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With the gradual advancement of informatization and industrialization, the safety and controllability of industrial Internet of
things (IoT) have attracted more and more attention. Aiming to improve the security of industrial IoT, a detection method using
stacked sparse autoencoder network model is proposed. In this method, the basic units of the network model have been simplified
and sparse, and some of basic features are combined with obtaining a higher-level abstract expression, so as to solve the problem of
unbalanced network traffic data. +e cascaded network structure is adopted to stack its sparse autoencoder network model, so as
to improve the data ability of the detection model. In addition, the incorporation of Softmax classifier realizes the dynamic
adjustment and optimization of the whole network parameters, which further ensures the efficiency of the detection method. +e
simulation experiment is based onNSL-KDD dataset.+e experiment has proved that the proposedmethod has excellent network
attack identification and detection performance. Its accuracy index is about 95.42%, and the detection time is about 3.42 s.

1. Introduction

+e essence of Internet of things (IoT) is the integrated
development of industrial automation and interconnection
of all things technology [1–3]. +e Industrial Internet of
things (IIoT) has realized the unprecedented combination of
subsystems such as production, monitoring, and manage-
ment. Different systems can process all kinds of industrial
data more efficiently under the unified management of the
control center [4, 5]. Its high complexity and openness
increase the network security risk faced by the industrial IoT.

Typical network attacks in industrial control systems are
common [6]. In July 2010, the first virus “Stuxnet” targeting
the Supervisory Control and Data Acquisition (SCADA)
system attacked Iran’s nuclear facilities. In 2012, the “Flame”
virus paralyzed Iran’s oil industry network. Since then, the
incidents of hacker attacks on industrial control systems
have been reported all over the world, and the frequency and
impact have shown a rapid upward trend year by year.
Industrial control security has become a complex of “net-
work security, equipment security, control security,

application security, and data security” [7]. +erefore, it is
particularly urgent to propose an accurate and efficient
network intrusion detection method.

Intrusion detection system is widely used in traditional
industrial control system and modern industrial IoT, and it
has attracted more and more attention [8, 9]. In [10], the
authors detect attacks on the industrial IoT based on
BiLSTM-RNN and use the UNSWNYB15 dataset to train a
multilayer neural network. In [11], the authors designed a
network intrusion detection system for the SCADA system
based on CNN to protect the IIoT from conventional net-
work risk such as DDoS and specific network attacks against
SCADA. In [12], the authors studied the power theft attack
in the smart grid and proposed a detection method using the
multilayer network. However, it should be pointed out that
when facing the current high real-time, high-capacity and
complex multidimensional data in industrial IoT, the above
methods often need a complex training process, and the
accuracy needs to be improved [13].

Deep network can not only obtain the maximum reward
from the high-dimensional and massive network data
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environment but also have the exploration function and
automatically mine more valuable information in the
network environment [14–16]. +erefore, many scholars
have carried out research studies and analyses using deep
learning network. In [17], the authors used a context
adaptive intrusion detection system, which realizes the
accurate detection of network attacks through the mutual
assistance of multiple agents. +e IIoT detection model in
[18] combines feedforward neural network and long-term
and short-term memory network. In [19], the authors
used an IIoT detection model based on intelligent algo-
rithm and multilayer network, which can achieve
better detection efficiency. In [20], the authors proposed a
new multiagent confrontation reinforcement learning
model for IIoT detection system to realize steady-state
support for the network environment. However, it should
be noted that the industrial IoT data has unbalanced
characteristics. +e current deep learning intrusion de-
tection method cannot achieve accurate data feature ex-
traction in the network data with too many feature
dimensions, and it is difficult to support efficient and
accurate intrusion attack-type mapping. At the same time,
due to the deeper network structure, the deep network
model also has the problem of time-consuming in in-
trusion detection.

Aiming at the above problems, based on the improved
autoencoder (AE), a detection method for IIoT is proposed.
+e main innovations are as follows:

(1) In this study, the network structure unit of the
multilayer network is sparse. By adding sparsity
constraints to the hidden layer, some neurons are
suppressed, and the problem of industrial network
intrusion detection with unbalanced network traffic
data is solved, so as to learn more accurate and ef-
ficient feature expression.

(2) +e cascade form is used to combine the sparse
autoencoder (SAE) network and construct the
stacked sparse autoencoder (SSAE) network model,
which can realize the continuous deep feature ex-
traction of industrial IoT network data, so as to
support the high accuracy of intrusion detection
network.

2. Standard Autoencoder Model
Learning Algorithm

Industrial control system network dataset presents the
characteristics of more normal data, less abnormal data, and
uneven data distribution [21]. Algorithms including tradi-
tional artificial neural network cannot effectively classify and
identify unbalanced data.

AE network is an unsupervised feature detection model,
which can learn a feature representation of input data. +is
model belongs to artificial neural network and is optimized
by backpropagation algorithm.

+e essence of the algorithm of self-encoder network is
an unsupervised training and learning method. In order to
make the target value input directly, it introduces the data

processing model of backpropagation to maintain the
consistency of data.

In addition to being used as the construction module of
deep neural network, the AE network can also be used to
extract discriminant features with lower dimension than
input, so as to solve the dimension disaster.

+e standard AE is a multilayer feedforward network,
which expects the input and output to be consistent. It can
be used to learn identity mapping and extract unsuper-
vised features. Figure 1 is a network structure of a single-
layer autoencoder, in which only one hidden layer is used
to encode the input and reconstruct the input at the
output through decoding. +e part from the input layer to
the middle layer is called encoder, and the part from
the middle layer to the output layer is called decoder.
Autoencoder is an unsupervised feature detection model,
which can learn another feature representation of input
data. Autoencoder learns to generate a hidden layer
representation from the input and reconstructs the output
as close to the input as possible from the hidden layer
representation.

As can be seen from Figure 1, the AE network model is
composed of the input layer, the hidden layer, and the
output layer. Specifically, the purpose of the self-encoder is
to make the output value of the model equal to or as close to
the input value of the model as possible with the help of an
identity function. xt � et.

Encoding refers to the process of mapping input x ∈ R to
implicit representation h(x) ∈ R. +e calculation form is

h(x) � αh(Wx + b), (1)

where W ∈ R is the encoding weight matrix, b ∈ R is the
encoding offset vector, αh(x) is the vector value function,
and in the case of nonlinearity, αh(x) is taken as Sigmoid
function.

Decoding refers to mapping the implicit representation
αh(x) to the output layer e, so as to reconstruct the input x.
+e calculation form is

e � αe Wh(x) + b′( , (2)

where W′ ∈ R presents the decoding matrix, b′ ∈ R presents
the decoding vector, and αe(x) is similar to αh(x).
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Figure 1: Autocoding network structure.
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3. Intrusion Detection Model of IIoT

Excessive feature dimension is the reason for the low effi-
ciency of industrial control safety anomaly detection
[22, 23]. Dimension reduction can be achieved by reducing
high-dimensional and nonlinear attribute features. +rough
the sparse expression of features, a small number of basic
features are combined to obtain a higher-level abstract
expression.

+erefore, based on the standard AE network, this study
adds sparsity constraints to the output of the hidden layer so
that most neurons are suppressed and constructs a atacked
sparse autoencoder (SSAE) network model.

+e SSAE network is used to establish the intrusion
detection model of the IIoT. On the premise of maintaining
the accuracy of detection, the calculation speed and calcu-
lation memory are improved, so as to learn better feature
expression.

3.1. Overall Architecture. +e proposed overall architecture
is shown in Figure 2.

From Figure 2, the identification of industrial IoT in-
trusion by this model mainly includes the following three
steps:

(1) Data preprocessing: build an industrial IoT envi-
ronment and capture real-time network data, in-
cluding source address, target address, connection
attributes, and other relevant information [24, 25].
+e data are preprocessed and transformed into a
format that can be processed by the stacked noise
reduction convolutional autoencoder. In this study,
data preprocessing is divided into three parts:

① Attribute mapping: convert character data into nu-
merical data

② Data normalization: normalize the data to within 0 to
1 to solve the problem of dimensional inconsistency,
which affects the accuracy

③ Regional adaptive oversampling algorithm: generate
new samples at the algorithm level for minority
samples, handle the imbalance of data distribution
properly, and then carry out the next operation to
optimize minority data

3.2. Stacked Sparse Autoencoder Network. SAE network
suppresses most neurons by adding sparsity constraints to
the output of the hidden layer, which can learn better feature
expression, so as to solve the problem of industrial network
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Figure 2: Intrusion detection model for IIoT.
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intrusion detection with unbalanced network traffic data.
+e specific way is to add a sparse penalty term, that is, the
function of the average output activation value of neurons.

+e goal of SAE is to make the output fit the input
features, which is similar to AE, but SAE imposes sparsity
restrictions on the middle layer in order to avoid simple
mapping output to input.

+e simple understanding of sparsity restriction is that
when the output of neuron in each layer is 0, it indicates that
the state of neuron is inhibited; when the output of neuron is
1, it indicates that the state of neuron is active, and the
sparsity restriction makes the state of neuron inhibited most
of the time.

+e mean activation degree of hidden layer neuron i is
defined as follows:

τi �
1
n



n

p�1
c

(2)
i v

(i)
  , (3)

where n indicates the total number of data sample sets and
c

(2)
i is the activation parameter of the middle layer neuron i

when v is used as input. To get the sparse representation of
the middle layer neuron, it should make the activation mean
τi of the middle layer neuron i as 0 as possible. If making
τi � τ as a sparsity parameter, τ should be a decimal close to
zero. By introducing a penalty factor into the solution of the
objective, those scenarios that τi and τ are significantly
different are punished, so as to realize such sparsity limi-
tation and continuously optimize the value of the objective
function. +ere are many ways to construct penalty factors.
Here, the Kullback–Leible (KL) is used to regularize the
network so that the average activation degree τi is equal to τ
as much as possible:

KL τ‖τi(  � τ log
τ
τi

+(1 − τ)log
1 − τ
1 − τi

. (4)

+e penalty factor formula is as follows:



z2

i�1
τ log

τ
τi

+(1 − τ)log
1 − τ
1 − τi

, (5)

where z2 is the sum of neuron. +e above penalty factor can
also be expressed as 

z2

i�1 KL(τ‖τi).
It can be seen that the loss function of the detection

network is

θsparse(W, b) � θE(W, b) + μ

z2

i�1
KL τ‖τi( . (6)

Usually, in order to avoid the overfitting problem, the
L2 weight penalty is introduced to the objective function;
then,

θSAE(W, b) � θsparse(W, b) +
c

2


sq

i�1


sq+1

p�1


sq−1

q�1
u

(q)
pi 

2
, (7)

where c represents the regularization parameter, q repre-
sents the current layer, and sq and sq + 1 are the sum of
neurons.

+e formula of descent optimization is as follows:

W
(q)
pi � u

(q)
pi − ψ

z

zu
(q)
p

θSAE(W, b), (8)

b
(q)
pi � b

(q)
pi − ψ

z

zb
(q)
p

θSAE(W, b), (9)

where ψ is the learning rate. +e optimal W and b can be
obtained by back propagation using the SGD optimization
method.

+e training process of SSAE network is shown in
Figure 3.

+e first SAE contains layers x, m1, and x, uses formula
(6) to learn the representation of features in an unsuper-
vised manner, and then obtains U1 and c1 through formulae
(7) and (8) training. +e second SAE contains layers m1,
m2, and m1. +e training method of the second SAE is
similar to that of the first SAE, and U2 and c2 are obtained
through training. By repeating the above training steps, all
the parameters in the stacked sparse autoencoder network
can be obtained.

+e way of weight assignment of neural network
through pretraining is better than that of random weight
assignment of neural network, and it is conducive to
convergence. In the training process, the number of
neurons decreases gradually, and finally, the deep sparse
feature is obtained.

3.3. DetectionModel Training. Softmax classifier is added in
the last layer of SSAE network, and the trained parameters
are used as the initial optimization parameters of the model,
and then, the parameters of the whole network are fine
tuned. +is layer-by-layer greedy process is proved to
produce a better local extremum than random initialization
weights and achieves better generalization performance in
some tasks.

+e proposed detection model used the SSAE network
model is as follows (Algorithm 1).

4. Experiment and Result Discussion

4.1. Simulation Environment. Tensorflow and OpcnAlGym
are the mainstreammachine learning training platforms and
environments. We choose them as the software environment
for simulation experiments. Meanwhile, the experimental
hardware environment is CPU model: AMD Ryzen 7, CPU:
NVIDIA GeForce RTX2080Ti, and RAM: 32GB.

4.2. Data Preprocessing. At present, the public datasets of
industrial IoT intrusion mainly include KDDCup99,
NSL-KDD, GasPipeline Datasets, WaterDatasets, and
UNSW-NB15. +ese datasets have the problems of re-
dundancy and repetition of data and attributes. +is
study selects NSL-KDD dataset as the experimental
benchmark data.

NSL-KDD dataset solves the problem of redundant
data in KDDCup99 dataset. Its original training set
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KDDTrain contains 125973 data and the original test
set KDDTest contains 22544 data. In this study,
KDDTrain+20% of 25192 data are selected as experi-
mental data.

4.2.1. Character-Type Mapping Numeric Type. “O, tcp,
ftp_data, SF, 491, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,
0, 0, 0, 0, 1, 0, 0, 150, 25, 0.17, 0.03, 0.17, 0, 0, 0, O.OS, O,
Normal” is a piece of data in the dataset. According to the
analysis, the values in dimension 2, 3, and 4 of the data are
character types and need to be converted into numerical
types. For example, there are 3 types in dimension 2 (TCP,
UDP, ICMP), 70 types in dimension 3 (“auth,” “bgp,”
“courier,” etc.), and 11 types in dimension 4 (“0TH,” “REJ,”
“RSTO,” etc.), which are processed according to the one-hot
coding in Figure 4 and finally convert the 32 dimension into
256 dimension attributes.

4.2.2. Numerical Normalization. Because data order of
magnitude and corresponding value range of different
feature attributes are obviously different, in order to

facilitate the analysis of experimental results, the Min-Max
standardization method is used to uniformly map the nu-
merical data to the [0, 1] interval so that the data is in the
same order of magnitude:

xnormal �
x − xmin

xmax − xmin
, (10)

where x is the original eigenvalue of data, xmin and xmax
represents the minimum and maximum values in the data
respectively, and xnormal represents the new feature value
after normalization of each data.

4.2.3. Low-Frequency Sample Processing. Although current
industrial IoT attacks show a rapid growth trend, the
individual attack categories still belong to the low-fre-
quency category compared with the normal data flow,
which makes it difficult to capture their feature records.
Moreover, most AI models have obvious classification
bias because they aim at the overall classification accuracy
of the largest sample. +erefore, this study improves the
sampling algorithm and introduces the Regional Adaptive
Synthetic Oversampling algorithm (RASmote) to

e
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Figure 3: Stacked sparse autoencoder network training process.

Input: 256 dimensional data x after high-dimensional mapping and normalization, data x with a certain noise proportion κ.
Output: optimal network parameter values φ1, φ2, φ3, φ4, and φ5.
Step 1: the feature extraction model based on SSAE network takes the training data x as the input.+rough the SGD descent method,
the input data are analyzed and processed to obtain the network parameters of the hidden layer. Finally, the output m1 of the first
hidden layer is calculated by using the original data x and parameters φ1.
Step 2: then, combined with m1 and φ1, the output parameter φ2 and output m2 of the hidden layer can be obtained through the
calculation and analysis of the second layer.
Step 3: repeat step 1 and step 2, and get the weight parameters φ1, φ2, φ3, and φ4 by layer-by-layer training. With the help of the
calculation and analysis of the classifier, the parameter m5 is obtained.
Step 4: through the above calculation, we can obtain the network parameter φ1 − φ5 of the detection model. By introducing random
noise, we input it as training data, calculate the loss function between the predicted value and the target, and use various optimization
methods to calculate the parameters near the minimum value.

ALGORITHM 1: Training algorithm of intrusion detection model based on SSAE network model.
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incrementally process low-frequency samples. +e algo-
rithm formula is as follows:

η � Xn − Xl




�

�������������


k�1

Xnk − Xlk( 
2



.
(11)

Euclidean distance is used to calculate the distance of
low-frequency samples in the nearest neighbor radius. n is
the nearest neighbor radius, Xn is the nearest neighbor
sample set, Xl is the low-frequency sample, and X′ is the new
sample set:

X′ � 0, 0≤ η≤
n

2
,

X′ � X + μ(0, 1)
1

n − η

i�1

Xi
⎛⎝ ⎞⎠ − X⎛⎝ ⎞⎠,

n

2
< η< n,

X′ � X, η � n,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where (1/n − ηi�1Xi) is a low-frequency sample.

4.3. Evaluation Index. +e performance of the SSAE in-
trusion detection model can be evaluated from two aspects:
model comparison and classification detection. +e model
comparison is mainly compared with traditional intrusion
detection technology. +e main indexes of system detection
include accuracy Acc, precision Pre, recall Re, and F1-score
F1. It should be noted that, for these four indexes, the higher
the value, the better the detection performance:

Acc �
TP


 + TN




TP


 + FP


 + TN


 + FN



,

Pre �
TP




TP


 + FP



,

Re �
TP




TP


 + FN



,

F1 � 2 ×
Pre × Re
Pre + Re

,

(13)

where TN is true negative rate, FP is false positive rate, FN is
false negative rate, and TP is true positive rate.

4.4. Experimental Analysis. KDDTrain+20% data are
used as the experimental data, 70% as the training set, and
30% as the test set. +e data distribution is shown in
Table 1.

Firstly, based on the experimental dataset, the detection,
analysis, and research of industrial IoT under different
network attacks are carried out for the proposed model. +e

Table 1: Distribution of dataset.

Data type Training set Test set
Normal 9415 4034
Dos 6500 2734
Probe 1603 786
R2L 145 64
U2R 8 3

�e proposed
method
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Figure 5: Intrusion detection analysis under different methods.
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Figure 4: One-hot coding digitization.

Table 2: Identification result of different types of network attacks.

Data type Accuracy (%)
Dos 97.34
Probe 96.81
R2L 91.32
U2R 88.23
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identification results of attacks are displayed in the under
table.

From Table 2, we can see that the proposed model can
better complete the task of network defense, and the
detection accuracy of Dos and Probe attacks is more than
95%. For R2L and U2R attacks, because of the small
volume of training data, the identification accuracy is
lower than that of the first two attacks, but it is still more
than 85%.

In order to further verify the performance of the pro-
posed model, the authors [18, 20] are used as comparison
methods to detect KDDTrain+20% datasets, respectively.
Figure 5 shows the attack identification results under dif-
ferent intrusion detection methods.

From Figure 5, we can see that the proposed method is
better than other comparison methods in terms of network
performance. +e evaluation indexes of the proposed
method are as follows: the accuracy Acc is 95.42%, the
precision Pre is 93.14%, the recall Re is 90.29%, and the F1-
value F1 is 92.35%. +e accuracy of intrusion detection in
[18, 20] is less than 95%, which is less than the detection
performance of the proposed method.

+e reason is that the proposed model simplifies the
network and enhances the autonomous ability and can
realize better feature extraction and expression of the
network. Meanwhile, with the introduction of Softmax
classifier, the detection network parameters can be dy-
namically adjusted to support accurate network attack
identification and analysis. In [18, 20], LSTM network as
the benchmark model is taken for modeling and analysis,
without considering the imbalance of data, which is not
enough to achieve more accurate and efficient intrusion
identification analysis.

At the same time, the attack detection efficiency is also
compared and evaluated. Figure 6 shows the analysis of
detection time under different methods.

As shown in Figure 6, due to the simplification of the
network unit, the unit structure of the proposed method
needs more autonomous learning time to realize the ac-
curate extraction of data features. +erefore, the training
time is 9.16 s, which is 0.17 s more than that in [20].
Moreover, the time-consuming of the proposed method for

network intrusion detection is only 3.42 s and that of [18] is
5.43 s and that of reference [20] is 4.32 s.

To sum up, while ensuring the accuracy of detection, the
proposed method can improve the efficiency of intrusion
identification and analysis and reflect its overall efficient
performance.

5. Conclusion

+is study proposes an intrusion detection method based
on stacked sparse autoencoder network. +is method
constructs an intrusion network model based on autoen-
coder network, which can effectively improve the feature
extraction of industrial Internet data. +e autoencoder
network is simplified and cascaded, and a small number of
basic network units are used to obtain more efficient feature
expression. In addition, the introduction of Softmax
classifier ensures that the parameters of the detection
network can be fine-tuned and optimized, which can
further improve the processing and computing efficiency of
the network while improving the accuracy of industrial IoT
attack recognition. +e experimental analysis based on
NSL-KDD dataset shows that the proposed method can
realize accurate and fast intrusion attack identification and
can meet the safe and controllable operation requirements
of industrial IoT.

Although this method improves the solution of IIoT
intrusion detection, the essence of the proposed model is a
centralized processing and computing model. Aiming to
support the detection research in the actual complex net-
work environment, the next step will be to study the in-
trusion detection method of distributed architecture mode.
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