervals, size, and copy number 
of the reportable mosaicisms detected by both DNA-
based techniques were almost identical. Nine samples 
diagnosed as normal by CMA were also confirmed by 
CNV-seq.

Chromosomal mosaicism for autosomal aneuploidy
For mosaic autosomal aneuploidy, there were 21 cases 
identified by karyotyping and 1 case by CMA. The major-
ity of mosaic cases (16 of 22) were from high-risk non-
invasive prenatal screening group (Table 1). The mosaics 
identified involved trisomy 21 (12, 55%), trisomy 18 (2, 
9%), trisomy 15 (2, 9%) and other autosomal trisomies (6, 
27%).

CMA analysis identified 13 of 22 cases with mosai-
cism levels as low as 20% whereas CNV-seq identified 
19 of the 22 cases with mosaicism at levels down to 5% 
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performed in 5,367 prenatal cases
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(Fig.  2). For all 19 cases confirmed by CNV-seq, the 
percentages of trisomic cells for trisomy 21, 18 and 13 
were in good close agreement with karyotyping results. 

However, for case 16, 17, 18, 19 and 22, the proportion 
of aneuploidy was much lower in culture samples com-
pared with uncultured. Notably, for case 18, the mosaic 
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trisomy 8 was not detected in the cultured AF sample by 
metaphase analysis of 100 G-banded cells whereas CMA 
and CNV-seq showed 24% and 18% trisomy 8 mosaicism, 
respectively (Additional file  1: Fig. S1). For the remain-
ing three cases 11, 20 and 21, both CNV-seq and CMA 
showed a normal result in uncultured amniotic fluid cells 
but karyotype showed a mosaic pattern of trisomy 21, 
trisomy 9 and trisomy 20 in cultured amniotic fluid cells, 
respectively.

Chromosomal mosaicism for sex chromosome aneuploidy
There were 40 cases with mosaic sex chromosome ane-
uploidies accounting for 60% of all cases identified by 
karyotyping. Clinical indications for these cases were 
broader including aUS (n = 6), AMA (n = 11), hMSS 
(n = 12), NIPS (n = 33) and poor fertility history (n = 2). 
Details of the sex chromosomes involved and the clini-
cal course of the 40 pregnancies are presented in Table 1. 
The mosaic findings including 25 cases for monosomy X 
(45, X/46, XX), 7 cases for monosomy X and trisomy X 
(45, X /47, XXX) or monosomy X and disomy X (45, X 
/47, XXY), 5 cases for disomy X (47, XXY /46, XY), 1 case 
for disomy Y (47, XYY /46, XY), 1 case for trisomy X (47, 
XXX /46, XX) and 1 case for both monosomy X, disomy 
X, and trisomy X (45, X /46, XX/47, XXX).

Based on the karyotyping data, the percentage of mon-
osomic or trisomic cells varied from as low as 4% to as 
high as 92% (Table 1). Of the 40 sex chromosome mosa-
ics identified by karyotyping, CMA identified 23 cases 
of mosaicism (levels as low as 20%), 2 cases of whole sex 
chromosome aneuploidy and 15 normals. In contrast, 
CNV-seq identified 34 cases of mosaicism (level as low as 
8%) with an incremental yield of mosaicism of 22.5% over 
CMA. There was a 100% positive concordance between 
CMA and CNV-Seq for 23 mosaic samples. It should 
be noted that in case samples 38, 47, 50, 54 and 55, the 
proportion of monosomy X or disomy Y varied by more 
than 30% in cultured samples compared with uncultured 
samples.

For the 9 additional cases of mosaicism identified by 
CNV-seq, the measured levels of mosaicism were low, 
ranging from 8 to 23%. Further, for cases 36 and 41, there 
were 1.92 and 1.90 haploid equivalents of chromosome 
X in the amniotic fluid samples, respectively, whereas 
CNV-seq analysis of available fetal placenta confirmed 
placental mosaicism with chromosome X of 1.17–1.87 
and 1.3–1.85 haploid equivalents (Additional file  3: Fig.
S2).

For cases 23, 26, 27, 30, 32 and 61, both CNV-seq and 
CMA showed a normal result in uncultured amniotic 
fluid cells, but karyotyping showed a mosaic pattern 
of monosomy X or disomy X in cultured amniotic fluid 
cells. Among these cases, karyotyping detected a mosaic 

pattern of monosomy X or disomy X of less than 10% in 
5 of the 6 cases. The negative results of CMA and CNV-
seq may have been due to technical limitations or culture 
artifacts by karyotyping.

Chromosomal mosaicism for large cryptic genomic 
rearrangements
A total of 5 cases with large cryptic genomic rearrange-
ments were identified by karyotyping. Of these, 4 (cases 
64, 65, 66, 67) had a mosaic pattern involving a small 
supernumerary marker chromosome (sSMC) or unclari-
fied derived chromosome. By CMA, the character, origin 
and pathogenicity of these sSMC was further clarified 
(Additional file  4:  Fig. S3–Additional file  8: Fig. S7). 
Details of the chromosomes involved and the clinical 
course of the 5 pregnancies are presented in Table 1.

Discussion
Extensive prenatal studies have shown that mosaicism 
can involve most of the chromosomes, presenting as tri-
somy, monosomy, triploidy, deletion, duplication and 
ring mosaics. A clinical cytogenetics laboratory per-
forming prenatal diagnosis should therefore understand 
the limitations of cell-based chromosome analyses and 
DNA-based CNV-seq and CMA analyses for detect-
ing and measuring the levels of mosaic aneuploidies and 
other cryptic genomic rearrangements.

To our knowledge, this is the first retrospective back-
to-back study evaluating the efficacy of CNV-seq in 
detecting mosaicism, benchmarking against CMA and 
karyotyping as a reference. In our prenatal study, 72 of 
5,367 cases showed a mosaic chromosome pattern with 
1.39% (67/4825) detection rates among amniotic fluid 
samples and 0.92% (5/542) detection rates among cord 
blood samples. This rate is similar to the 1–2% chromo-
somal mosaicism rate in CVS [16, 17] but higher than the 
0.1–0.5% rate in amniotic fluid samples [18, 19]. Among 
the 72 mosaic pattern fetuses, high-risk NIPS results (53, 
68.91%) was the most common prenatal diagnosis indi-
cation. In NIPS analyses, there are occasional samples in 
gray zone for positive Z scores, indicating possible mosai-
cism. Thus, amniocentesis and karyotyping should be 
used to follow up these results to confirm full aneuploidy 
or mosaic aneuploidy [20]. If mosaicism is present, a 
more accurate assessment for levels can be obtained by 
CNV-seq.

The current study demonstrated that CNV-seq is 
more sensitive than CMA for identifying mosaicism, 
with the ability to detect levels down to 5%. This study 
confirms previous modelling of mosaicism where XXX 
and XO mosaicism was readily detectable at 5% [8]. 
Although SNP arrays has been demonstrated to be a 
powerful tool to detect mosaicism at levels as low as 
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5% by using IlluminaQuad610 array[6], the detectable 
levels are still variable among different CMA plat-
form (9%-20% for array CGH [18, 21] and 30%-70% 
for Affymetrix arrays [22, 23]). Further, when using 
poor-quality, contaminated or fragmented DNA as 
the starting template, CNV-seq preforms much better 
than array CGH platforms for detection of aneuploidy 
and mosaicism [24]. In addition, for cryptic segmen-
tal mosaicism by CMA, the detection rate is not only 
due to size of the CNV but also influenced by nonu-
niform distribution of the probes in some genomic 
regions [25]. As an example, Wang et al.[5] previously 
showed a variable probe density in the targeted region 
among different CMA platforms, prevented detection 
of pathogenic 298.7-kb deletion in the FBN2 gene that 
was detectable by low-pass genome sequencing. This 
reinforces the advantages of applying low-pass genome 
sequencing for CNV analysis which relies on genome-
wide uniformly distributed reads mapped to sequential 
bins across all chromosomes.

Variable proliferation of cells with different karyo-
type under in  vitro cell culture may have contributed 
to the inconsistent results between CNV-seq/CMA 
(uncultured samples) and karyotyping (cultured sam-
ples). Cell culture tends to promote the in  vivo selec-
tion of euploid over aneuploid cells, which has been 
reported to increase with age of the culture [26]. In our 
study, the percentages of cells for trisomy 21, 18 and 
13 by cell-based chromosome analyses were in good 
agreement with mosaicism levels measured by DNA-
based CNV-seq or CMA and were compared. How-
ever, for mosaic trisomy 15, trisomy, trisomy 2 and 
trisomy 22, levels of mosaicism by CNV-Seq and CMA 
were higher than those seen by karyotyping, which is 
consistent with previous reports for autosomal mosai-
cism [27–30]. This supports the general notion that 
normal cells may have had a growth advantage in cul-
ture or the abnormal cell line may have a culture dis-
advantage [18]. The exception was monosomy X (7 of 
30 cases), where the monosomy X cell line appeared to 
have a growth advantage over the normal cells, since 
CNV-seq and CMA measured monosomy X mosai-
cism at much lower levels. There were also 9 discord-
ant cases where karyotyping detected mosaicism above 
10%, but CNV-seq/CMA showed a normal result. 
Based on postnatal outcomes, a normal karyotype 
was confirmed, suggesting the mosaicism observed by 
karyotyping was due to low level culture artifacts. On 
balance, our studies highlight the advantage of using 
direct uncultured samples which can avoid artifact of 
culture, provides a quicker result and levels of mosai-
cism are more accurate to make a firm diagnosis.

Conclusions
This study evaluated the effectiveness of CNV-Seq for 
detecting low-level mosaicism in prenatal diagnosis. 
The retrospective analysis found that CNV-seq identi-
fied additional and clinically significant information 
with enhanced resolution and increased sensitivity for 
mosaicism (35% increased yield) compared with CMA. 
The diagnosis and genetic counselling for mosaicism in 
a prenatal setting remains challenging. Based on our 
findings, we propose that low level mosaic findings 
from karyotyping should be confirmed with a DNA 
based method, preferably CNV-seq if available.
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and Xq13.2q28 detected by CMA and CNV-Seq. Panel A. CMA result. Panel 
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