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Abstract

A conceptual framework is helpful to understand what types of ecosystem services (ES) 

information is needed to support decision making. Principles of structured decision making are 

helpful for articulating how ES consideration can influence different elements in a given decision 

context resulting in changes to the environment, human health, and well-being. This article 

presents a holistic view of an ES framework, summarizing two decades of the US EPA’s ES 

research, including recent advances in final ES, those ES that provide benefits directly to people. 

Approximately 150 peer-reviewed publications, technical reports, and book chapters characterize a 

large ES research portfolio. In introducing framework elements and the suite of relevant US EPA 

research for each element, both challenges and opportunities are identified. Lessons from research 

to advance each of the final ES elements can be useful for identifying gaps and future science 

needs. Ultimately, the goal of this article is to help the reader develop an operational understanding 

of the final ES conceptual framework, an understanding of the state of science for a number of ES 

elements, and an introduction to some ES tools, models, and frameworks that may be of use in 

their case-study applications or decision-making contexts.
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1. Introduction, Conceptual Framework

Over the past few decades, there has been an explosion in the literature on ecosystem 

services science. Notable milestones include: (1) a 1997 foundational text by Daily [1]; 

(2) a pair of central publications by Costanza et al. [2,3]; (3) the Millennium Ecosystem 

Assessment report [4]; and (4) the establishment of journals such as Ecological Economics, 

International Journal of Biodiversity Science, Ecosystem Services & Management (renamed 

Ecosystems and People), and Ecosystem Services. During this period, researchers at the 

US Environmental Protection Agency (US EPA) advanced ecosystem goods and services 

(collectively referred to as ecosystem services, or ES) science in multiple areas, including 

foundational research into metrics and indicators (including on those final ecosystem 

goods and services that directly benefit people), ecological production functions (EPFs), 

clear definitions to support standardized approaches for systematically classifying ES, and 

informing decision making based on advancing research on how human actions change 

the biophysical environment and ultimately affect the quality and quantity of benefits 

derived from nature. How people are affected by changes in availability of ES may 

influence decisions about whether to modify those actions. In addition to foundational 

research on frameworks, models, and tools, case-study applications provide valuable areas 

to test approaches and tools, help articulate development of transferable, organizational 

frameworks, and identify areas of future investment.

Along with investments in stakeholder engagement that integrates researchers, stakeholders 

(and prioritization), and decision makers, frameworks can create opportunities to explore 

value-added benefits of incorporating ES into a decision process [5]. A framework provides 

an opportunity to organize and communicate complex scientific information, creating the 

capacity to develop and apply transdisciplinary approaches to environmental decision 

making [6]. This synthesis paper organizes the extensive US EPA body of work within 

the context of a recent conceptual framework collaboratively developed with other US EPA 

researchers (Figure 1), which is helpful in understanding what types of ES information 

are needed to inform decision making. It is important to note that there are other recent 

examples of ES frameworks. For example, a cascade model [7] provides a good expression 

of some key components of a larger ES paradigm but does not include the larger context 

around ES as specific elements of decision support. The final ES conceptual model 

presented here, focusing on the importance of a beneficiary perspective, has helped expand 

beyond simple characterization of ES into categories of: provisioning services; regulating 

services; supporting services; and cultural services [4].

This paper is organized around scientific advancements associated with each element 

of the conceptual framework in Figure 1. In any decision-making context involving an 

environmental component, choosing among decision alternatives (A) can inform how those 

alternatives may influence the environment and lead to changes to human health and well­

being (H). Each potential alternative involves actions, for which relationships between the 

actions and the impact of those actions (B) result in changes to the natural environment, 

including structure, function, and benefits provided by the environment (D). Here, it is 

also important to consider the influence of external forces (C), such as climatic factors, 

pollutants, and infrastructure, on changing ecosystem structure or function. In considering 
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the status, condition, and ES provided by the environment (D), there is a subset of ES (F) 

that are directly connected to human health and well-being [9], referred to as final ecosystem 

goods and services (FEGS; also referred to as final ES). Ecological production functions 

(EPFs) are used to describe and measure changes in ecological structure or processes 

by which changes to the biophysical state of an ecosystem alter production of final ES 

(E) and are often estimated using ecological models. Final ES produce benefits that are 

measured by a human-mediated function (G) that conveys their value to human health and 

well-being (H). Importantly, these environmental benefits may be derived or influenced 

by social or economic services (I). Overall, these elements provide information to inform 

decisions (J) through decision-analysis tools, case-study examples, targeted communication, 

or governance-specific procedures. Further, closing an adaptive management loop, those 

lead to informing one or more decision alternatives. Overall, the suite of ES research 

described in this article touches upon each of the six areas identified in the Costanza et al. 

[3] twenty-years-after assessment of ES science: (1) the value of integrated ES (measuring, 

mapping, modeling, valuation) for decision support; (2) the use of ES to inform tradeoffs; 

(3) efforts on ES assessment and accounting; (4) alternative scenario analyses and modeling; 

(5) bundling rather than studying individual ES; and (6) a focus on ES issues related to 

scaling and transferability.

2. Literature Review Methodology

The US EPA peer-reviewed literature was identified through targeted searches, including 

Google Scholar, US EPA databases (e.g., Science Inventory), and communication with 

current US EPA ecosystem services science researchers. Peer-reviewed studies led by the 

US EPA involving a primary focus on ES science were included. Several US EPA research 

efforts where ES were tangentially mentioned were generally excluded; however, some 

areas, such as the extensive work on the US Human Well-being Index, where connections 

to services provided by the environment are incorporated are briefly discussed and the 

reader is sent to other resources to learn more (see Section 3.7). Examples of peer-reviewed, 

published studies on US EPA tools led by non-US EPA affiliated researchers were generally 

excluded, as in the case of many of the more than 70 published studies using the EnviroAtlas 

(see Section 3.5). Any US EPA peer-reviewed ES study not included is an unintended error 

of omission by the authors.

A recent suite of in-depth case studies developed to operationalize the framework are 

presented at the end of this paper. Built from a range of experiences, a larger suite of ES 

assessment tools, models, and frameworks can be mapped onto elements of a structured 

decision making (SDM) framework [5] (Figure 2). This creates the opportunity to use the 

SDM framework as a translator (i.e., a “Rosetta Stone” approach) for mapping ES tools 

onto other decision processes (e.g., the National Environmental Policy Act process) without 

having to develop crosswalks between a suite of ES tools and each separate decision-making 

process. In contrast, a more targeted approach of introducing ES into a decision framework 

includes the development of Generic Ecosystem Service Assessment Endpoints for inclusion 

into the ecological risk assessment process [10–13]. Future US EPA research includes 

further developing [14] and applying [15] frameworks outlining connections between ES 
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and contaminated site cleanup processes, including principles of greener cleanups [16], and 

other ecosystem considerations.

3. Results and Discussion—The US EPA’s Ecosystem Services Research 

Elements

3.1. Decision Alternatives (A) and Impact Functions (B)

Framing ES science in the context of informing decision making helps operationalize the 

application of ES concepts, ideally with focused efforts to connect ES directly to decision 

support tools and approaches. The cornerstone of the conceptual framework (Figure 1) is 

the role that decision alternatives (A) and impact functions (B) play in setting the overall 

decision context. There are many factors that can be used to inform decision alternatives, 

such as budget, time/space constraints, scientific/technical limitations, etc. Elements of 

SDM [17] and stakeholder engagement can lead to more robust decisions. For example, 

the US EPA has developed the FEGS Scoping Tool [18] to support inclusion of diverse 

stakeholders in discussions regarding development of decision alternatives in an ES context 

(see Section 3.5). The FEGS Scoping Tool uses the clearly defined categories of the 

National Ecosystem Services Classification System (NESCS) Plus [19] to help determine 

who may be affected by decision alternatives and what these beneficiaries value as some 

general (transition) language before digging into some of the more specific study findings. 

The other themes introduced in this section (identifying priorities, stakeholder prioritization 

criteria, stakeholder engagement, structuring tools and models around decision support, and 

introducing the value of case-study applications) are relevant to—and repeated throughout—

the other elements of this framework (Figure 1) and this article.

Fulford et al. [20] used approaches linking stakeholder priorities to elements of human 

well-being. Both community stakeholder-engagement workshops and keyword analysis 

of community strategic-planning documents were used to examine the importance of 

identifying long-term stakeholder priorities as they inform decision-making goals. Keyword 

identification analyses can be a more objective way to use a community’s own efforts 

to define priorities; however, a strategic planning document’s structure may not follow a 

consistent format, and thus not result in a comprehensive analysis. There are challenges in 

achieving consistent and sustainable outcomes across multiple communities that differ in 

resource availability and management priorities, so Fulford et al. [21] used a keyword-based 

approach to look for common terminology in community objectives in strategic-planning 

documents. Comparing those to community demographics, location, and type, and looking 

for metrics of human well-being is useful for development of indices of community 

sustainability applicable to multiple communities with similar demographics, regional 

location, and type [21]. Yee et al. [22] further developed keyword analysis approaches 

by using a standardized classification system to develop a hierarchical list of final ES by 

analysis of planning documents for 28 National Estuary Programs and 29 National Estuarine 

Research Reserve Systems to be used for estuarine management planning efforts. Elements 

for understanding community decision-making contexts include consideration of four types 

of metrics [23]: community type [24]; human well-being index (HWBI; see Section 3.7); 

stakeholder priorities [25]; and availability of ES.
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Advances in stakeholder prioritization in environmental decision making involve 

development of prioritization criteria based upon literature analysis in the environmental 

management, business, and public relations fields [25], and the incorporation of such criteria 

into ES tools such as the final ES prioritization tool, the FEGS Scoping Tool [18]. Orlando 

and Yee [26] provided another example highlighting the importance of using the process of 

stakeholder engagement to identify and prioritize stakeholder values and preferences and to 

identify tradeoffs among management alternatives.

Direct stakeholder engagement is efficient for identifying objectives; however, results may 

not be generalizable to the entire community or other communities. An alternative method 

of identifying environmental benefit preferences of a community is through analysis of 

social media photographs depicting preferences for active and passive ES-related activities 

as demonstrated in the St. Louis River and Milwaukee Estuary [27]. Littles et al. [28] looked 

at a different strategy drawing connections between people (users of the environment) and 

habitat classes (and subsequent ES) most relevant to them through a weight of evidence 

synthesis of the published literature.

Stakeholder workshop approaches can be used to look at how ES or human well-being 

elements are utilized in various processes (e.g., US EPA, state agency programs, local 

planning, and agency decision processes). This approach was used by Williams et al. [6] 

to advance community revitalization following sediment remediation and aquatic habitat 

restoration in a Great Lakes’ Area of Concern (AOC) community. Acknowledging the 

importance of stakeholder engagement, Gibble et al. [29] incorporated different types of 

stakeholder engagement at different organizational and temporal scales of multi-agency 

efforts to manage freshwater wetlands of the Everglades (Florida). Holifield and Williams 

[30] developed a methodology to use online Qualtrics survey and semi-structured interviews 

to identify appropriate geographic and governance scales to best apply ES lessons to inform 

decision making.

A variety of decision-support frameworks, tools, and approaches for developing and 

analyzing alternative scenarios have been developed and tested by the US EPA, including 

use in quantifying, assessing, and examining ES tradeoffs [5]. To operationalize frameworks 

in ES science, Russell et al. [31] integrated ecological, economic, and social values and 

information to address local metrics (importance to stakeholders, relative economic value, 

and availability of scientific information) in co-developing an ES program with stakeholders 

for Tampa Bay, Florida. In a different location, Sumner et al. [32] developed and tested 

an Alternative Futures Analysis framework approach for forecasting and quantifying (via 

Geographical Information Systems (GIS) analyses) the cumulative effect of management 

practices on future management ES in wetlands in the Great Salt Lake Ecosystem. Using 

the spatially distributed VELMA (Visualizing Ecosystem Land Management Assessments) 

ecohydrological tool for an application on green stormwater management practices such 

as Low Impact Development, Hoghooghi et al. [33] examined different watershed-scale 

decision alternatives through spatially explicit modeling of differently configured low 

impact development practices on watershed hydrology in the Pacific Northwest. In yet 

another GIS-based study, Angradi et al. [34] quantified changes in the spatial extent of ES 

provisioning in the St. Louis River Estuary, designated an AOC by the 1987 Great Lakes 
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Water Quality Agreement, for management scenarios on sediment remediation and habitat 

restoration projects. Although originally developed for the Tampa Bay, Florida, watershed, 

Russell et al. [35] recognized the challenges of some GIS license costs to communities and 

used free and open-source GIS to develop a downloadable executable GIS-based EPA H2O 

tool used to quantify ES under different land-use scenarios applicable in multiple locations. 

Finally, Bayesian network analyses [36] can be applied as a technique to assess uncertainty 

in multi-dimensional management decisions, as demonstrated in coral reef management 

applications focusing on uncertainties related to stressors, coral reef condition, and related 

ES production [37,38].

3.2. External Forces

It is important to identify ways to explicitly incorporate the importance of external factors 

into environmental decision making. In our conceptual framework, external forces (C) are 

acknowledged as playing a concurrent role in influencing ecosystem structure or function. 

Examples include disturbance events, pollutants, changes in adjacent infrastructure, land 

use and management, and developing ecosystem-based management [39] strategies around 

multiple stressors and other climatic factors.

Bridging the gap between the challenge of having no ES assessment data to inform 

environmental decision making versus having in-depth ES evaluations, Myer and Johnston 

[40] described how to develop rapid ES mapping assessments to address stakeholder-driven 

needs for understanding resilience recovery and rebuilding on Long Island following 

Superstorm Sandy in 2012. Examining other external stressors, McKane et al. [41] described 

ES-relevant modeling of nutrients and contaminants entering estuarine ecosystems from 

terrestrial sources in a Puget Sound case study to inform land-use decisions. Examining 

a mixture of environmental and anthropogenic stressors, Weijerman et al. [42] analyzed 

ES and coral reef management tradeoffs resulting from a suite of local- and global-scale 

stressors.

Research on climatic factors affecting ES assessments include mapping changes in 

ES delivery resulting from alternative scenarios, with lessons learned from individual 

applications relevant to other decision contexts. Early examples include ES assessments 

related to optimal allocation and sustainable management of water and land resources in 

the Santa Cruz watershed ecosystem [43]. Recent research includes mapping-based analyses 

of ES-related property protection in the northern Gulf of Mexico under different habitat 

change and sea-level rise scenarios [44], and an analysis of metrics of ES and human well­

being for alternative future scenarios examining different degrees of population growth and 

environmental resource protection in the same region [45]. Empirical modeling approaches 

also are used to examine alternative management scenarios in response to changing climate 

scenarios, including effects on water yield and rice production in the Lower Mekong 

Basin [46,47], and analysis of climate variables to identify robust predictors of vegetation 

associations for assessing bioclimatic shifts important for ES production assessments and 

ecosystem-based management [48].
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3.3. Intermediate Ecosystem Goods and Services (Intermediate ES)

A systems approach to incorporating ES into environmental decision making involves 

understanding the larger suite of potential ES before focusing in on priority ES for a 

given decision context. Research on the concepts of final ES (see Section 3.4) starts with 

identifying and measuring intermediate ES (D) that contribute to the production of final ES 

which directly benefit people. For example, fish in the water that are caught by recreational 

fishers are a final ES, but an attribute such as water quality is an important intermediate ES 

that leads to the presence of the fish.

In a water quality intermediate ES example, nutrient retention by wetlands provides an 

important, intermediate step to final benefits such as clean water. Wetlands act as sinks 

for sediment, nutrients such as nitrogen (N) and phosphorous (P), and other pollutants [49–

51]. Craft and Schubauer-Berigan [49] found that wetlands with hydrologic connectivity 

to other aquatic ecosystems enriched with nutrients retain more N and P than those with 

low anthropogenic nutrient inputs. Sierszen et al. [52] documented nutrient retention as an 

important ES provided by the Laurentian Great Lakes coastal wetlands. Jordan et al. [50] 

determined the amount of N wetlands remove worldwide is roughly 17% of anthropogenic 

N inputs and that wetland protection and restoration should be expanded to mitigate against 

excessive N loading. Kreiling et al. [53] examined the ability of restored wetlands in the 

Upper Mississippi River basin to remove sediment and nutrients before they flow into the 

river and fond that nutrient retention increases if more water is diverted into restored and 

natural marshes prior to reaching the river. These types of intermediate ES studies lead to 

better understanding of wetland management for improving the final service of water quality 

and their potential value in water quality trading programs.

The US EPA’s extensive ES research in the Great Lakes, the world’s largest collective 

repository of surface freshwater, has included many studies focusing on intermediate ES. 

For example, in the St. Louis River AOC, nine beneficial use impairments (BUI) were 

identified for removal, including excessive loading of sediment and nutrients to Lake 

Superior [54]. Bellinger et al. [54] analyzed 60 years of water quality data and determined 

that the concentration of nutrients and sediment had decreased enough to consider removing 

the Excessive Loading of Sediment and Nutrients BUI. Recognizing that a comprehensive 

inventory of ES provided by the Great Lakes did not exist, Steinman et al. [55] conducted 

a summit with 28 natural and social science experts, identifying several recommendations 

including developing an inventory of ES, addressing data gaps, and further developing 

tradeoff analysis strategies incorporating ES.

Another intermediate ES example is stormwater retention provided by the landscape, 

contributing to property protection. It is important to understand how changes in land 

cover alter stormwater regimes and this can only be done with up-to-date and accurate 

data. Reistetter and Russell [56] compared different methods of calculating an index of 

stormwater mitigation services provided by the landscape, developing recommendations 

on which datasets and methods to use. In a different example, the presence of coral 

reefs provides a buffer from storms and waves, contributing to property protection [26]. 

Orlando and Yee [26] identified how sediment runoff impacts the ES provided by coral 
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reefs finding that higher sediment delivery decreases production of most ES (e.g., ecosystem 

integrity, bioprospecting discovery, recreational activities, fisheries production) but increases 

the service of property protection. Their results highlight the importance of using the process 

of stakeholder engagement to identify and prioritize stakeholder values and preferences and 

to identify tradeoffs among management alternatives.

Research has focused on moving beyond mapping the presence of—or applying a dollar 

value to—a given ES and into developing more targeted information that can be used to 

inform decision support. Early US EPA research focused on measuring the effectiveness of 

environmental programs in terms of ES through a Relative Valuation of Multiple Ecosystem 

Services Index, which assigns a value to ES (both intermediate and final) and expresses 

the output in either relative units or in dollar value [57]. More recent US EPA research 

has focused on ES and decision support tools, such as the Rapid Benefit Indicators (RBI) 

approach, a systematic approach to compile non-monetary benefits indicators [58,59]. These 

decision support tools are described below in Section 3.6.

3.4. Ecological Production Functions (EPFs)

There is a need to turn ES into something tangible for bringing into a decision process. One 

of those important efforts involves ecological production functions (E), useable expressions 

that characterize (model) ecosystem processes by which final ES are generated [60]. 

Recognizing that final ES themselves do not always need to be quantitative to inform 

decision making, Bruins et al. [60] identified core attributes for EPFs in the context of 

advancing ES science to best support decision making:

• Estimate indicators of final ES;

• Quantify ES outcomes;

• Respond to ecosystem condition;

• Respond to stressor levels or potential management scenarios;

• Appropriately reflect ecological complexity;

• Rely on data with broad coverage;

• Are shown to perform well;

• Are practical to use; and

• Are open and transparent ([60], p. 54).

Two EPA contributions to EPF science include an online, searchable database (EcoService 

Models Library; ESML) containing 50 individual descriptors for finding, examining, 

and comparing ecological models in the published literature [61], and a new approach 

that characterizes a given model’s “application niche” [62], both aimed at informing 

transferability of models/equations to other ecosystems/contexts and generalizability. The 

ESML functions as a metadata repository on a suite of EPFs available in the literature 

[61]. Moon et al. [62] developed an analytical technique to characterize a given model’s 

application niche through synthesizing information from databases, past studies, and models 
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in original and novel applications to develop performance curves characterizing whether a 

given model is appropriate or not for a different context.

Fulford et al. [63] identified four issues associated with model-based assessments of ES, 

including: (1) choice of model being well-suited to issue and location (i.e., the same 

issues identified by [61,62]); (2) appropriate level of complexity necessary to address a 

management problem; (3) translation of model output into the language of policy; and (4) 

proper engagement with decision makers so they accept and use model-based information. 

The US EPA’s EPF science efforts have primarily focused on advancing core EPF attributes 

[60,62] while keeping in mind principles/issues associated with modeling ES [63] across a 

suite of marine (e.g., corals, coastal/estuarine), freshwater (lakes, rivers/streams, wetlands), 

and terrestrial (agroecosystems, forests) environment types. While most modeling has 

focused on EPFs related to informing valuation of ES for direct use purposes (e.g., forest 

harvests), additional research has included EPF work related to non-use, existence values, 

and intrinsic benefits from nature ascribed to their presence. For example, Marcot et al. [64] 

modeled habitat structure ultimately related to existence values for the Northern Spotted 

Owl, and Fordham et al. [65] connected an individual-based model to a niche-population 

model to examine turtle species in tropical savannahs. In a different type of ES modeling 

context examining how the human environment has impacted ES, an ES-Life Cycle Impact 

Assessment conceptual framework was developed [66] and case-tested [67] by modeling 

environmental cause–effect chains (on resource use or pollutant emissions) into potential 

environmental impacts of supply chains and their products.

3.4.1. EPFs in Marine Systems—Research on EPFs in marine ecosystems includes 

corals, coastal/estuarine habitats, and fisheries contexts. Principe et al. [68] presented 

a literature survey on identification and characterization of coral reef ES that captured 

information on measuring and valuing coral reef services as indicators useful for 

management and sustainable-use planning. Existing ES quantification methods are 

summarized related to ecological integrity, shoreline protection, recreational opportunities, 

and fisheries production [69], and potential for natural products discovery from reefs [70].

In coastal and estuarine systems, recent ES science has focused on using a habitat 

perspective as “a practical method for developing models (or, ecological production 

functions, EPFs) to describe the spatial distribution of ecosystem services” [71]. Jordan 

et al. [72] argued for using a habitat-focused, rather than just a final ES–focused, perspective 

for considering ES in coastal, estuarine, and fisheries contexts by describing challenges 

based on mismatches between the measurement of EPFs at small spatial and short temporal 

scales versus delivery of coastal, estuarine, and fisheries ES over extensive scales of space 

and time. In a location-specific study, Lewis et al. [73] summarized ES and environmental 

information for the Pensacola Bay, Florida, system to develop 20 recommendations for 

research modeling, habitat restoration, and system monitoring to improve the condition of 

the system. Ayvazian et al. [74] presented an oyster habitat restoration project example 

focused, in part, on improving intermediate ES of fish and invertebrate refuge and foraging 

habitat. In another oyster example, Bricker et al. [75] examined the economic value for 

aquaculture-based removal of N, in part to inform management and tradeoff decisions 

related to aquaculture and reef restoration.
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The domain of ecosystem-based models relevant to characterizing ES in coastal and 

estuarine habitats, including both challenges in ES modeling and the integration of ES 

models into coastal management decision-making processes, is presented by Lewis et al. 

[76]. They argued for co-development of modeling strategies among scientists, resource 

managers, and relevant stakeholders [76]. Those strategies can be enhanced by surveying 

local users to identify coastal habitat–related user/habitat dependencies to help prioritize 

EPF characterization and local ES valuation to support decision making [28]. Finally, 

Fulford et al. [77] presented a logic argument for the connection between ES and the 

preservation of ecosystem function, applying the fisheries science concept of functional 

equivalency, where desired ES functions are managed to preserve (e.g., a sustainable fishery 

harvest) while allowing for general change in the ecosystem, to inform environmental 

decision making in a broader context outside of marine/coastal ecosystems.

3.4.2. EPFs in Freshwater Systems—Research on EPFs has been advanced in 

freshwater lakes, rivers/streams, and wetlands. Integrating quantitative data on multiple 

species and habitat components provides a multimetric context for EPF analyses. In a study 

characterizing Great Lakes fisheries, Trebitz and Hoffman [78] analyzed data on ecosystem 

components and information on commercial and recreational harvests to inform fishery 

management. To connect riverine ecosystem conditions and resultant ES functions, Weber 

and Ringold [79,80] used a beneficiary survey approach (interview and focus group data) to 

identify specific, publicly relevant river features to organize the development of monitoring 

design and measurement of aquatic EPFs for river management decision making.

Examples of US EPA EPF research in wetland settings include both large-scale, broad 

assessments [81] as well as small-scale, detailed experimental efforts [82,83]. As an 

example of how to connect potential loss of ES associated with loss of habitat to examine 

management issues such as wetland mitigation and natural resource damage assessments, 

Engle [81] examined ES across Gulf of Mexico coastal wetlands related to essential habitat 

for juvenile shrimp production, storm surge protection, water quality improvements by 

N removal, and carbon sequestration. Wetland EPFs can be used to connect productivity 

and long-term carbon sequestration rates in the context of changing environments. Herbert 

et al. [82] used this approach to examine the effects of chronic saltwater intrusion, and 

Li et al. [83] used this approach to examine projections of human population changes 

related to increases in temperatures, river discharge (via variable precipitation changes), and 

increasing freshwater withdrawal. In this pair of studies, Herbert et al. [82] and Li et al. 

[83] examined fine-scale experimental measurements of primary production in tidal fresh 

marshes dominated by the C3 grass Zizaniopsis miliacea.

Alternative ways to examine ES and EPFs in aquatic systems have focused on a watershed 

perspective at the large spatial scale of catchments, and at smaller, sub-watershed scales. 

Hill et al. [84] followed ES from EPFs through to a benefits assessment using economic 

conversion factors focusing on ES related to biodiversity, climate regulation, recreation, 

timber production, crop production, water supply, and water purification. Connecting ES 

and EPFs at this scale can be used for alternative land-use scenarios. In an example of 

an economic assessment, Teague et al. [85] used a watershed-scale approach to examine 

a suite of ES production in the Tampa Bay, Florida, region looking at alternative future 
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land-use scenarios to conduct benefit assessments of alternative scenarios. Watershed-scale 

assessments can be used to examine ES that are traditionally difficult to relate in terms 

of monetary value (e.g., carbon storage and sequestration; water recharge; habitat support 

for biodiversity; and N and other “chemicals of concern” removal) as demonstrated by 

an assessment of water-level influence on both biogeochemical cycles and water supply 

recharge within the major river watershed in Tampa [86]. At an even smaller, neighborhood 

scale, Russell et al. [87] looked at functional, technical, and data considerations of GIS to 

map EPFs for air pollution removal, shading, carbon sequestration, N removal, walkability, 

access to greenspace, aesthetics of residential areas, and water-feature viewscapes to conduct 

benefits assessments.

3.4.3. EPFs in Terrestrial Systems—In terrestrial EPFs, US EPA research has been 

done in agroecosystems and forest systems. Agroecosystem research has focused on system­

level, integrated modeling of N fate and transport processes in the Mississippi River Basin 

[88–90]. A multimedia modeling approach can be used to assess impacts of fertilization, 

meteorology, and atmospheric N deposition on water quality and the export of N to the 

Gulf of Mexico. Additional research has been directed towards informing land use and land 

management of agrosystems [89] and efforts to reduce the areal extent of the Gulf of Mexico 

hypoxic zone [88].

In forest ecosystems, EPF research has focused on modeling landscape changes resulting 

from different management/climate scenarios [91,92]. Using VELMA to link hydrological 

and biogeochemical processes within watersheds, Abdelnour et al. [91] examined effects 

of forest management under different climatic conditions on the condition and functions 

of forest and adjacent streams. In a later study, Abdelnour et al. [92] examined changes 

in terrestrial, aquatic, and atmospheric carbon and N dynamics before and after timber 

harvesting in the western Oregon Cascade Range.

Overall, EPF advances solve challenges of including ES in decision making resulting 

from limited understanding of linkages among ecosystem components and processes that 

ultimately deliver ES. In addition to further incorporation of ES elements into ecological 

models, future EPF research should focus on developing science related to ES trade-off 

assessments, informed, in part, by identification and incorporation of added ecological 

complexity into EPFs [60].

3.5. Final Ecosystem Goods and Services (Final ES)

Much US EPA research focuses on final ES (F) because final ES are generally easier to 

measure and communicate to stakeholders, avoid double counting issues, and can be directly 

connected to people’s values and their well-being [8]. Using final ES to value the benefits 

provided by the environment helps ensure collected data are more useful for society. Weber 

and Ringold [93] used both quantitative and qualitative techniques to identify ecological 

benefits for rivers and streams, and Ringold et al. [94] presented a six-step framework to 

identify final ES metrics of a stream.

Using a beneficiary approach to classify ES helps determine who benefits and in what ways, 

and improves communication to stakeholders and policy makers. DeWitt et al. [8] (Figure 
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3) provides examples for integrating final ES into ecosystem-based management and other 

decision frameworks. To help address the challenge of identifying who those beneficiaries 

are in a community or at a particular site, Sharpe et al. [18] introduced the FEGS Scoping 

Tool to help decision makers in the early planning stages of a project to prioritize: (1) 

stakeholders [25]; (2) beneficiaries; and (3) attributes that the beneficiaries care most about.

Classification systems provide standardizations of final ES terms, which lead to many 

benefits to practitioners that include: defining ecosystems more precisely; ensuring easier 

transferability of knowledge among scientists and studies; improved communication; and 

avoiding the need to recreate systems used to define and classify ES [95,96]. The US EPA’s 

FEGS Classification System (FEGS-CS) described and accounted for the final ES provided 

by a certain environment type for a specific beneficiary [97]. The US EPA’s National 

Ecosystem Services Classification System (NESCS) presented a framework for classifying 

ES to aid in analyzing the impacts of policy-induced changes to ecosystems on human health 

[98]. The US EPA recently combined both the FEGS-CS and NESCS classification systems 

into one classification system, called NESCS Plus, by combining the desirable features of 

both FEGS-CS and NESCS to give NESCS Plus the flexibility in offering two ways to 

classify the human dimensions [19]. The core components of the NESCS Plus Classification 

System (where, what, how, and who) are shown in Figure 4, and a detailed explanation 

on how to walk through the where, what, how, and who questions are provided in [19]. 

Newcomer-Johnson et al. [19] also provides detailed definitions of classes and sub-classes 

of environment, ecological end-products, use (i.e., distinct ways in which end-products can 

be directly used or appreciated by humans), user (i.e., the economic sectors through which 

people directly use or appreciate end-products), and beneficiary classes.

Distinguishing between intermediate ES and final ES can be tricky, so Johnston and 

Russell [99] presented operational guidelines on what to count when evaluating final ES. 

A 2016 methodology utilizing expert workshops [100] proposed how to develop metrics and 

indicators of final ES; this work was further developed by [101] in presenting a sequence of 

steps for proposing final ES metrics (Table 1).

Related to metrics and indicators, the EnviroAtlas is a US EPA online data and tool 

repository [102] containing more than 400 geospatial layers coded with seven categories 

of (intermediate and final) ES: food, fuel, and materials; clean air; recreation, culture, 

and aesthetics; natural hazard mitigation; climate stabilization; clean and plentiful water; 

and biodiversity and conservation [103]. At present, the EnviroAtlas has been used in 

more than 70 peer-reviewed publications; the reader is directed to US EPA [103] to learn 

more. Tashie and Ringold [104] used the final ES framework to assess whether systemic 

biases were introduced to ES assessments when only using land use and land cover data 

(from EnviroAtlas) and found major gaps in identification of beneficiaries. The results are 

compiled in a searchable and publicly available database useful for navigating EnviroAtlas 

data [105].

The US EPA conducts work on linking changes in stressors to changes in final ES. 

A STEPS (Stressor-Ecological Production function-final ecosystem Services) Framework 

allows policy makers, regulators, and land managers to determine the tradeoffs between 
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pollution and protection for various ecosystem components. The STEPS Framework linking 

changes in biological indicators of a stressor to final ES was tested (using the FEGS-CS) to 

describe final ES and exceedance of critical loads of air pollution as a stressor [105]. O’Dea 

et al. [106] used the STEPS Framework and FEGS-CS in an exercise aimed to link aquatic 

acidification to the ES and beneficiaries impacted by this pollution. In another STEPS 

framework application, Rhodes et al. [107] examined linkages in aquatic eutrophication 

to final ES through linkages to phytoplankton community shifts in response to changing 

nutrients. In the ESML described earlier, the Variable Relationship Diagram is a systematic, 

visual approach for displaying connections between predictor variables within models to 

output endpoints allowing the user to quickly visualize relationships among predictor 

variables and how those variables contribute to processes contained within a model [61]. 

This advancement in ecological modeling improves communication of important functions 

and relationships to better help analysts and modelers see ways to connect models together 

to produce new and more powerful predictive tools.

3.6. Benefit Functions

A fundamental area of ES science relevant for providing decision support is the body of 

work focused on capturing the specific benefits of ES themselves for a given decision 

context. The change in a system brings about a change in ES, which we can predict using 

EPFs, and those ES provide benefits, which we can estimate using benefit functions (G). 

The science of measuring, understanding, and utilizing information on the benefits of ES 

in environmental decision making has multiple dimensions [108]. The two core pillars 

in ES benefits characterization are: measurement and mapping; and valuation. Research 

on measurement and characterization of benefits includes focus on metrics and indicators 

[109] and on mapping [110]. Research on valuation includes focus on characterizing the 

economics of ES [111–113].

In the field of non-monetary benefits of ES, Johnston et al. [114] characterized three 

types of approaches (Figure 5) looking at the intersections between: (1) ecosystems and 

human health elements (referred to as “eco-health” analyses) [114–117] described in 

Section 3.7; (2) societal and human health elements (via Health Impact Assessments; 

HIA) [114,118,119]; and (3) ecosystem and societal elements (via ethnographic methods 

such as the neighborhood scale analyses [6]). The US EPA’s HIA and ES benefits 

research are compiled in [118]. As these studies are interdisciplinary in nature, involving 

practitioners of social, economic, human health, and ecological sciences, readers need to 

be aware that differing lexicons and perspectives may impede communication [114]. The 

different components of “benefits” are not uniquely distinct research areas; rather, there are 

significant overlaps among them in both development and application.

Metrics and indicators of ecosystem benefits are important to connect the value of 

ecosystems to human beneficiaries. The term “linking indicators” refers to those biophysical 

indicators that inform interpretation of ecological conditions and change from a societal 

perspective in that they measure biophysical things directly affecting people’s welfare 

[109]. Indicator-based methods can be used where direct economic valuation is either too 

complex to undertake, or otherwise inadequate to provide a complete picture [59]. In an 
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application on recreation-focused benefits of ES, Angradi et al. [116] examined how to 

develop metrics of benefits of good water quality for lakes, comparing subjective visual 

assessments quality (i.e., those that inform an individual’s perspective on the value of a 

lake for recreational purposes) to environmental monitoring data of water clarity, including 

Secchi Disk depth, turbidity, and water-column chlorophyll-a concentration data. Lomnicky 

et al. [120] developed a recreational fishery index as a way to connect ecological condition 

in rivers and streams and sport fishery ES. Benefits mapping of ES often includes combining 

traditional mapping with economic translations as demonstrated by Russell and Greening 

[110] combining biophysical mapping data for N removal and carbon sequestration with 

economic converters for estimating and mapping benefits associated with water treatment 

and offsetting carbon emissions.

Not surprisingly, evaluation and assessment of ES benefits can provide direct information 

to support decision making. In addition to other decision support examples in this section, 

the RBI approach involves five steps of presenting elements of benefits assessments to 

stakeholders in examining different management alternatives for a decision: (1) describe 

the decision context; (2) select ES and describe benefits; (3) compile benefit indicators; (4) 

summarize the indicators; and (5) use the results in decision making [58]. One example 

application of the RBI approach conducted in the urbanizing Woonasquatucket River 

Watershed (Rhode Island) demonstrated how to capture social benefits from small urban 

sites with relatively low ecological function [121]. In another RBI application, Bousquin 

and Kristen [122] assembled a national dataset of spatial indicators to allow communities to 

more quickly screen restoration and conservation projects based on potential flood reduction 

benefits, with a green infrastructure-focused application in Harris County, Texas.

3.6.1. Economic Valuation—Applications of economics valuations include, but are 

not limited to, use in decisions related to policy development, alternative selection or 

tradeoff analyses, market-focused applications, and use in communicating the importance 

of nature to people. Given that most environmental resources are provided freely by nature, 

they typically are not paid for by people; however, environmental decision making often 

involves balancing components of the environment with other things valued by people. As 

a result, economic applications of ES are sometimes needed to inform decision making. An 

overview of terminology, such as the four types of non-market values (direct-use values; 

indirect use values; option values; and non-use values) is provided in [112]. They describe a 

range of economic methods that may be employed for analyses, including cost-effectiveness 

analysis, economic contribution analysis, economic impact analysis, or economic benefits 

analysis. In a survey of natural resource managers and their use of economic valuation 

surveys, ref. [123] three areas of interest were identified: (1) economic contributions and/or 

environmental impacts to the local economy; (2) values of the environment that the public 

is willing to pay for/give up for a management decision; and (3) the total, overall value of 

assets provided by an ecosystem. There is a general need to develop benefit estimates as 

part of regulation development; Weber [111] presented approaches to non-market ecological 

valuations in the context of regulatory support for the Clean Air Act and Clean Water Act 

using examples including valuation of secondary National Ambient Air Quality Standards. 

In the context of markets, Heberling et al. [124] presented a water quality trading model to 
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illustrate how social benefits and costs can be explicitly considered to explore elements of a 

water quality trading program for wetlands and meeting water quality goals.

In the related field of natural capital accounting, accounts are developed to assess 

contribution of ecosystems to the economy whereby an ES can be considered as representing 

a type of “transaction” between humans and the natural capital of the environment [113]. 

Warnell et al. [125] developed an application of natural capital accounting by compiling 

ecosystem extent, condition, and ES supply and use accounts across a suite of ES for a 

10-state region in the southeast US, illustrating how information from ecosystem accounts 

can contribute to policy and decision making.

From a communications perspective, economics valuation was presented as part of important 

stakeholder engagement in the Tampa Bay watershed in their restoration efforts by [110]. 

In another example on economic perspectives in communicating the benefits of ES, Weber 

et al. [126] examined economic functions related to recreational access to nature for the 

Sonoran Desert featuring a perennial stream, looking at both time-varying environmental 

factors related to quality of recreation and sociodemographic variables.

3.6.2. Health Impact Assessments—Health Impact Assessments are “a means of 

assessing the health impacts of policies, plans, and projects in diverse economic sectors 

using quantitative, qualitative, and participatory techniques” [127]. The HIA process 

involves cooperative, transdisciplinary efforts that involve stakeholders and decision makers 

in the process of identifying potential impacts of concern to a community for a given 

decision. The HIA process was successfully used in a Suffolk County, NY, case application 

to identify ES and health impacts of interest and concern to the community [114]. Williams 

and Hoffman [119] used HIA in a Great Lakes AOC habitat restoration project to identify 

and connect potentially impacted ES as a result of the environmental cleanup project to 

endpoints such as swimmable water or edible fish, which could be connected to health 

benefits. Although HIAs are not considered an ES tool per se, these examples show that 

HIA can be used as an organization and communication tool to aid in community-scale ES 

assessments.

3.6.3. Ethnographic Methods—Johnston et al. [114] presented an overview of the 

suite of US EPA’s conceptual modeling approaches developed for ES benefits analyses. 

The development and application of ethnographic methods—a suite of qualitative and 

quantitative social science methods used to observe and learn interactions in and around a 

particular setting or environment—can be used to translate ES information into information 

used in on-the-ground decisions. An ethnographic approach to studying the benefits of 

ES enables the identification and characterization of the different values placed on an 

ecosystem and its services [114]. These methods have been used for conceptual modeling 

of social-ecological systems, stakeholder engagement, and communication. For example, 

Williams et al. [6] used ethnographic methods to develop conceptual models demonstrating 

how to improve transparency and facilitate community-scale conversations and characterize 

barriers and constraints involving decisions and ES.
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3.7. Human Health and Well-Being and Socio-Economic Services

To operationalize ES for decision support, connections need to be made between the 

potential benefits of ES to people and changes in human health and well-being. The 

US EPA has advanced research on developing ES connections with human health 

and well-being endpoints (H), including incorporating influences by socio-economic 

services (I). Beyond individual benefit functions and assessments, research has advanced 

on relationships to human well-being (including applications to community decision 

making), eco-health connections (including advancing work in HIA), and work on targeted 

human-health endpoints (e.g., impacts from extreme weather, flood hazard mitigation, 

gastrointestinal illness, and vector-borne diseases). In environmental, community, resilience, 

or sustainability decision making, it is important to recognize that elements beyond ES are 

also influential in a given decision making context. Although this synthesis is focused on 

ES, consideration of socio-economic services is relevant. There are a number of examples 

of relevant overlaps between research on ES and socio-economic services, including 

connections to developing ES benefit functions (Section 3.6), US EPA work on the Human 

Well-being Index (below), and example on-the-ground applications (e.g., see Section 4.2).

The HWBI, developed around the three sustainability pillars (social, economic, 

environmental), identifies domains of human well-being and relationships between social, 

economic, and environmental services to economic, environmental, and societal well-being 

[128]. Smith et al. [128] outlined the approach of connecting the domains of well-being 

to ES, including the need to evaluate ecosystems based on both the sense of security and 

opportunities for interaction with nature that ecosystems provide to people. The reader is 

directed to learn more on the HWBI, including details on indicators and methods [129], 

scaling [130], and adaptation/application to targeted populations such as Native American 

populations [131] and geographic regions (e.g., Puerto Rico) [132]. In a different HWBI 

application, Fulford et al. [24] looked at what a given community values (including benefits 

of nature) and connected those values to elements of human well-being. Fulford et al. 

[24] and Fulford et al. [23] developed a community classification system that groups 

like communities based on socio-demographic, economic dependence, and ecological 

characterization data and, along with HWBI information, developed an approach to answer 

the question, “Does community type provide a local reference point for measuring change?” 

Yee et al. [133] examined novel techniques for downscaling data (from municipal to census­

tract scales) in the San Juan Bay estuary watershed (Puerto Rico) to examine how small 

spatial scale information on community well-being can inform environmental management 

impact assessments including on environmental justice inequalities among neighborhoods. 

In a final example, Yee et al. [45] examined effects of land-use change scenarios on human 

well-being through changes in ES production and delivery for the Pensacola Bay watershed, 

Florida.

There has been a significant increase in the overall science literature evaluating the eco­

health connections between ES and human health and well-being endpoints. Recognizing 

that this field is dominated by observational research, one area that the US EPA has 

focused on is synthesis and integration of the literature. Bolgrien et al. [134] and Johnston 

[118] presented descriptions and applications of eco-health tools, such as the Eco-Health 
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Relationship Browser and the EnviroAtlas. The Eco-Health Relationship Browser is a 

user-driven, online navigation tool that explores more than a decade of studies on the 

buffering and health-promotional aspects of ES [115]. Addressing the dearth of primary 

studies establishing causal associations between ES and human health, de Jesus Crespo 

and Fulford [117] developed a causal criteria analysis of the eco-health literature focusing 

on the context of green spaces providing buffering services that may influence diseases 

such as cardiovascular disease, heat morbidities, and respiratory illness. Other examples 

of research establishing connections between ES related to green space and human health 

endpoints includes identifying an inverse relationships between forest and near-road tree 

canopy and childhood autism rates [135], an inverse relationship between greenway density 

and percent forests and sudden unexpected deaths [136], and the protective effects of 

greenspace on Alzheimer’s disease [137]. Additional published eco-health studies include 

research establishing positive relationships between neighborhood greenery and reduced 

odds of being overweight or obese [138,139], street tree cover and metrics of active 

transportation lifestyles [140], vegetated land cover near residences and biomarkers of 

neuroendocrine, immune, metabolic and cardiovascular system functioning [141,142], and 

small but significant improvements in women’s self-reported general health and green cover, 

likely subject to the type of natural environment and urbanicity [143]. Summers and Vivian 

[144] synthesize the literature on ecotherapy, the ability of interaction with nature to enhance 

recovery from physical and mental illness.

Examples of targeted research related to human-health endpoints include work on vector­

born disease and the potential for ES mitigation of disease. In a study on flood protection 

ES in Puerto Rico, De Jesus Crespo et al. [145] looked at benefits along with potential socio­

economic confounding variables to examine human health concerns around gastrointestinal 

illness, ultimately informing management decisions relating to flood protection decisions. 

In a study on Dengue fever, de Jesús Crespo et al. [146] determined that after controlling 

for population density and other socio-economic aspects, higher percent wetland cover—and 

its resulting heat hazard mitigation benefit—reduced disease occurrence. Through mapping 

spatial distributions and using a Bayesian modeling approach, Myer et al. [147] found that 

although septic systems were associated with an increase in West Nile Virus, land cover 

classified as open water and woody wetlands was negatively associated with West Nile 

Virus incidence in Suffolk County, NY, suggesting that wetland cover has a mitigating ES 

benefit on infection in mosquitoes. Myer and Johnston [148] extended this work, applying 

an analytical technique to surveillance data to identify locally important predictors and 

ultimately improve West Nile Virus incidence models for use at the county and community 

scale. Additional applications of Bayesian modeling approaches for eco-health research 

include examining seasonal weather variation, vegetation height, human population, and 

land cover to examine mosquito-borne disease vectors in southern Texas [149]. In Puerto 

Rico, the ES benefits of wetlands is studied in relation to disease vectors in mosquito-borne 

illnesses, such as the Zika virus, ultimately informing management decisions on flooding 

reduction and water quality improvement in support of traditional methods to control spread 

of vector-borne diseases [150,151].
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3.8. Information for Decision Support

Not surprisingly, elements throughout this manuscript have direct connections to decision 

support (J) and much of the content, including Section 3.1 are relevant here. Regardless of 

the process, tools, or frameworks used, focusing on the decision context provides a valuable 

anchor for exploring decision alternatives [5], and may create opportunities not elsewise 

identified. For example, watershed-focused organizations working on green infrastructure 

opportunities, and the resulting ES benefits, in Cincinnati’s Mill Creek were able to qualify 

for grant funding because they created strategic plans that informed decision alternatives, 

helping identify a suite of process opportunities [152]. Other areas of decision support not 

mentioned previously include applications and relevance of final ES to policy applications, 

and the importance of using/managing language for communication.

Evaluating environmental policies requires estimating impacts of policy-induced changes 

on ecological and human systems. Intermediate ES and final ES were examined as part of 

an analysis on impacts of secondary National Ambient Air Quality Standards for N oxides 

and sulfur oxides [153]. The concepts of final ES are very useful for decision support and 

can help support policy analysis by drawing important linkages between ecological and 

economic models. Final ES can also help inform the design of valuation studies that are 

more conducive to benefit transfers [154]. Sinha et al. [154] compared a set of existing 

valuation studies to the final ES approach to illustrate ways in which using final ES metrics 

could provide economists a useful starting point for considering how the commodity could 

be defined and specified in a valuation study. This approach is useful for determining the 

extent of uncertainty associated with the analysis and provides transparent documentation 

that can be informative for policy makers [154]. Bolgrien et al. [134] highlighted data and 

tools (e.g., EnviroAtlas, Eco-Health Relationship Browser) that the US EPA is providing 

to federal, state, tribal, and local partners to incorporate ES concepts into public policy 

decisions and environmental problem solving. These translational tools make scientific 

information and approaches more practical, relevant, and accessible so that a wider and more 

diverse range of stakeholders can make more informed decisions when addressing problems 

such as land use and social policy [134].

Finally, successful use of ES research for decision support depends on both standard 

terms and definitions and targeted efforts at communication. Munns et al. [155] provided 

a standard lexicon for ES as an important step towards standardizing language. Harwell et al. 

[156] developed a generalizable framework and organizational structure for strategic science 

communication, including guidelines for scientists, stakeholders, and decision makers, using 

an example of communicating ES benefits. Importantly, Harwell et al. [156] encouraged 

researchers to develop and implement a communication strategy at the beginning of a project 

instead of waiting until research is complete.

4. Results and Discussion—Operationalizing the US EPA’s Approach

Developing case-study applications across a range of ecosystems and environmental 

management decision contexts allows for identifying best practices and opportunities for 

transferability of tools and approaches [5]. The US EPA operationalized concepts developed 

through research and community engagement through case studies examining one or 
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more individual elements of the final ES conceptual model (Figure 1). One case study 

approach used a place-based study strategy, allowing a holistic approach to operationalize 

scientific information for decision making through the integration of science with the social, 

economic, and environmental characteristics of a place [20]. Fulford et al. [20] evaluated 

the final ES conceptual model (Figure 1) at the community level in the context of existing 

and previous place-based studies by surveying place-based study teams throughout the US 

and Puerto Rico to ask how their research has (or not) applied elements of the final ES 

conceptual model for decision support.

At several study sites, the US EPA did extensive research on final ES for decision support, 

including a five-year effort documenting the incorporation of final ES production and 

benefits into community-scale decision making [157–159]. The Community-Based Final 

Ecosystem Goods and Services Project incorporated five coordinated case studies in the 

Great Lakes, Puerto Rico, Pacific Northwest, Gulf of Mexico, and US Southern Plains [157]. 

Although work in each of the case studies encompasses multiple elements of the conceptual 

model (Figure 1), for brevity only a high-level overview of some of the conceptual 

model components for each case study is presented below. These coordinated case studies 

explored a number of elements common among the studies to inform the application of the 

conceptual model (Figure 1) to real-world issues, specifically focusing on understanding the 

challenges of operationalizing the framework, and developing lessons learned and elements 

of transferability for future case studies [157]. An important aspect of these case studies is 

the integration of multiple conceptual model elements to inform decision support.

4.1. Final ES Research in the Great Lakes

The Great Lakes case study aimed to expand existing processes (e.g., sediment remediation, 

water quality improvements, and aquatic habitat restoration) to remove BUIs with the 

inclusion of ES concepts and engagement of different suites of stakeholders [157]. The 

goal was to incorporate ES into decision making by providing information regarding how 

decisions affect ES within existing, agreed upon programmatic targets for remediation, 

restoration, and revitalization (referred to as the R2R2R framework) [119]. Williams 

et al. [160] provided a history of the St. Louis River Estuary addressing the role of 

community support in environmental remediation and community revitalization, concluding 

that community engagement empowers the community to take collective action to improve 

water quality, resulting in restoration of environmental benefits to waterfront communities, 

and provides the foundation for new, sustainable economic activity and development [161]. 

Angradi et al. [161] compiled environmental, social, economic, and governance indicators 

and metrics of revitalization from community revitalization and sustainability plans that can 

be used to plan for comparing alternative designs and to track restoration progress.

Williams et al. [6] identified forces that shape decisions, participation, and the inclusion of 

stakeholders and public values (i.e., ES) in the St. Louis River Estuary AOC indicating that 

the value of ES is context-dependent and changes according to an agency’s, organization’s, 

or individual’s relationship to an environmental resource. From a survey and interviews 

conducted with managers and advisory committee leaders, Holifield and Williams [162] 

suggested that recruiting and integrating participants and sustaining participation over the 
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long term presents distinctive, ongoing challenges not fully recognized in existing processes 

of stakeholder participation. Focused on encompassing a suite of different approaches about 

scale and boundaries of water governance in environmental decision making, Holifield 

and Williams [162] developed an expanded conceptual model of stakeholder participation. 

Williams and Hoffman [119] integrated an HIA framework into the R2R2R framework, 

testing an HIA application in a habitat restoration project to identify and connect potentially 

impacted ES as a result of the project to health benefits endpoints such as swimmable 

waters or edible fish. Overall, these efforts provide tools and approaches to understand 

the relationships between US EPA programs, states, and communities, to facilitate 

communication and cooperation [6]. Importantly, this model functions as a “translator” 

approach, designed to identify, facilitate, and interpret distinct values among parties in a 

multi-entity governance effort, and is applicable to other environmental decision contexts, 

both within and outside the US.

4.2. Final ES Research in Puerto Rico

The Puerto Rico case study used tools and approaches to investigate impacts of alternative 

decisions on ES and their social and economic benefits [163], focusing on specific SDM 

elements: (1) clarify the decision context; (2) characterize goals and metrics; (3) develop 

information to link decision alternatives to changes in ES; (4) link decision alternatives 

to effects on human health and well-being; and (5) use an integrated, spatially explicit 

modeling framework to evaluate tradeoffs [159]. An important, transferable lesson focused 

on the value of engaging stakeholders early and often in the decision process [164].

The Guánica Bay, Puerto Rico, watershed has been a priority for research, assessment, 

and management since the 1970s, including an emphasis on addressing effects of 

land management decisions on coastal resources. A 2008 Watershed Management Plan 

characterizing a suite of proposed management actions to reduce sediment runoff and 

harmful effects in the coastal zone served as the initial decision context for the US EPA’s 

research [164]. Carriger et al. [165] used information from this plan, federal and common­

wealth agencies, and nongovernmental organizations to apply qualitative decision-analysis 

structuring methods (focusing on identifying: overall objectives; fundamental objectives; 

and exploring means to achieve them) to gain insight into desired and undesired prospects. 

Conducting workshops with stakeholders, experts, and decision makers to explore past 

decisions, Bradley et al. [164] characterized the decision landscape to better understand 

multiple values and perceptions of citizens in different communities of the watershed, 

resulting in a more comprehensive decision landscape (i.e., beyond coral reef protection) and 

suite of decision alternatives.

Conceptual frameworks such as the Driver–Pressure–State–Impact–Response (DPSIR) 

framework provide a mechanism for planning and organizing information, identifying 

knowledge gaps or stakeholder concerns, identifying metrics or indicators for assessment, 

and providing the conceptual basis for mathematical models. Yee et al. [166] applied the 

DPSIR framework to two distinct case studies: (1) development of water quality criteria for 

protecting natural integrity of coral reefs; and (2) implementation of the 2008 Watershed 

Management Plan to protect coral reefs. In both cases, sketching an initial DPSIR aided 

Harwell and Jackson Page 20

Sustainability. Author manuscript; available in PMC 2022 July 23.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



in clarifying the decision context, including framing the decision and goals, illuminating 

the range of objectives and alternatives under consideration, visualizing potential tradeoffs, 

identifying key stakeholder groups who may have been impacted by decisions, and planning 

what was needed for analysis [166]. Bradley and Yee [167] extended the DPSIR framework 

by integrating human health and ecosystem health into a single framework, making it more 

broadly applicable to issues of sustainability. Applying a systems-thinking framework, such 

as DPSIR, within a structured decision-making approach better enables marine ecosystem 

managers to utilize scientific information toward more sustainable decision making [166].

One approach for characterizing where additional scientific research would best support 

improved decisions and resolve possible conflicts among stakeholders over preferred 

management actions using a normalized metric is the Expected Consensus Index of New 

Research [168]. This method was applied to coral reef protection and restoration in the 

Guánica Bay watershed, focusing on assessing and managing anthropogenic stressors, 

suggesting that new scientific research would be likely to bring people who initially 

disagreed to consensus, providing useful insights into social implications of a research 

program [168].

In a pair of studies, Refs. [45,163] examined integrated assessment approaches for 

connecting ES, human well-being, and the economic, social, and ecological elements 

of sustainability decision making. Their approach involves mapping and quantifying 

indicators of ES and human well-being at a neighborhood-scale to examine whether 

ES information explains variability in elements of human well-being. These integrated 

assessment approaches can be used for estimating potential benefits and tradeoffs in terms 

that are meaningful to people living in a community.

4.3. Final ES Research in the Pacific Northwest

A case-study research in the Pacific Northwest, focusing on several different watersheds 

with unique stakeholders and watershed impairment issues, used a common decision-support 

approach focusing on transferable modeling tools and co-development of alternative model­

based decision scenarios among stakeholders [157].

One area of emphasis focused on understanding forest management practices that most 

effectively restore salmonid populations while providing clean drinking water, forestry jobs, 

and cultural benefits for local communities and Tribes. In the Willamette River Basin 

(Oregon), Bolte et al. [169] presented ES research using the Envision tool, a multi-agent 

model used to generate alternative future scenarios that show how possible decision choices 

interact and collectively impact a landscape’s capacity to supply ES of interest. McKane et 

al. [41] used the Envision tool and the VELMA model to assess ES relevant to rural and 

downstream urban communities resulting from alternative forest management and climate 

scenarios in the Willamette River Basin and Puget Sound (Washington).

Additional research in the Tillamook Bay (Oregon) watershed focused on identifying 

management practices that reduced nutrients, sediments, and fecal matter flowing down 

to the estuary, and how to prioritize these practices to protect a range of objectives related 

to human health (e.g., clean drinking water) and sustainable local economies (e.g., shellfish 
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production) [157]. Estuarine ES–related research included intermediate ES research on 

habitats (e.g., overall habitat suitability) [170,171] and environmental stressors such as 

macroalgal blooms [172] and fecal coliform levels [173] supporting environmental decision 

making related to shellfish final ES.

4.4. Final ES Research in the Gulf of Mexico

A case-study research in the northern Gulf of Mexico has recently focused on Mobile Bay 

(Alabama) and desired sustainability, resilience, and restoration benefits for the Mobile Bay 

National Estuary Program [157]. The goals of this case study focused on how potential 

restoration activities (e.g., improving stream water quality and shoreline health) could 

be examined in the context of ES provisioning and how services provided to people (a 

key measure of success) might be impacted by changes in land use. Targeted research 

focused on: (1) applying SDM approaches; (2) working with stakeholders to identify 

their fundamental objectives; (3) characterizing measures of community well-being; (4) 

evaluating potential management actions related to their fundamental objectives; and (5) 

linking these to the production of ES that directly benefit the community [157]. Evaluating 

elements of transferability of quantitative tools and strategies to examine similarities and 

differences among communities is an additional area of focus.

4.5. Final ES Research in the Southern Plains

The Southern Plains case study focused on issues around community water supply, 

specifically the multifaceted, multi-stakeholder planning processes needed to develop 

community sustainability and resiliency plans and those related ES such as flood control, 

recreational activities, irrigation, and wildlife habitat [157]. One of the US EPA’s tools in 

development is the web-based application Decision Analysis for a Sustainable Environment, 

Economy, and Society (DASEES) built around a five-step, iterative decision process 

focused on: (1) understanding the decision context; (2) defining objectives; (3) developing 

options; (4) evaluating options; and (5) taking action. In the Southern Plains, the DASEES 

application was used to assist multiple communities in resiliency planning focused on those 

ES that require shared cooperation (e.g., water supply and flood protection) in addressing 

common issues in water resource management and expected population increases. As an 

aside, another example of DASEES application is presented by Dyson et al. [174].

5. Conclusions

An explosion in ES science started in 1997 with two seminal publications [1,2], triggering 

an extensive amount of research [3]. Research by the US EPA has incorporated multiple 

dimensions of ES science (Figure 1).

A suite of challenges and opportunities include: developing an operational understanding of 

the final ES conceptual model; matching EPFs and final ES metrics to the problem at hand; 

developing a “toolbox” for ES tools and approaches (e.g., a workbook to choose among 

standardized final ES metrics); improving stakeholder involvement in decision making; 

and continuing the need to integrate multiple issues into the decision process. Lessons 

from research to advance each of the final ES elements in Figure 1 can be useful for 
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identifying gaps and future science needs. Additionally, recent efforts to synthesize and 

evaluate the US EPA’s overall portfolio has highlighted understanding important elements of 

Transferability, Uncertainty, Scalability, and Communication in a strategic manner (referred 

to as TUSC). DeWitt et al. [8] summarized the final ES science that will be needed for 

advancing ecosystem-based management, identifying the following needs:

• Greater awareness within the [ecosystem-based management] community of 

practice, including developing case-study applications, of the usefulness of 

[final ES] and the availability of tools useful for identifying, prioritizing, and 

quantifying them.

• A standardized list of metrics or indicators for each [final ES], based on 

the attributes of ecosystem types that each beneficiary class uses, enjoys, or 

appreciates. Site-specific metrics or indicators could then be developed from 

those generic attributes.

• Integration of the [final ES] tools (e.g., NESCS Plus, FEGS Scoping Tool, 

Rapid Benefits Indicators, EcoService Models Library) to facilitate identification 

of priority [final ES], relevant metrics and indicators for [final ES] endpoints 

and benefits, and models for estimating responses of those [final ES] to 

environmental change or stressors ([8] p. 129).

In the context of transferability, current and future US EPA research focuses on translating 

and applying final ES concepts for different decision contexts. These include applications 

to ecological risk assessments, National Environmental Policy Act processes, cleanup of 

contaminated sites (e.g., Superfund, AOC, and R2R2R contexts), as well as different fields 

such as ecosystem condition assessment, ecosystem restoration, and informing disturbance 

recovery. In an example describing where novel, final ES research is developing, Yee et al. 

[175] described how to translate final ES science into informing environmental conditions 

assessments using an ES gradient approach that provides meaningful measures of ecosystem 

change; how changes in ecosystem condition affect ES; and how to communicate the 

resulting tradeoffs and benefits to decision makers and stakeholders. Overall, the broad 

suite of research described in this paper has identified the need for consistent application 

and integration of core final ES elements into a cohesive approach [8], resulting in the 

integration of science and policy to improve environmental, community, and sustainability 

decision outcomes.
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Figure 1. 
Conceptual framework for incorporating ecosystem services into decision making. Labels 

are referenced by Sections in this article. Source: modified from [8].
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Figure 2. 
Example questions (white boxes) for mapping final ES concepts onto a structured decision­

making framework (yellow boxes). EPF = ecological production function. Source: modified 

from [5].
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Figure 3. 
Examples of final ES in relation to the NESCS Plus structure [19]. For comparison, Boyd 

and Banzhaf [9] terminology is shown below the dashed line. The colors match those from 

Table 1. Source: modified from [8].
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Figure 4. 
Core components of NESCS Plus and the focal questions (where, what, how, and who) 

used to systematically generate systematic final ES. The colors match those from Figure 3. 

Source: [19].
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Figure 5. 
Examining the benefits from ES to human health and well-being among ecosystem, societal, 

and human health elements. Source: modified from [114].
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Table 1.

Structured process for proposing final ES metrics. Source: modified from [101].

Step Description

Step 1: Ecosystem Delineation Explain how to define the boundaries of the ecosystem(s) of interest for practical purposes.

Step 2: Beneficiary Specification Describe the beneficiaries to be considered for each ecosystem.

Step 2: Attribute Specification Identify the biophysical components of nature that link with the ecosystem service and beneficiary’s 
interests.

Step 4: Metric Specification Describe the units of the attribute and discuss the difference between available and ideal metrics.

Step 5: Data Availability Consider the availability of appropriately selected data for the proposed metric.
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