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Co-contamination of metals and organic pollutants is a global problem as metals
interfere with the metabolism of complex organics by bacteria. Based on a prior
observation that metal tolerance was altered by the sole carbon source being used for
growth, we sought to understand how metal toxicity specifically affects bacteria using
an organic pollutant as their sole carbon source. To this end metabolomics was used to
compare cultures of Pseudomonas pseudoalcaligenes KF707 grown on either biphenyl
(Bp) or succinate (Sc) as the sole carbon source in the presence of either aluminum (Al)
or copper (Cu). Using multivariate statistical analysis it was found that the metals caused
perturbations to more cellular processes in the cultures grown on Bp than those grown
on Sc. Al induced many changes that were indicative of increased oxidative stress as
metabolites involved in DNA damage and protection, the Krebs cycle and anti-oxidant
production were altered. Cu also caused metabolic changes that were indicative of
similar stress, as well as appearing to disrupt other key enzymes such as fumarase.
Additionally, both metals caused the accumulation of Bp degradation intermediates
indicating that they interfered with Bp metabolism. Together these results provide a
basic understanding of how metal toxicity specifically affects bacteria at a biochemical
level during the degradation of an organic pollutant and implicate the catabolism of this
carbon source as a major factor that exacerbates metal toxicity.

Keywords: bacteria, metal toxicity, Pseudomonas, GC-MS metabolomics, bioremediation, aluminum, copper,
biphenyl

Introduction

Anthropogenic pollution in the form of organic compounds and metal elements is widespread
around the globe (Darnault et al., 2005; Zalasiewicz et al., 2011). Bioremediation is the process
of using living organisms to either degrade organic pollutants into innocuous end-products or
immobilize metals and is an excellent method for cleaning up pollution and preventing ecological

Abbreviations: KEGG, Kyoto encyclopedia of genes and genomes; OPLS-DA, orthogonal partial least squares discriminant
analysis; PCA, principal component analysis; PPP, pentose-phosphate pathway; ROS, reactive oxygen species; VIP, variable
influence on projection.
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damage (Shukla et al., 2010). While many sites contaminated
with just organic pollutants have been successfully remediated,
co-contamination of metals has been found to interfere
with bacterial degradation of organic pollutants (Sandrin and
Hoffman, 2007). This is especially problematic as a large
proportion of sites (e.g., 40% of U.S. E.P.A. superfund sites)
are contaminated with both types of pollutants (Sandrin et al.,
2000). Despite this issue, little of the research on understanding
mechanisms of metal toxicity in bacteria has focused on this
problem (Lemire et al., 2013). Additionally, applied research has
emphasized only the characterization of situations where various
metals inhibited the degradation of different pollutants (Olaniran
et al., 2013) while the underlying physiological effects of these
metals on bacteria have yet to be investigated thoroughly.

Past work on metal toxicity in bacteria was mainly focused on
determining the concentration of metals that inhibited growth,
but these concentrations were found to vary widely depending
on the growth medium as this determines the speciation and
therefore bioavailability of metals (Sandrin et al., 2000). While
investigating this issue of how media composition affects metal
toxicity, we observed that tolerance to metals also differed
depending on the sole carbon source provided for growth,
all other media components being equivalent (Booth et al.,
2013a). As cells growing on different carbon sources make
use of different metabolic pathways, it was postulated that
the cellular targets of metal toxicity could differ based on the
carbon source being used. Previously we used metabolomics
to uncover differences between how surface attached biofilms
of Pseudomonas fluorescens and free-swimming planktonic
cultures were affected by copper (Cu) exposure (Booth et al.,
2011b). This systems biology technique enables the identification
and quantification of the low-molecular weight compounds
within a sample, thereby providing a metabolic profile. As
metabolomics has been successfully applied to understanding
metal toxicity in a variety of prokaryotic and eukaryotic systems
(Booth et al., 2011a), here we sought to use metabolomics to
characterize the differential effects of metal toxicity in bacterial
cultures grown on a either simple carbon source or a model
pollutant.

Pseudomonas pseudoalcaligenes KF707 is a bacterium that
was first studied due to its ability to degrade biphenyl (Bp)
and polychlorinated biphenyls (Furukawa and Miyazaki, 1986;
Taira et al., 1992) and has since been studied with regards to
its metal-resistance capabilities (Tremaroli et al., 2008, 2009),
chemotaxis toward Bp (Tremaroli et al., 2010) and recently had
its genome sequenced (Triscari-Barberi et al., 2012). Compared
to other metals and bacteria, P. pseudoalcaligenes KF707 was
found to be more sensitive to Cu and aluminum (Al; Tremaroli
et al., 2010) but was able to tolerate higher concentrations of
these metals when grown on succinate (Sc) compared to Bp
(Booth et al., 2013a). Both of these metals have been found in
co-contamination with polycyclic aromatic hydrocarbons and
polychlorinated biphenyls (Allen, 2008; Burgess et al., 2009; Renzi
et al., 2009; Jartun and Pettersen, 2010; Annicchiarico et al.,
2011; Hassanvand et al., 2015) especially in electronic waste
(Robinson, 2009; Fornalczyk et al., 2013; Liu et al., 2013; Itai
et al., 2014; Pradhan and Kumar, 2014) their mechanisms of

toxicity have been characterized in other systems (Macomber
et al., 2007; Macomber and Imlay, 2009; Lemire et al., 2010;
Mailloux et al., 2011) and are physicochemically very distinct
from one-another (Lemire et al., 2013). As such, thesemetals were
selected to determine if the physiological effects of metal toxicity
were the same in cultures grown on different carbon sources. To
this end we used gas-chromatography mass-spectrometry (GC-
MS) metabolomics to characterize cultures and spent media of
P. pseudoalcaligenes KF707 grown on either Sc or Bp, in the
presence of the same, sub-inhibitory concentrations of either
Al or Cu. By comparing metabolic profiles using multi-variate
statistical techniques, differences were discovered in how the
carbon source being used for growth influenced the effects of Al
and Cu. To our knowledge this provides the first systems-wide
characterization of the combined effects of metal toxicity and
growth on an aromatic carbon source. Our results indicate that
Bp catabolism is both affected by and exacerbates metal toxicity
as multiple metabolic pathways were altered in response to this
combined stress. These insights into the physiological effects of
metal toxicity in an environmentally isolated bacterium should
provide a basis for further investigations into the biochemical
mechanisms of how metal toxicity disrupts the metabolism of
complex aromatic substrates.

Experimental Procedures

Culture Growth
Pseudomonas pseudoalcaligenes KF707 was routinely cultured
in minimal salts medium (MSM) consisting of (in g/L)
K2HPO4, 4.4; KH2PO4, 1.7; (NH4)2SO4, 2.6; MgSO4·7H2O,
0.4; CaSO4·2H2O, 0.0031; MnSO4·H2O, 0.05; FeSO4·7H2O, 0.1
(Tremaroli et al., 2010). Trace metals were filter sterilized using a
0.2 μm filter and added as a 20X stock directly to each culture
flask. Eight percent dimethyl sulfoxide (DMSO) frozen stocks
were used to inoculate 5 mL subcultures which were grown
overnight. Fifty micro liter (Sc) or 1 mL (Bp) was then used to
inoculate 250 mL flasks containing 50 mL of MSM with either
5 mM Sc or 0.39 g of sterile Bp as this compound is insoluble
in water. At the same time as inoculation Al was added in the
form of Al2(SO4)3 or Cu as CuSO4 to a final concentration of
3 mM or 60 μM (respectively). One of each culture type was
grown simultaneously five separate times for five replicates of
each condition. For growth curves, every 8 h two aliquots of
50 μL were removed and separately serially diluted 1/10 down
to 10−7. Twenty micro liter spots were plated on LB agar and
counted after 24 h of incubation at 30◦C. For pH determination,
separate cultures were grown and every 8 h 1 mL of culture
was removed, centrifuged for 5 min at 10,000 RPM and the pH
determined using a Beckman 720 pHmeter and probe (Beckman,
Pasadena, CA, USA).

Collection of Samples and Extraction of
Metabolites
All cultures were treated identically for sample collection and
metabolite extraction, except that Bp-grown cultures were poured
through a coarse filter to strain out residual Bp particles. After
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24 h of growth cultures were harvested by rapid centrifugation
at 4◦C for 5 min at 5,000 RPM in a Sorvall RC5B-plus using
the SLA-1500 rotor (Thermo Scientific, Waltham, MA, USA).
Supernatant was collected as ‘Spent Media’ and all samples were
immediately frozen in liquid nitrogen for storage at −80◦C.
After all samples were collected, metabolites were extracted.
The extraction solution (900 μL 2:1 methanol:chloroform) was
added directly to frozen cell pellets. After homogenization by
pipetting the sample was transferred to a 2 mL MpBio FastDNA
Spin kit vial. Cells were lysed via bead-beating according to
the manufacturer’s instructions (40 s at 6.0 power level; MP
Biomedicals, Santa Ana, CA, USA). Samples were returned
to ice immediately and processed as previously (Booth et al.,
2011b). Briefly, 300 μL water and chloroform were added to all
samples. After hand-mixing, samples were centrifuged for 7 min
at 14,000 RPM and the aqueous phase was transferred to a fresh
tube. These steps were repeated twice to obtain pure aqueous
samples which were dried down in a vacuum concentrator at
room temperature and stored until analysis at −80◦C. For spent
media samples, 1.5 mL thawed sample was dried down at room
temperature in a vacuum concentrator. After resuspension in
50 μL ddH2O, 900 μL 2:1 methanol:chloroform was added and
samples were treated identically to cellular samples post bead
beating. For extraction/derivitization controls, clean, empty vials
were treated identically to true samples.

Derivitization and Analysis by GC-MS
Sample derivitization and GC-MS analysis was performed
identically to our previous work (Booth et al., 2011b; Bhat et al.,
2015) according to (Gullberg et al., 2004). Fifty micro liter of
20 mg/mL methoxylamine in pyridine was added to samples
which were mixed and incubated for 2 h at 37◦C, 200 RPM.
Next, 50 μL of N-methyl-N-(trimethylsilyl)trifluoroacetamide
(MSTFA, Sigma Aldrich, St. Louis, MO, USA) was added to all
samples which were incubated identically for 45 min. Samples
were then diluted with hexane and centrifuged for 7 min at
14,000 RPM to remove particulates. 150 μL was transferred
to gastight vials for analysis on a Waters GCT premier mass
spectrometer. Helium was used as the carrier gas at a constant
flow of 1.2 ml min−1. One micro liter derivatized sample was
injected into a DB5-MS column (splitless, 30m × 0.25 mm
ID × 0.25 μm) at an injector temperature of 275◦C. Initial
column temperature was 80◦Cwhich was held for 1 min and then
ramped at 12◦Cmin−1 to 320◦C and held for 8 min. The MS was
operated in a range of 50–800 m/z.

Identification of Metabolites
Mass spectral deconvolution, calibration, identification and
analysis were performed using Automated Mass Spectral
Deconvolution and Identification Software (AMDIS; Stein,
1999). Data were first calibrated for retention time shifts using
a set of alkane standards (C10–C30). The GOLM Metabolome
Database (GMD; Hummel et al., 2007) VAR5 library was
imported into the NIST MS Search program (Stein, 2011)
and components were identified and confirmed manually using
both the GMD library and the NIST11 Mass Spectral library.
A custom library of reproducible but unidentifiable analytes was

also generated from components extracted from representative
samples using AMDIS. For details see supplementary material.

Removal of Derivatization Artifacts
Any analytes found in the extraction/derivatization controls
that contained no sample were considered artifactual and were
excluded from quantification. These compounds originated
either from derivatization reactions occurring between the
plastics of the sample vessel, solvents, or from the GC
column. The most biologically relevant compounds that were
removed from quantification were uracil, decanoic, dodecanoic,
hexadecanoic, heptadecanoic, and octadecanoic acid. For a
detailed list of compounds see the supplementary material.

Quantification of Metabolites
Concurrent to the generation of a library of mass spectra
for the identification of components, ions were selected from
each compound as representatives for quantification. These
ions were manually selected to ensure that they were unique
to the retention index window of the analyte and of high
intensity relative to all other fragmentation ions. The common
trimethyl-silyl (TMS) ions 73, and 147 as well as ions with high
background such as 121, 266, 285, and 299 were excluded from
selection to ensure that the ions being quantified were truly
representative of the analyte in question. Peak quantification
was performed using this ion retention time list using MET-
IDEA (Broeckling et al., 2006). Peak selection parameters were
manually tuned (for specifics, see supplementary material)
to ensure that quantification was representative of individual
analytes. After quantification the validity of each analyte’s ions as
representative of that analyte was determined. Using a custom R
script (R-Project for Statistical Computing, CRAN.R-project.org)
the correlation across all samples between all pairs of ions as
well as the sum of all quantified ions was determined for each
analyte, for details see supplementary material. Any ion with a
correlation to the sum of all ions from that analyte below 0.8 was
removed from subsequent analysis. This process excluded some
analytes from further analysis as they had no ions that passed this
threshold. Most notable was cysteine 3TMS. The remaining ions
were summed for each analyte. Any analytes that represented the
same metabolite (i.e., aspartate 2TMS and aspartate 3TMS) were
summed. This gave 269 metabolites quantified, of which 89 were
identified and used for subsequent analysis.

Statistical Analysis: Pre-Processing
Data were first processed to enable their proper downstream
analysis. A noise threshold was determined by calculating the
mean intensity of analytes in the extraction control samples.
Any value below this mean was interpreted as noise and was
thus set to zero. Data were then normalized by probabilistic
quotient normalization (PQN; Dieterle et al., 2006) in order
to account for any variation in cellular material collected,
despite cell densities being highly similar between control and
treated samples. This kind of normalization was preferred
as past experiences attempting to normalize to sample wet-
weight or total integral normalization were inferior (Booth
et al., 2011b). For details on the normalization procedure, see
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the supplementary material. After normalization data were log
transformed and each analyte was mean-centered and scaled
to unit-variance. These transformations allow variables with
disparate dynamic ranges and means to be compared on the
same scale. Comparison of sample clustering between raw, log
transformed data (Supplementary Figure S1) and normalized
data (Supplementary Figure S2) indicated that the normalization
did not unduly skew the dataset as clustering remained similar.

Statistical Analysis
Statistical analyses were performed using SIMCA P+ v13.0
(UMETRICS) and R (R-Project for Statistical Computing,
CRAN.R-project.org). PCA was performed on all samples
together as well as individual analyses for each class. This separate
analysis was used to remove any outlying samples that were
not highly similar to the remaining members of that class. Only
a single sample was removed by this process, for details see
the supplementary material. After this trimming process PCA
and OPLS-DA was performed on the entire dataset. OPLS-DA
models were then generated for each combination of control and
treated samples (e.g., Bp control and Bp Al exposed, Sc control
spent media and Sc Cu exposed spent media etc.) in order to
minimize the amount of variation being examined in any one
model, thereby maximizing the interpretability of each model.
For each of these pairwise OPLS-DA models the R2Y, Q2 and
CV-ANOVA p values were used to assess model quality; only
models with CV-ANOVA p values below 0.05 were accepted
as statistically significant. From each significant model the VIP
and p(corr) values were exported for further interpretation.
Shared and unique structures plots were used as this type of
plot simplifies analysis of metabolomics data while maintaining
the depth of complexity within the dataset (Wiklund et al.,
2008).

Identification of Unknown Analytes
Biological interpretation of the data implied the possibility of
several metabolites that had not been identified, and could not
be identified due to their lack of standards available in either
Golm or NIST libraries. Using manual fragmentation to predict
the mass spectra, all the intermediates of the two possible
catechol-degrading pathways (starting either with catechol 1,2-
dioxygenase or catechol 2,3-dioxygenase) were searched for,
as well as several other metabolites that were predicted to
be present. Only two compounds with unknown peaks that
matched to a high enough thresholds were found. From
these predicted analytes their functional groups were used
to predict the Kováts’ retention index (Stein et al., 2007).
This approach confidently identified two unknown analytes:
2-hydroxymuconic semialdehyde and 2-phosphoglycolic acid.
For details of the identification procedure see the supplementary
material.

Pathway Enrichment Analysis
mBROLE was used to determine which metabolic pathways
were being affected by metal toxicity in cultures grown on the
two carbon sources. By calculating the number of metabolites
affected that occur in a particular pathway mBROLE can

determine which metabolic pathways were most affected under
a condition (Chagoyen and Pazos, 2011). From the OPLS-DA
models comparing control and metal exposed cells for each
carbon source and metal, metabolites with a VIP > 0.8 were
submitted using their KEGG IDs (Ogata et al., 1999). Pathways
that were enriched with a false discovery rate adjusted p-value
<0.05 were accepted as affected by metal exposure. Metabolic
pathways that are commonly found by this type of analysis due to
overbroad interpretation of KEGG pathways were removed. For
details see supplementary material.

Results and Discussion

Growth of P. pseudoalcaligenes KF707 in the
Presence of Metals on Succinate and Biphenyl
The minimum concentrations of Al and Cu that inhibited the
growth of P. pseudoalcaligenes KF707 using Sc or Bp as the
sole carbon source were previously determined using high-
throughput microtitre plate assays (Booth et al., 2013a). To
confirm that these concentrations were relevant in the larger
cultures needed for metabolomics, culture growth in the presence
of these metals was quantified over time. Based on our prior
work (Booth et al., 2013a), 3 mM Al and 60 μM Cu was selected
as metal concentrations that would elicit a phenotype but not
inhibit growth. The higher concentration of Al was used to
overcome the lack of bioavailability of Al caused by the phosphate
in the medium. Phosphate was used as a buffer despite its well-
characterized property of chelating Al (Berthon, 2002). However,
we could not use organic buffering agents such as MOPS as this
would have negated the single carbon source nature of the study.
To confirm that these concentrations did not inhibit growth in
250 mL flasks, cultures were grown for 32 h in the presence
of either 3 mM Al or 60 μM Cu. After 24 h of growth, the
numbers of viable cells from metal-exposed cultures were found
to be similar to their control counterparts for both carbon sources
(Figure 1A). As comparable cell densities and growth period
were desirable to make comparisons between control and metal
exposed cultures as similar as possible, 24 h was thus selected as
the time point for metabolomics harvest.

Culture pH at each time point was also determined. Over 32 h,
the pH of the culture medium from Bp-grown cells decreased
about 1 unit for Al exposed cultures and 0.5 units for control
and Cu exposed (Figure 1B). The pH of Sc-grown cultures did
not change in such a manner. During GC-MS metabolomic
characterization, large quantities of benzoic acid were found in
the cells and spent media of all samples grown on Bp. The
amounts were so great that it could not be quantified comparably
to other metabolites that were detected as the GC-MS detector
was saturated. The only other metabolite that was saturated was
phosphate, the buffering agent from the medium. Benzoic acid
is produced during catabolism of Bp (Furukawa and Fujihara,
2008), making it an unavoidable byproduct. The decrease in pH
observed in Bp grown cultures (Figure 1B) was likely due to this
acid being produced. As pH decreases from neutral, Al is known
to increase in solubility, which is considered one of the main
problems of acid rain (Macdonald and Bruce Martin, 1988). The
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FIGURE 1 | Growth (A) and culture pH (B) of Pseudomonas pseudoalcaligenes KF707 grown over 32 h in minimal salts medium (MSM) with either
succinate (Sc) or biphenyl (Bp) as the sole carbon source, with either nothing, 3 mM Al2(SO4)3 (Al) or 60 µM CuSO4 (Cu). Points denote the mean of 3
biological replicates, error bars indicate SEM.

Bp-grown Al exposed cultures’ viability decreased sharply from
24 to 32 h as the pH dropped from about 6 to 5.5. This low
of a pH would have increased the bioavailablity of Al, evidently
to the point of lethal toxicity. As Al is prevalent throughout the
Earth’s crust (Exley, 2009), the degradation of organic compounds
in sites with low pH would be expected to be more difficult as
increased bioavailability of Al would result in greater stress to
bacteria.

Metabolomic Characterization of Cultures
To understand how exposure to Al or Cu affected bacterial
cultures, untreated samples were compared to those grown in the
presence of each metal. GC-MS metabolic profiles were obtained
from cells and spent media from cultures grown either on Sc
or Bp as the sole carbon source and exposed separately to each
metal. After exclusion of low quality analytes and artifactual
compounds derived from reactions between the derivatization
agents and plastics of the sample vessels, 269 metabolites were
quantified, of which 89 were identified. These data were analyzed
by the unsupervised statistical techniques hierarchical clustering
analysis (HCL) and PCA. Inspection of the PCA scores plot
(Figure 2) revealed that samples separated first by carbon source
and next by sample type (cells or spent media). This model had
a good R2 (0.741, variance explained) and Q2 (0.643, goodness
of fit; Table 1), indicating that close to 75% of the variation in
the dataset could be explained by carbon source and sample type.
These overall trends were confirmed by HCL of the raw, log-
transformed data (Supplementary Figure S1) and normalized,
scaled data (Supplementary Figure S2). Both techniques showed
that after being separated into groups of the same sample type and
carbon source, there were still differences between control and
metal exposed samples. While these analyses demonstrated that
the metabolic profiles of samples varied based on the treatments
applied, discerning specific changes to metabolites based on
these treatments was non-trivial. In order to better understand
the relation of specific metabolites to the altered conditions,
we further extended the multivariate analysis using supervised
techniques.

Supervised Statistical Analysis
Pairwise OPLS-DA models were used to identify exactly which
metabolites were being altered by metal exposure and how.
These models compared just the control and one type of metal
exposed sample in each carbon source for each sample type,
allowing for the relative concentrations of metabolites to be
compared between the control and treated samples. This eased
interpretability and avoided confounding influences caused by
carbon source and sample type. Examination of the statistics for
each of these models revealed that they all accounted for most of
the variation between samples (R2 ≥ 82%) as well as predicted the
vast majority of variation (all but twomodelsQ2 ≥ 89%) (Table 1;
Supplementary Figures S4 and S5). Additionally the sevenfold
cross-validation analysis of variance (CV-ANOVA) p-value,
which essentially indicates the probability that such a model
would be generated by chance, was <0.05 for all models. As in
past studies (Booth et al., 2011b; Bhat et al., 2015) the pairwise
OPLS-DAmodels showed significant differences between control
and treated samples, so from these models the VIP and p(corr)
were extracted. These values respectively indicate the importance
of a metabolite in distinguishing the sample classes (i.e., control
from metal exposed) and whether it is correlated with the control
or metal exposed samples [for exact details on p(corr), see the
supplementary material]. These data were subsequently used to
produce shared and unique structures plots (Wiklund et al., 2008)
for intracellular metabolites (Figure 3) as well as those that were
found within the spent medium (Supplementary Figure S7) to
determine similarities and differences between how metabolites
were altered in each carbon source.

Pathway Enrichment Analysis
Pathway enrichment analysis was used to identify metabolic
pathways that were affected under each condition. Lists of
metabolites that were identified as changing significantly between
control and metal exposed samples (based on their VIP) from
each model were separately submitted to mBROLE (Chagoyen
and Pazos, 2011). This tool uses the annotations from the KEGG
(Ogata et al., 1999) to determine which metabolic pathways a
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FIGURE 2 | Principal component analysis scores plot of GC-MS
metabolite profiles of cells and spent media from cultures of
P. pseudoalcaligenes KF707 grown on either biphenyl (Bp, purple) or

succinate (Sc, teal) as the sole carbon source and exposed to either
control (circles), 3 mM Al (squares) or 60 µM Cu (triangles). Results were
normalized, scaled and centered before analysis.

TABLE 1 | Model statistics from PCA and pairwise OPLS-DA models comparing normalized, centered and scaled metabolite abundances in cells and
spent media from Pseudomonas pseudoalcaligenes KF707 grown on either succinate (Sc) or biphenyl (Bp) with or without aluminum (Al) or copper (Cu).

Model Type Components R2 Q2 CV-ANOVA p-value

All PCA 5 0.741 0.643 NA

All OPLS-DA 7 + 0 0.577 0.404 <0.001

Biphenyl Al OPLS-DA 1 + 1 0.993 0.931 0.014

Biphenyl Cu OPLS-DA 1 + 1 0.999 0.945 0.002

Biphenyl Al Media OPLS-DA 1 + 0 0.821 0.647 0.026

Biphenyl Cu Media OPLS-DA 1 + 1 0.989 0.952 0.002

Succinate Al OPLS-DA 1 + 1 0.996 0.895 0.012

Succinate Cu OPLS-DA 1 + 0 0.944 0.667 0.037

Succinate Al Media OPLS-DA 1 + 1 0.989 0.897 0.029

Succinate Cu Media OPLS-DA 1 + 1 0.996 0.916 0.020

Components indicates number of predictive and orthogonal components present in the model, R2 indicates cumulative variance accounted for by the model, Q2

cumulative variance predicted by the model and CV-ANOVA p-value was obtained from sevenfold cross-validation analysis of variance. Models with a p-value <0.05 were
considered significant.

metabolite is involved in. Pathways are assigned p-values based
on the probability of enough closely connected metabolites from
the same pathway being altered only by random chance. After

exclusion of spurious pathways (Booth et al., 2013b), many
pathways were found to be affected by Al and Cu exposure in
cultures of P. pseudoalcaligenes KF707 grown on Bp (Table 2).
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FIGURE 3 | Shared and unique structures plots showing comparison of
changes to intracellular metabolites caused by Al (A,B) and Cu (C,D) in
cultures of P. pseudoalcaligenes KF707 grown on either Sc or Bp as the
sole carbon source. Coordinates were determined by the VIP of each
metabolite, as obtained from OPLS-DA models comparing control and metal
exposed samples for either Sc (y-axes) or Bp (x-axes). Metabolites with a
VIP ≥ 0.8 (dashed lines) indicate a significant change occurred in the metal

exposed samples, those that were below in both cases were omitted. The
association of each metabolite with control or metal exposed samples was
determined using p(corr), which indicates the degree of correlation of the
metabolite with a sample type. Shapes were assigned that indicate how the
metabolite was altered by metal exposure: increased in both Bp and Sc
(squares), increased in Bp but decreased in Sc (diamonds), increased in Sc but
decreased in Bp (triangle up) and decreased in both (triangle down).

Fewer pathways were affected in the cultures grown on Sc.
The most pathways were affected in Bp-grown cultures exposed
to Cu, whereas Sc-grown cultures had the least number of

pathways affected. This confirmed our expectation that metal
toxicity would affect cultures differently depending on the carbon
source being used. The pathways identified by mBROLE were
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TABLE 2 | Metabolic pathways affected by metal toxicity in cultures of Pseudomonas pseudoalcaligenes KF707 grown on either Bp or Sc as the sole
carbon source in the presence of Al or Cu as determined by mBROLE.

Pathway Bp Al Sc Al Bp Cu Sc Cu

Benzoate degradation (via hydroxylation) <0.01 NA <0.01 NA

C5-Branched dibasic acid metabolism 0.02 NA 0.06 0.05

(Glycolysis/)Gluconeogenesis NA NA 0.06 0.05

Pentose phosphate pathway 0.09 NA NA 0.05

Citrate cycle (Krebs cycle) <0.01 0.01 <0.01 <0.01

Pyruvate metabolism NA 0.02 <0.01 <0.01

Glyoxylate/dicarboxylate metabolism <0.01 NA <0.01 0.02

Pantothenate/CoA-biosynthesis NA NA 0.06 0.05

Purine metabolism <0.01 <0.01 0.03 0.02

Nicotinate/nicotinamide metabolism 0.03 NA 0.02 NA

beta-Alanine metabolism 0.09 0.08 <0.01 0.01

Alanine, aspartate, and glutamate metabolism <0.01 0.06 <0.01 <0.01

Arginine/proline metabolism <0.01 NA 0.00 NA

Glycine, serine, and threonine metabolism 0.01 0.03 0.03 0.09

Valine, leucine, and isoleucine biosynthesis 0.01 0.07 <0.01 0.05

Cysteine/methionine metabolism 0.01 0.04 0.04 0.11

Sulfur metabolism 0.04 0.04 0.03 NA

Presented here are modified p-values (i.e., multiple-testing corrected) indicating the probability that a pathway was affected under a particular condition. All reported
pathways had an unmodified p-value <0.05 in at least one sample type. Metabolites were selected based on their VIP > 0.8 as determined from OPLS-DA models
comparing control to metal exposed cultures and were submitted to mBROLE. Only metabolites with a known KEGG ID were used. p-values are colored according to
siginificance: unmodified > 0.05, not siginificant (black), unmodified < 0.05 but modified > 0.05 (gray), unmodified and modified < 0.05 (white). Pathways are grouped
into carbon metabolism (white), purine/pyrimidine metabolism (light gray), amino acid metabolism (gray) and sulfur containing metabolism (dark gray).

subsequently used to contextualize the meaning of changes to
individual metabolites and interpret why these metabolites were
altered under each condition.

Toxicity Effects of Aluminum
Aluminum exposure caused similar alterations to many
phosphate containing metabolites in cells grown on both carbon
sources (Figure 3A, green symbols). Phosphate is a strong
chelator of Al (Berthon, 2002). In Rhizobium species, increased
production of extracellular polymeric substances was correlated
with increased tolerance to Al (Ferreira et al., 2012). The decrease
of phosphorylated sugars observed here could indicate their
use in generating EPS with functional groups for binding Al,
similarly to our past observation that metabolites involved in EPS
production were increased in biofilm cultures of P. fluorescens
exposed to Cu (Booth et al., 2011b). Alternatively the sugar-
phosphates could be being used in lipopolysaccharide (LPS)
synthesis as these outer membrane molecules could prevent
Al entry into the cell by chelation (Silipo and Molinaro, 2010).
Our results here indicate that phosphate containing EPS or LPS
mediated protection of cells from metal stress may be used both
by planktonic and biofilm cultures of Pseudomonas.

Ribose-5-phosphate (R5P) was increased in both carbon
sources under Al stress. When exposed to Al, P. fluorescens was
previously observed to increase NADPH production, partially
via overexpression of glucose-6-phosphate (G6P) dehydrogenase
(Singh et al., 2005). This enzyme catalyzes the first step in the
PPP of which the oxidative portion uses ATP to generate NADPH
and ends with R5P (Wood, 1986). The PPP was identified by
mBROLE, but was not considered significant (Table 2). Still,

the observed accumulation of R5P, and depletion of fructose-6-
phosphate and hexose-6-phosphate (representative of G6P, see
supplementary material) thus suggests that the oxidative portion
of the PPP was being used to generate NADPH in response to
oxidative stress being caused by Al. Conversely to R5P, malic acid
and pyruvic acid were only accumulated in Bp-grown cultures
(Figure 3A, light blue symbols). These two metabolites were
previously observed to be increased when P. fluorescens was
subject to oxidative stress from menadione as part of a metabolic
network aimed at converting NADH to NADPH (Singh et al.,
2008). In this network, pyruvate was increased to generate
oxaloacetic acid, which was converted to malic acid in order to
oxidize NADH toNAD and the malic acid was cleaved to produce
pyruvic acid and reduce NADP to NADPH. The metabolomic
results found here indicate that a similar metabolic network was
thus likely active in P. pseudoalcaligenesKF707 cultures grown on
Bp and exposed to Al, but not those grown on Sc. Additionally,
pyruvate accumulation could be due to the ability of pyruvate
to react and detoxify hydrogen peroxide (Giandomenico et al.,
1997), making its accumulation a potentially useful anti-oxidant
strategy. Pyruvate and malic acid were not affected by Al stress
when cultures were grown on Sc, implying that the PPP sufficient
for anti-oxidant production under these conditions.

Glycolic acid was increased in both carbon sources (Figure 3A,
yellow square). This was an unexpected metabolite as it is
produced by very few metabolic reactions (Ogata et al., 1999).
One reaction is the dephosphorylation of phosphoglycolic acid.
As this metabolite was not present in the libraries used for
identification, it was manually identified from the unknown
metabolites (see Supplementary Material for details). Thus it
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was observed that 2-phosphoglycolic acid was increased only
in Bp-grown cultures (Figure 3A, green square), which was
surprising as this metabolite also has few precursors and is
associated generally with carbon fixation (Shively et al., 1998).
More pertinently, when hydroxyl radicals react with the 4′ carbon
of a ribose moiety of DNA, repair of this oxidative damage results
in the production of 2-phosphoglycolic acid (Kuznetsova et al.,
2009). Subsequent cleavage by phosphoglycolate phosphatase
allows the salvage of the phosphate and two-carbon glycolic
acid (Pellicer et al., 2003). Thus the accumulation of these
two unexpected metabolites implies that Al is exerting toxicity
by oxidatively damaging DNA, especially under Bp degrading
conditions. Al has been well characterized as a pro-oxidant
(Exley, 2004) while normal aerobic metabolism produces the ROS
superoxide (O2

•), peroxide (H2O2) and hydroxyl radicals (OH•)
by incidental reactions between molecular oxygen (O2) and
electron transport chain components (Imlay, 2003). It has been
hypothesized that hydrated Al complexes stabilize superoxide
radicals (which has received recent support (Mujika et al., 2014)),
and this complex can then reduce Fe(III) to Fe(II), regenerating
the active Al(III)-superoxide complex. Fe(II) undergoes the
Fenton reaction with H2O2 generated from aerobic metabolism
to produce 2 OH• radicals (Stohs and Bagchi, 1995). These
radicals could then go on to react with DNA, causing the
aforementioned accumulation of metabolites. These mechanisms
were likely active and responsible for DNA damage which was
repaired to produce 2-phosphoglycolic acid. P. pseudoalcaligenes
KF707 possess a phosphoglycolic acid phosphatase, however,
based on a BLAST search it surprisingly does not have any
of the genes encoding for any subunits of glycolate oxidase
(Triscari-Barberi et al., 2012). This explains the accumulation of
glycolic acid as it was generated from oxidative DNA damage but
cannot be re-assimilated into central carbon metabolism. Further
indicating that oxidative stress caused DNA damage, nucleobases
and nucleotides were decreased in response to Al, the specifics
depending on carbon source (Figure 3B, red symbols) and purine
metabolism was implicated by mBROLE (Table 2). In addition
to oxidative stress that can damage the ribose moiety, the bases
of DNA can be affected by ROS (Alberts et al., 2002). Repairing
this damage requires all four nucleotides, though only AMP and
GMP were detected. The individual bases were also detected and
decreased, implying that they were being used up generating
nucleotides for use in repairing DNA.

Further similarities were observed between
P. pseudoalcaligenes KF707 and P. fluorescens exposed to
Al. Under Al stress P. fluorescens also modifies its Krebs cycle to
produce less NADH and more NADPH by using the glyoxylate
cycle to shunt carbon from isocitrate to succinyl-CoA (Singh
et al., 2009). This metabolic pathway produces both oxalate
and glyoxylate, of which only the former was detected in
this experiment. As in P. fluorescens, oxalate may have been
secreted to chelate Al, but such an increase in secretion was
only detected in Sc grown cultures (Supplementary Figure S6A).
Alternatively, this pathway may not have been a viable option
in P. pseudoalcaligenes growing on Bp as the accumulation
of cis-aconitic acid (Figure 3A) indicates that aconitase was
dysfunctional. Cis-aconitate is an unexpected metabolite as it is

only an intermediate in the isomerization of citrate to isocitrate.
Given that aconitase has a [4Fe-4S] cluster in its active site, which
is sensitive to decomposition by oxidative attack it is likely that
ROS affected the function of aconitase, a phenomenon which
has previously been observed in P. fluorescens (Middaugh et al.,
2005). Other metals have been found to cause similar stress
reactions in Pseudomonas. Exposure to high concentrations
of zinc caused a shift in ATP production from oxidative to
substrate-level phosphorylation and a simultaneous decrease of
NADH and increase of NADPH production (Alhasawi et al.,
2014). Vanadium toxicity was also linked to the Kreb’s cycle
as mutations to the idh (coding for isocitrate dehydrogenase)
and acnD (coding for an aconitase) genes increased resistance
to this metal, presumably due to a change in expression to less
metal-sensitive isozymes (Denayer et al., 2006). Overall our
results indicate that the metabolic changes in P. pseudoalcaligenes
KF707 were similar to those observed in P. fluorescens, but more
pronounced when growing on Bp indicating that growth on this
carbon source exacerbates stress caused by Al.

O-acetylserine is an intermediate in cysteine biosynthesis,
and was increased with Bp but decreased with Sc (Figure 3B).
Apart from being the assimilation point of inorganic sulfur and
being used to synthesize all other sulfur-containing metabolites,
cysteine is the amino acid that allows for the formation of
disulfide bonds and iron-sulfur clusters in proteins as well as
serving as an intermediate in the biosynthesis of glutathione,
the main antioxidant within the cell (Brosnan and Brosnan,
2006). While cysteine could not be quantified, the only role
of o-acetylserine is in the biosynthesis of cysteine. Cysteine,
methionine, and sulfur metabolism were implicated by mBROLE
(Table 2) in both carbon sources, implying that Al toxicity caused
alterations to anti-oxidant production pathways.

All three polyamines that were detected, spermidine,
putrescine, and cadaverine, have been implicated in oxidative
stress resistance in Escherichia coli as they are able to scavenge
free radicals (Chattopadhyay et al., 2003; Wortham et al., 2007).
All of these compounds were decreased under Al exposure,
cadaverine being specific to Sc and putrescine specific to Bp
(Figure 3B, light purple symbols). Al induced oxidative stress
could be expected to cause polyamine levels to increase, but
since their free levels are normally very low as most cellular
polyamines are complexed with nucleic acids (Wortham
et al., 2007) an increase in ROS would rapidly deplete these
free levels. Polyamines also induced the expression of acid
resistance genes in E. coli that resulted in the secretion of
4-aminobutyric acid (Chattopadhyay and Tabor, 2013), which
was secreted more in response to Al stress in Bp-grown cultures
(Supplementary Figure S6A). In E. coli this secretion was due
to the action of a glutamate/4-aminobutyric acid antiporter, of
which P. pseudoalcaligenes KF707 does not possess a homolo
based on a BLAST search (Triscari-Barberi et al., 2012). These
cultures experienced a decrease in pH due to benzoic acid
production, as well as a decrease in intracellular glutamate, but
as the growth medium did not contain exogenous glutamate
a system comparable to E. coli would not have functioned
anyway. P. pseudoalcaligenes could still have been using this
secreted 4-aminobutyric acid as a proton sink similarly to E. coli
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(Chattopadhyay et al., 2003). In Sc-grown cells exposed to Al,
secretion of spermidine increased (Supplementary Figure S6).
Spermidine was found to be associated with the outer membrane
of P. aeruginosa and protected against exogenous oxidative stress;
though the role of secreted spermidine was less clear (Johnson
et al., 2012). In the present study the spermidine accumulated
in the spent medium was likely derived from spermidine
being exported for such a purpose. Intracellular putrescine has
also been associated with increasing resistance to oxidative
stress in Burkholderia cenocepacia (El-Halfawy and Valvano,
2014). Putrescine was decreased intracellularly in Bp-grown
cells exposed to Al (Figure 3B) implicating it as an additional
anti-oxidant polyamine. Polyamines were also implicated in
resistance to oxidative stress induced by chromium in a number
of environmental isolates (Joutey et al., 2014). Ornithine was
decreased in Al exposed cells grown on both carbon sources
(Figure 3B). Decreased levels of this amino acid precursor
to putrescine (which is the precursor to spermidine) and the
above further supports the use of polyamines to assist with
resistance to oxidative stress caused by Al in P. pseudoalcaligenes
KF707.

Toxicity Effects of Copper
Metabolic profiles indicated that Cu exerted its toxicity through
some different mechanisms than Al. Surprisingly, Cu appeared
to cause some metabolic changes similar to Al that indicated
that Cu was exerting oxidative stress, despite this possibility
being definitively ruled out in E. coli (Macomber et al., 2007).
As with Al, Cu induced the accumulation of glycolic acid
and phosphoglycolic acid in Bp-grown cultures (Figure 3C)
and increased secretion of glycolic acid in Sc-grown cultures
(Supplementary Figure S6). While Cu alone may not cause
oxidative stress, growth on Bp has the potential to generate far
more ROS than Sc as complete catabolism of Bp requires four
dioxygenases that use O2 to activate the conjugated carbons
(Furukawa and Fujihara, 2008). In E. coli Cu was no more
toxic and prevented toxicity when exogenous hydrogen peroxide
was added (Macomber et al., 2007). In P. pseudoalcaligenes
KF707, phosphoglycolic acid was accumulated indicating that
the Cu added was not preventing oxidative stress but rather
contributing to it. Transcriptional profiling of P. aeruginosa
exposed to Cu during log phase showed changes to gene
expression that were indicative of oxidative stress, which did not
occur in cultures grown in the presence of Cu (Teitzel et al.,
2006). Genes for active efflux of Cu were a main component
of the response to Cu stress in both cultures indicating a
non-metabolic response, especially compared to the elaborate
metabolic re-configuring observed in P. fluorescens responding
to Al (Mailloux et al., 2011). While oxidative stress was not
implicated in gene expression profiles of P. aeruginosa grown
in the presence of Cu, the observed buildup of glycolic and
phosphoglycolic acid in P. pseudoalcaligenes KF707 indicate that
ROS were present in Bp-grown cultures and were causing the
same DNA damage discussed in the Al treated cultures. Oxalic
acid was accumulated intracellularly with Bp (Figure 3C) and
extracellarly with Sc (Supplementary Figure S6). This indicates
that oxidative stress was occurring under Cu exposure as

the glyoxylate/oxalate shunt induced in P. fluorescens under
oxidative stress causes oxalic acid accumulation (Singh et al.,
2009). Changes to polyamines were also observed in Cu
exposed cultures. Spermidine secretion was again increased
under Cu stress in Sc grown cultures (Supplementary Figure
S6), however, intracellular levels increased with Bp (Figure 3D,
purple symbols). Putrescine was not affected in either carbon
source and instead cadaverine was decreased with Bp, indicating a
possible shift in polyamine use for mitigating oxidative stress. The
secretion of spermidine in Sc-grown cultures is of further interest
as Cu surfaces have been demonstrated to kill bacteria via ROS
mediated lipid peroxidation resulting in membrane destruction
(Hong et al., 2012;Warnes et al., 2012). The polyamine pre-cursor
ornithine was decreased only with Sc, thus together with the
other observed changes this indicates that polyamines may not
play as an important role in Bp-grown cultures under Cu stress
compared to Al.

In E. coli Cu disrupts Fe–S clusters of dehydratases, such as
those involved in the synthesis of branched chain amino acids
(Macomber and Imlay, 2009). Here we observed that metabolites
associated with this pathway, citramalic and isopropylmalic acid
(Figure 3C, orange symbols) were affected by Cu, as well as
the end-products valine, leucine, and isoleucine (Figure 3D,
blue symbols) though not in an expected manner. In Sc-
grown cultures valine was decreased while with Bp leucine was
decreased but isoleucine increased. Isoleucine is synthesized by
converting aspartate to threonine, which is then deaminated to
make 2-oxobutanoate (Ogata et al., 1999). Citramalic acid was
decreased in Bp grown cultures but was increased with Sc, as
well as 2-isopropylmalic acid which is used to synthesize leucine.
2-Isopropylmalic acid is synthesized from 2-oxoisovalerate
through a dehydratase-mediated reaction, which is susceptible
to inhibition by Cu (Macomber and Imlay, 2009). This enzyme,
dihydroxy acid-dehydratase is also used in isoleucine synthesis.
As there was no consistent response to Cu stress (i.e., depletion
of end-products and buildup of intermediates) no general
conclusion can be made about the effect of Cu on branched-
chain amino acid synthesis of P. pseudoalcaligenes grown on
either carbon source. As these metabolites were definitely affected
by Cu, quantification of enzyme activity and/or gene expression
would help elucidate how Cu affected this pathway. Based on
KEGG annotation (and BLAST searches), citramalic acid (both
the R and S enantiomers) appears to be a dead-end metabolite
in P. pseudoalcaligenes KF707 and cannot be synthesized from
pyruvate and acetyl-CoA as in methanogens. This poses the
question of why this metabolite was present in any cultures
as well as why its amounts were affected by metal presence.
It may have some uncharacterized role in metabolism when
Pseudomonas sp. are grown on minimal media and so warrants
further investigation, especially given P. fluorescens’ tendency
to alter its Kreb’s cycle under when stressed (Mailloux et al.,
2011).

Fumarase, which converts fumarate to malate during normal
functioning of the Krebs cycle, was also found to be inhibited
by Cu toxicity in E. coli (Macomber and Imlay, 2009). In Bp-
grown cultures exposed to Cu fumaric acid levels increased while
malic acid decreased (Figure 3C, light blue symbols), indicating
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a similar disruption to fumarase occured in P. pseudoalcaligenes
KF707. In P. fluorescens under Al or gallium stress expression of
FumA/B isozymes was decreased while FumC increased as this
isozyme does not require the use of an Fe-S cluster (Chenier
et al., 2008). Based on BLAST searches of the KF707 genome, it
does not possess a fumC gene and so would be unable overcome
any inhibition to FumA/B (Altschul et al., 1990). Interestingly,
E. coli grown on Sc was more susceptible to Cu toxicity acting
through the inhibition of fumarase than when it was grown
on glucose (Macomber and Imlay, 2009). Here it appears that
P. pseudoalcaligenes KF707 is less susceptible when grown on
Sc than when grown on Bp. Together these results emphasize
the importance of considering how a bacterium is assimilating
carbon for determining the effects of metal toxicity, a notion that
is highly relevant for developing solutions for the bioremediation
of co-contaminated sites.

Changes to various metabolites with possible roles as
intracellular chelators were observed in Cu exposed cultures.
Under Cu stress, Bp-grown cultures accumulated glycerol-
3-phosphate, pyrophosphate and glycerophosphoglycerol
(Figure 3C, green symbols). This metabolite’s secretion was also
decreased while in Sc-grown cultures only glycerol-3-phosphate
was accumulated and secretion of pyrophosphate decreased
(Supplementary Figure S6). As phosphate was in excess due to
its use as the buffering agent in the medium, it could not be
quantified along with the other metabolites. In E. coli addition of
Cu induced intracellular poly-phosphate degradation and export
of phosphate (Grillo-Puertas et al., 2014). Polyphosphate has
also been implicated in resistance to oxidative stress (Gray and
Jakob, 2015). Thus combined stress from Cu and ROS generated
by growing on Bp would likely create conflicting signals for
poly-P accumulation or degradation whereas Sc-grown cells
would only have incentive to degrade poly-P. This dichotomy
could explain why only one phosphate containing metabolite,
glycerophosphoglycerol, changed in the same fashion in Sc
and Bp grown cells. Given the observed changes in phosphate
containing metabolites further investigation into the possible
role of poly-P in mitigating the combined toxicity of metals and
organic pollutant catabolism is warranted, especially given the
role phosphate can play in metal speciation in soils (Shahid et al.,
2013).

Non-phosphate containing metabolites were also affected.
Methionine was found to be a key intracellular chelator of Cu(I)
in E. coli; when it was not present in the growth medium under
anaerobic conditions free Cu(I) accumulated in the cytoplasm
and interfered with Fe–S cluster assembly proteins (Fung et al.,
2013). Here, methionine was increased in Bp grown cultures
but decreased with Sc potentially indicating its similar use as
an intracellular chelator (Figure 3D, blue symbol). Citric acid
was also accumulated in the spent media of Cu exposed cultures
grown on Bp (Supplementary Figure S6), a phenomenon that
was previously observed to occur in P. putida grown on glucose
but not aromatic substrates (Basu et al., 2009). Interestingly, this
accumulation was only extracellular and was not observed in Al
exposed cultures where it would have been a logical response as
citrate chelates Al (Hue et al., 1986). Oxalate also strongly chelates
Al and is generated under Al exposure by P. fluorescens (Singh

et al., 2009). Here the secretion of this metabolite was increased
by both metals in Sc-grown cultures, indicating its potential role
as a general metal scavenger in less-stressed cells (Supplementary
Figure S6). Glutamate has been observed to be accumulated as
an osmoprotectant in P. aeruginosa (Behrends et al., 2010). In
Bp-grown, Cu exposed cultures glutamate was increased and
its secretion was decreased (Figure 3D, Supplementary Figure
S6B), indicating that Cu toxicity elicited a response similar
to osmotic stress. These results thus indicate that Cu toxicity
causes changes to the secretion of multiple metabolites, an
interesting result given that in P. aeruginosaCu exposure induced
many genes involved in its efflux (Teitzel et al., 2006). These
observations, and the aforementioned Cu surface mediated lipid
peroxidation (Hong et al., 2012; Warnes et al., 2012) indicate
that further investigations into Cu toxicity should consider
its interactions with both the inner and outer membrane and
associated proteins.

β-alanine and alanine/aspartate/glutamate metabolism were
implicated by pathway enrichment analysis in Cu exposed
cultures grown on either carbon source (Table 2). Compared
to other 4-carbon molecules being used as the sole carbon
source, aspartate was previously observed to greatly increase the
tolerance of P. fluorescens to Cu (Booth et al., 2013a). Aspartate
and β-alanine can be interconverted and are basal intermediates
in many biosynthetic pathways including pantothenate and
CoA biosynthesis (Ogata et al., 1999), which were affected in
Cu exposed cultures though they were just over the p-value
cutoff (Table 2). Acetyl-CoA synthetase, which catalyzes the key
reaction of adding the acetyl group to coenzyme A was found to
be inhibited by Cu in wastewater treatment bacteria (Tsai et al.,
2013). β-alanine was increased in both carbon sources in response
to Cu exposure and asparate was increased in Bp grown cells.
This could be an indication of a similar inhibition of acetyl-
CoA synthetase by Cu occurring in P. pseudoalcaligenes KF707
and occurring more drastically when grown on Bp resulting
in the additional accumulation of aspartate. Both β-alanine
and acetyl-CoA synthesis were implicated in toxic effects of
phenanthrene in Sinorhizobium (Keum et al., 2008) indicating
possibly that Cu was exacerbating the toxicity of Bp. Inhibition
of acetyl-CoA synthetase would be devastating to the cell and
may explain our previous observation that Cu tolerance was
lower in Bp-grown cultures than those grown on Sc (Booth et al.,
2013a).

The results presented here have indicated that Cu toxicity
elicits multiple metabolic changes that are suggestive of oxidative
stress, a phenomenon that was comprehensively ruled out
in E. coli (Macomber et al., 2007). These E. coli cultures
were grown in rich or amino acid containing medium and
were resistant to millimolar levels of Cu compared to the
60 μM used here. Our past work showed that the tolerance
of P. pseudoalcaligenes and P. fluorescens to Cu decreased
100-fold from LB medium to MSM, which was used in the
present study (Booth et al., 2013a). Contrary to E. coli, when
the plant pathogen Xanthomonas campestris was exposed to
Cu it became more susceptible to hydrogen peroxide and also
upregulated ROS-detoxification genes (Sornchuer et al., 2014).
Thus it seems possible that Cu can exert toxicity through
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ROS-mediated mechanisms under particular conditions in some
organisms.

Effects of Metal Toxicity on Biphenyl
Metabolism
Under exposure to both metals changes to Bp-degradation
intermediates were observed, as well as changes to several
structurally related metabolites (Supplementary Figure S7,
summarized in Figure 4). Also, benzoate degradation was
implicated by mBROLE with both metals (Table 2). Bp itself
was only changed in the spent media from Al exposed cultures,
and was increased. Bp is normally insoluble in water, so this is
of interest as it could indicate that bacterial activity, potentially
the decrease in pH, increased solubility. No metabolites with
obvious surfactant properties were identified, though they could
be present within the unknown compounds. This warrants
further investigation as increasing the solubility of pollutants by
biosurfactants has been found to improve degradation (Cameotra
et al., 2010). In P. pseudoalcaligenes KF707 Bp metabolism
begins with dioxygenation to produce 2,3-dihydroxybiphenyl (as
originally characterized by Furukawa andMiyazaki, 1986), which
was increased in Al exposed cells but decreased in the media
and increased in both sample types with Cu (Figure 4). These
increases indicate inhibition of the next step of Bp metabolism,
ring opening by 2,3-dihydroxybiphenyl 1,2-dioxygenase. Both Bp
and 2,3-dihydroxy biphenyl dioxygenase, are heteromultimeric
Rieske-type non-heme oxygenases that contain catalytically
active [2Fe–2S] clusters (Gibson and Parales, 2000). As was
previously noted, both Al and Cu have been characterized as
damaging iron–sulfur clusters, and thus these results indicate
that the iron–sulfur clusters of aromatic oxygenases are likely
targets of metal toxicity. After 2,3-dihydroxybiphenyl is cleaved
to produce benzoic acid and 2-hydroxy-2,4-pentadienoate the
benzoic acid is dioxygenated and decarboxylated to catechol,
which was accumulated under all conditions except Cu
exposed cells (Figure 4). Benzoic acid was also accumulated
to an unquantifiable, GC-MS detector saturating level in all
samples. This indicates that both benzoic acid 1,2-dioxygenase
and catechol oxygenase may have been inhibited by both
metals. Catechol can be processed either into the β-keto-
adipate pathway (starting with catechol-1,2-dioxygenase) or
the pyruvate/acetyl-CoA pathway (starting with catechol-2,3-
dioxygenase). From genomic characterization, both pathways
appear to be present in P. pseudoalcaligenes KF707 (Triscari-
Barberi et al., 2012). An unknown analyte was identified as
2-hydroxymuconic semialdehyde (see Supplementary Material)
indicating the use of catechol-2,3-dioxygenase, which was
confirmed spectroscopically using a cell-free enzymatic assay
(results not shown). Unexpectedly, given the accumulation of
the upstream metabolites, 2-hydroxymuconic semialdehyde was
also accumulated, though only in cells, it was decreased in
the spent media of Al exposed samples. As all intermediates
detected were increased by both metals, it could be surmised
that the stress induced created a greater demand for carbon
and energy, resulting in greater quantities of all intermediates.
The alternative hypothesis of iron–sulfur clusters of aromatic
dioxygenase being damaged by two different metals, which

would mediate this damage in very different ways, makes for
an intriguingly broad explanation for why metals inhibit organic
pollutant catabolism. Identification of the exact mechanisms by
which Al and Cu, as well as other metals, inhibit aromatic
oxygenases would enable the development of possible ways
to prevent this inhibition and improve bioremediation of co-
contaminated sites.

Several unexpected metabolites similar to benzoic acid
were identified and quantified: salicylic, 3-hydroxybenzoic, 2,3-
dihydroxybenzoic, benzeneacetic and O-toluic acid (Figure 4).
While these metabolites have been found in other biological
systems, they are not intermediates of Bp degradation. Their
presence here implies possible non-specific action of oxygenases
from Bp catabolism or reactions between Bp degradation
intermediates and ROS. The two hydroxybenzoic acids that
were observed could have been formed by OH• reaction with
benzoic acid, which is favored at the 2-position (Tanaka,
2013) and subsequent deprotonation and ring closure. 2,3-
dihydroxybenzoic acid could have been formed by an additional
such reaction. Alternatively, 2,3-dihydroxybenzoic acid may have
been formed by catechol 2,3-dioxygenase in the presence of
excess benzoic acid substrate from Bp cleavage. A final possible
explanation for this compound’s presence is its intentional
production for use in siderophores (O’Brien et al., 1970) for
iron acquisition or as a protective measure from the metals
that were added. Phenylacetic and O-toluic acid are the most
unexpected metabolites as these cannot be formed directly from
ROS interactions with Bp degradation intermediates and so were
most likely derived from incorrect degradation of Bp. All of
these unexpected metabolites were altered by the presence of
metals, indicating that their formation had some relation to Al
and Cu. As these metals appeared to be inhibiting the aromatic
oxygenases, it could be possible that the interaction between the
metals and the oxygenases was causing non-specific reactions to
occur. The generation of dead-endmetabolites due to metals thus
presents a possible mechanism of enhanced toxicity.

Metabolic Changes and Implication of
Oxidative Stress
The metabolic changes caused by Al and Cu in cultures
grown on Bp repeatedly implied that oxidative stress was
increased compared to Sc grown cultures. Many other studies
have found that organic pollutants cause oxidative stress in
bacteria. 1,3-dichloroprop-1-ene induced oxidative stress during
its degradation in P. pavonaceae (Nikel et al., 2013) which
resulted in the accumulation of the antioxidant NADPH, a
metabolite who’s production was implicated in oxidative stress
by others (Mailloux et al., 2011). In Pseudomonas sp. strain
As1 overexpression of ROS detoxifying enzymes enhanced the
degradation of naphthalene (Kang et al., 2007). In B. xenovorans
LB400 growth on Bp induced expression of alkyl hydroperoxide
reductase, which is also expressed under hydrogen peroxide
treatment (Agulló et al., 2007). Supplementation of this strain
with the antioxidant α–tocopherol decreased the amount of time
needed to degrade poly-chlorinated Bps in soil (Ponce et al.,
2011). In another Pseudomonas sp. (strain B4) growth on 2-
chlorobiphenyl induced ROS generation (Chávez et al., 2004).
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FIGURE 4 | Changes to metabolites derived from Bp degradation
in cells (C) and spent media (M) of cultures of
P. pseudoalcaligenes KF707 grown on Bp as the sole carbon
source and exposed to Al or Cu. Arrows indicate whether a
metabolite was increased (↑) or decreased (↓) in response to each
metal. Values were derived from VIP and p(corr) from OPLS-DA models
comparing control to metal exposed samples. Empty boxes mean there

was no significant change (VIP < 0.8). For details, see Supplementary
Figure S6. Benzoic acid was detected but could not be accurately
quantitated due to elevated concentrations resulting in detector
saturation (∗). Metabolite background shading denotes whether it is a
cannonical Bp degradation product and was detected (light gray) or
not detected (white). Several metabolites that are not involved in Bp
degradation but are structurally related were also detected (dark gray).
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Other metabolomic studies have also found evidence for ROS-
based toxicity: the pesticide 2,4-dichlorophenoxyacetic acid (2,4-
D) was found to cause oxidative stress in E. coli and Rhizobium
leguminosarum (Bhat et al., 2015, 2014), as well as nicotine in
a Pseudomonas species (Ye et al., 2012) and phenanthrene in
Sinorhizobium (Keum et al., 2008). This phenomenon is not
restricted to Gram negative proteobacteria; when Rhodococcus
aetherivorans I24 was grown in polychlorinated biphenyl
contaminated soil microarray analysis showed that the expression
of many stress related genes such as chaperones and oxidative
stress protection genes were increased (Puglisi et al., 2010). As
complete catabolism of Bp by P. pseudoalcaligenesKF707 requires
four O2-using dioxygenases (Furukawa andMiyazaki, 1986; Taira
et al., 1992), aerobic metabolism causes the generation of ROS in
all organisms (Asad et al., 2004), and following from the above
studies, oxidative stress caused by Bpmetabolism is thus the most
likely explanation for the observed metabolic differences caused
by Al and Cu.

Conclusion

Succinate and Bp are assimilated into central metabolism
completely differently, with Sc as a component of the Krebs cycle
whereas complete catabolism of Bp requires 10 catabolic enzymes
and six intermediate steps to enter central metabolism. Here
we have shown that these differences in assimilation cause the
toxicity of Al and Cu to be exacerbated when Bp is the carbon
source. This was manifested as changes to more metabolites
involved in a wider variety of functions than those affected in
cultures grown on Sc. As the concentrations of metals were
the same for both carbon sources, we have thus demonstrated

that metal toxicity is physiologically more pronounced when
bacteria are using a complex aromatic substrate as their sole
carbon source. Though the affected metabolites were diverse in
their role within the cell, they are united by their implication in
oxidative stress from studies in other systems. This makes the
understanding how organic pollutants induce oxidative stress,
especially in conjunction with metals, a topic of paramount
importance for further laboratory and applied studies on the
problem environmental co-contamination.
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