
Vol.:(0123456789)

SN Bus Econ            (2021) 1:84 
https://doi.org/10.1007/s43546-021-00080-7

ORIGINAL ARTICLE

Asymmetric dependence of intraday frequency 
components in the Brazilian stock market

Marcela de Marillac Carvalho1  · Luiz Otávio de Oliveira Pala1 · 
Gabriel Rodrigo Gomes Pessanha2 · Thelma Sáfadi1

Received: 21 August 2020 / Accepted: 22 April 2021 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract
The multivariate dependence plays an important role in financial instrument man-
agement. Due to the inherent characteristics in the financial market, such as heavy 
tails in the returns unconditional distribution and asymmetry between gain and loss, 
we obtained the asymmetric dependence structure in different short-term variation 
scales based on the wavelet technique MODWT. The study sought to capture the 
relations between financial returns represented by its frequency components. Intra-
day returns series was used in the 15-min sampling interval from stocks and applied 
the D-Vine pair-copula to decompose in trade frequencies of 15 min, 1 h, 1 day, and 
1 week with margin adjustments of ARIMA-APARCH class and BB7 copula func-
tion, responsible for measuring the dependence on tails. The results indicated the 
prevalence of a high dependence during market upturns, rising over the analyzed 
frequencies. Being an important tool in financial management and allowing short-
term strategies of diversification.
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Introduction

The behavior of the multivariate dependence structure of financial markets con-
figures a relevant point on funding instruments management. Since Modern Port-
folio Theory (Markowitz 1952) a general discussion of this topic, including other 
aspects as risk and return, expected return, measures of risk and volatility, and 
diversification, has been in the current literature. Several studies such as Ergen 
(2014), Jondeau (2016) and Caldeira et al. (2017) have shown that the measuring 
of dependence existing among the returns of a portfolio is essential to investment 
strategy development, mainly in the diversification context, which consists of the 
efficient allocation of distinct assets to minimize risks.

Specifically, in risk management, portfolio selecting, and asset pricing, there 
are important aspects such as non-linearity, asymmetrical dependence, and also 
heavy tails of the marginal and joint probability distribution (Wang and Xie 
2016). To deal with these questions, inferences based on tail multivariate prob-
abilities are necessary. Tail dependence refers to asset returns that exhibit greater 
dependence during market downturns or during market upturns and has long been 
an issue of interest to academics, fund managers, and traders, as it has important 
implications for portfolio allocation and asset pricing. Patton (2004), Malevergne 
and Sornette (2006) and Hatherley and Alcock (2007) demonstrated that incor-
porate the effects of asymmetric asymmetrical dependence in asset allocation 
proved to be better for protect portfolios and minimize risk. Besides that, Cheru-
bini et al. (2004) and Chollete et al. (2011) showed that most economic policies 
of systemic risk involve tail dependence.

The evidences raised above have been widely reported over the years, princi-
pally the marginal distribution skewness and dependence structure asymmetry. 
According to Peng and Ng (2012) and Patton (2001), an inappropriate depend-
ence model can lead to inefficient portfolios and imprecise evaluations of risks 
expositions. To deal with these problems, the application of the copulas approach 
is proposed. Copulas are functions that connect multivariate distribution func-
tions to their marginal distributions (Cherubini et al. 2004). They contain all the 
relevant information about the dependence structure among the variables, for 
both symmetric and asymmetric correlation structures. In financial data, the cop-
ulas form an ideal tool for analyzing extreme dependence movements without the 
restrictions imposed by the classic multivariate models, reflecting the dependence 
between assets (Embrechts et al. 2003).

There are different copulas approach applications for the optimization of 
returns of assets seen on Righi and Ceretta (2013), Kakouris and Rustem (2014), 
Bartels and Ziegelmann (2016) and Abbara and Zevallos (2017). One of these 
methods is the multivariate pair-copula models of Joe (1997), extended by Bed-
ford and Cooke (2001) and Bedford and Cooke (2002) with a hierarchic graphic 
construction of bivariate copulas called regular vines copulas. According to 
Joe et  al. (2010), the modeling of dependence with multivariate copulas, such 
as the Vine approach, enables to development of appropriate parametric fami-
lies for multivariate financial data with different dependence structures. Joe and 
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Kurowicka (2011) provides an extensive review of Vine copulas, including appli-
cations of this methodology in financial.

The purpose of the present paper is to provide the behavior of asymmetrical rela-
tion between financial returns in the domain time–frequency. Frequency is a relevant 
factor in assets analysis, relating to the changes in the investment horizons of the play-
ers of the market, ranging from short-run to long-run. The significance of this analysis 
lies in considering the impact of the time horizons of investment rules on the portfolio 
analysis, measuring asymmetric dependence in different timescales. The time horizons 
of economic decisions are related to the stock price changes, then different temporal 
frequencies (scales) of a returns series are useful to capture subjacent financial infor-
mation from these data, as seen by Jammazi and Reboredo (2016), Shah et al. (2018), 
Biage (2019) and Berger and Gençay (2019). This multiscale financial behavior can be 
captured applying the wavelet decomposition, which enables to identify the trend in 
different periods of time and to locate the relevant oscillation moments (Crowley 2007; 
Gallegati 2014).

The portfolio analyzed in this study was composed of stocks traded in the Brazil-
ian financial market (B3). We consider the 15-min sampling interval as the regularly 
spaced time for the 7 h of continuous negotiation in the B3 from February 17th to May 
8th of 2020 of six relevant stocks: PETR4 (Petrobras), AZUL4 (Azul), USIM5 (Usimi-
nas), BBDC4 (Bradesco), WEG3 (Weg) e MGLU3 (Magazine Luiza). The period ana-
lyzed reflects the negative effects of the COVID-19 pandemic on the financial markets, 
reinforcing the importance of modeling this event, providing tools for decision making. 
The stock choice was based on different economic segments to generate a diverse port-
folio, and Chang et al. (2008) showed that high-frequency horizons are important to 
investigate the effects of short market trade activities, which reflect changes in an asset 
trajectory at many different scale levels (Crowley 2007).

The decomposed series for each intraday stock returns sample was obtained, apply-
ing the wavelet technique by Percival and Walden (2000) using the Daubechies wave-
let filter of length 2 (two null moments) by Daubechies (1992). The short-term trade 
frequencies are the variations scale series regarding 15 min, 1 h, 1 day and 1 week. 
To carry out the analysis of asymmetric multivariate dependence analysis, we applied 
the D-Vine pair-copula constructions according to Joe (1997) and Bedford and Cooke 
(2002) in the decomposed series. The marginal distributions were specified as the pro-
cess from ARIMA and ARIMA-APARCH classes by Ding et  al. (1993), to capture 
important characteristics evidenced in these series. The pair-copula analysis proceeds 
with the standardized residuals. The BB7 copula function is estimated for its property 
of capturing asymmetrical dependence in financial data as shown by Nikoloulopoulos 
et al. (2012).

Background

Wavelet analysis

The maximal overlap discrete wavelet transformation (MODWT) is a modifica-
tion of discrete wavelet transformation (DWT), proposed by Percival and Walden 
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(2000). Both the DWT and the MODWT draw on multiresolution analysis to 
decompose a signal into different levels of resolution. At each level, weighted 
moving average values (smooths) and the information to reconstruct the signal 
(details) from the averages are obtained describing the original signal at coarser 
and coarser levels of resolution.

In contrast to the DWT, the MODWT not is characterized by a data reduction 
(to the half) by each decomposition, keeping the data length constant. Actually, 
the MODWT presents essential proprieties in the time series decomposition: the 
translation is non-orthogonal and invariant, conserving the original series varia-
tion. This enables the impact of any event to be analyzed over specific timescales, 
so this method will be used in this paper. Percival and Walden (2000) presented 
an extensive revision of the MODWT characteristics in time series.

The MODWT follows the same pyramid algorithm (Mallat 1989) as the DWT 
(see Percival and Walden 2000). Letting j = 1,… , J be the scale numbers and 
the initial series entrance s0,t = XN−1

t=0
 . The decomposition process occurs with the 

successive filtering of a time series Xt with low-pass filters {g̃j,l} and high-pass 
{h̃j,l} given by

and

where Lj = (2j − 1)(L − 1) + 1 correspond to filter size associated to each scale j and 
modN is the modulus operator. In Eqs. (1) and (2) the MODWT filters h̃j,l = hj,l∕2

j 
and g̃j,l = gj,l∕2

j , respectively, are expressed in terms of DWT rescaled filters gj,l and 
hj,l that satisfies useful proprieties in the decomposition of a sign: (1) 

∑L−1

l=0
hl = 0 ; 

(2) 
∑L−1

l=0
h2
l
=

1

2
 ; (3) 

∑L−1

i=0
hihi+2N = 0 , similarly for the gj,l.

Several wavelet filters do exist and the choice of the adequate filter heavily 
depends on the purpose of its application. Thus, considering that intraday series 
present non-stationary and drastic fluctuations the Daubechies wavelet filter by 
Daubechies (1992) was employed in this paper. With the compact support advan-
tage and orthogonality the general form of Daubechies filters is given by 
hl,j = (−1)l−LjgLj−1−l . Applications with Daubechies filters in multiscale analyzes 
as intraday financial series can be seen in Sun et al. (2011), Xue et al. (2014), and 
Xu (2018).

At each scale, the MODWT coefficients s̃j,t and d̃j,t constitute a time series 
describing Xt in non-aggregated over time way, such that Xt =

∑J

j=1

�
d̃j,t + s̃J,t

�
 . 

At the levels j = 1,… , J and in the time t, the scale coefficients s̃j,t represent the 
smooth coefficients that capture the trend of Xt , while the detail coefficients d̃j,t 
capture the short oscillations, as structural changes, representing the detailing of 
Xt . Taking into account these brief description of properties of the MODWT, we 

(1)s̃j,t ≡

Lj−1∑

l=0

g̃j,lXt−l mod N

(2)d̃j,t ≡

Lj−1∑

l=0

�hj,lXt−l mod N ,
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estimated the asymmetric dependence of portfolios using the detail series obtained 
from the decomposition.

Copulas and pair‑copulas

The concept of copula is introduced in the statistical literature by Sklar (1959). 
Let the random variables X1,… ,Xd with joint distribution function H, such as (
x1,… , xd

)
∈ [−∞,∞]d , where X1,… ,Xd , d = 1,… , 6 , represent the details 

series obtained from the MODWT decomposition in the intraday log-returns. The 
dependence between X1 … ,Xd can be completely described by a d-dimensional 
copula function C, such as H(x1,… , xd) = C(F1(x1),… ,Fd(xd)) . Conversely, 
C(u1,… , ud) = H(F−

1
(u1),… ,F−

d
(ud)) , where F−

i
 correspond to the inverse general-

ized of Fi , i = 1,… , d.
Then, according to Sklar (1959), a C is defined as a function of joint distribution 

in [0, 1]d with Uniform marginals. Assuming C is absolutely continuous, and by tak-
ing the partial derivatives, one obtains:

where c represents the copula density.
For the multivariate case modeling, Aas et al. (2009) explained that a pair-copula 

decomposition is a flexible alternative and easily implemented. The pair-copulas is 
a hierarchical construction, based on bivariate copulas chosen between any paramet-
ric family. The variables are sequentially incorporated into the conditioning sets as 
one moves from the first modeling level d until the last level d − 1 . The pair-copula 
factorization, according to Joe (1997), is obtained from the following decomposition 
of h:

where for d variables at T time points, assumed that the observations of each vari-
able are independent over time.

Based on the joint density in Eq. (3), all conditional densities in Eq. (4) can be 
expressed from only univariate marginal distributions and bivariate copulas by 
means:

where cxvj|�−j(.) corresponds to the density of a bivariate copula, and �−j denotes the 
vector � excluding the jth component.

For the representation of Eq. (5) there is different pair-copulas construction 
(PCC). Then Bedford and Cooke (2001) and Bedford and Cooke (2002) introduced 
the systematic model called regular vines that involves the construction of hierar-
chic graphic models. Each of these models provides a specific way of decomposing 

(3)h(x1,… , xd) = c(u1,… , ud)

d∏

i=1

fi(xi),

(4)h
(
x1,… , xd

)
= fd

(
xd
)
⋅ f
(
xd−1|xd

)
⋅ f
(
xd−2|xd−1, xd

)
⋅ f
(
x1|x2,… , xd

)
,

(5)h(x|�) = cxvj|v−j

{
F
(
x|�−j

)
,F

(
vj|�−j

)}
⋅ f
(
x|�−j

)
,
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the d-dimensional h density. The main types are the hierarchical canonical vines 
(C-vines) and the drawable vines (D-Vines).

In this paper, the h density was estimated from the D-Vine PCC, which is written 
as

where index j identifies the trees, while i runs over the edges in each tree. In 
a D-vine, no node in any tree Tj is connected to more than two edges. There are 
d(d − 1)∕2 bivariate copulas density in the d − 1 trees. The tree Tj of the D-vine has 
d − j bivariate copulas, j = 1,…, (d − 1). Those in tree 1 are unconditional, and all 
others are conditional (Aas et al. 2009).

In the inference process of the D-Vine PCC, it is necessary to obtain the respec-
tive functions of conditional distribution F(x|�) in a sequential way, this is

where � is the vector parameters of the Cx,vj|�−j specified in the j tree.
The bivariate copulas involved can belong to different families in a way of reflect-

ing various ways of dependence, including tail dependence (see Joe 1997). The con-
cept of tail dependence refers to the amount of dependence on the right higher quad-
rant tail or on the left lower quadrant tail of a bivariate distribution (Embrechts et al. 
2003).

This feature enables construct h estimating different margins independently. In 
the presence of temporal dependence, univariate time series models for the condi-
tional mean and the conditional variance can be fitted to the margins and the analysis 
could henceforth proceed with the residuals standardized. The standardized residual 
vectors are converted to uniform variables using the empirical distribution functions 
before further modeling (Nikoloulopoulos et al. 2012).

Methodological procedure

The data and context

The high-frequency data used were the log-return stocks of B3 and covers the 
55 working days from February 17th of 2020 to May 8th of 2020, presented in 
Fig. 1. In the analyzed period, it is needed to emphasize the expressive influence 
of COVID-2019 in the worldwide financial markets. According to Laurini and 
Chaim (2020), the COVID-19 pandemic drop in prices in March 2020 has spurred 
volatility increases with levels faster. Along with the phenomenon, the Brazilian 
stock market has been suffering an impact on internal political instability.

(6)

h(x1,… , xd) =

d∏

k=1

f
(
xk
) d−1∏

j=1

d−j∏

i=1

ci,i+j|i+1,…,i+j−1(F(xi|xi+1,…xi,j−1)⋅F(xi,j|xi+1,…xij−1)) ,

(7)h(x|�,�) = F(x|�) =
�Cx,vj|�−j

(
F
(
x|�−j

)
,F

(
vj|�−j

)
|�
)

�F
(
vj|�−j

) ,
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The sampling interval regarded was of Δ = 15 min as the spaced time for 7 h 
of continuous trading. The number of sampled observations per trading session 
is m = 28 interval/day with a total of N = 1497 observations. The data filtering 
process was made according to Morettin (2017), keeping the circuit-breakers in 
the final sample. Plots in Fig. 1a, b indicate the intraday prices and log-returns 
behavior in the period.

General information about the data classification with the base on the sector 
and action segment is presented in Table 1.

The MODWT constructed by the Daubechies wavelet filter with length 2 (two 
moments null) D2 was applied to the intraday series using the methodology 

Fig. 1  Series behavior in the analyzed period for the series: a quotes and b log-returns



 SN Bus Econ            (2021) 1:84    84  Page 8 of 18

submitted in Sect. 2.1, obtaining J = 10 decomposition levels. Once the variance 
of the original returns series is preserved, we can measure the dependence using 
the series from the decomposition. Thus, the D-Vine PCC was obtained four 
details series for each original series in four dyadic scales of variation: 15 min, 1 
h, 1 day and 1 week. The frequencies are measured according to Table 2, conform 
to the 7 h of B3 trading, and Fig. 2 illustrate the series generated by the MODWT 
decomposition in levels j = 1, 3, 6, 8.

Dependence estimation

Since we are mainly interested in the dependence structure between wavelet 
series obtained, the estimation process of copulas was made through the methods 
of maximum likelihood in two steps according to the inference function for mar-
gins approach by Joe and Xu (1996), they are (1) univariate adjustment of mar-
gins and (2) adjustment of the copula with the standardized residues of margins 
under pseudo-observations.

As stated in Sect.  2.2, the observations of each variable must be independ-
ent over time. Hence, in the first stage, the margin distributions were esti-
mated by models of the conditional mean and variance. The ARIMA(p,  d,  q)-
APARCH(1, 1) process by Ding et al. (1993) was used. That is, for details series j 
in time t = 1,… ,N , we have the following model:

Table 1  Classification data Company Stock’s code Sector/business segment

Azul AZUL4 Air transport
Bradesco BBDC4 Financial
Magazine Luiza MGLU3 Cyclic consumption
Petrobras PETR4 Oil, gas and biofuels
Usiminas USIM5 Steel industry
Weg WEGE3 Industrial

Table 2  Impact and 
interpretation of the variances of 
the decomposition components 
MODWT on scales j =1,3,6 e 8 
of the intraday log-returns ( Δ = 
15 min)

Frequency d̃j Memory

15 min d̃
1

Stochastic noise
60 min d̃

3
Stochastic noise

480 min ≈ 1 day d̃
6

Short-term
1920 min ≈ 5 day d̃

8
Trend of short-term
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where the standardized residual zj,t ∼ t − skewed(�j, �j) to consider the conditional 
heteroscedastic heavy-tailed behavior of the financial assets. For the mean equa-
tion, � represents the p autoregressive components and � the q moving average com-
ponents. In the variance equation, � corresponds to the unconditional variance, � 
allows to estimate of other powers to the standard conditional deviation, through a 
Box–Cox transformation, �1 captures the leverage effects, �1 and �1 together depict 
the volatility persistence. We use the modified Q-statistic (Ljung and Box 1979) to 
validate the modeling.

For the second adjustment stage, initially defined the PCC order estimation. The 
originals series were ordered by the non-linear dependence, measured through Kend-
all’s tau. After, adjustment the D-Vine PCC with the BB7 copula function performed 
on the standardized residuals of margins ( zj,t ). The standardized residual vectors are 
converted to uniform variables u1 and u2 using the empirical distribution functions 
before the adjust. The BB7 bivariate copula captures the tail dependence and has repre-
sentation given by Joe (1997):

with � = 1∕ log2
(
2 − �U

)
 and � = −1∕ log2

(
�L
)
 the parameters related to depend-

ence coefficients of the higher and lower tails, respectively �U , �L ∈ (0, 1).

(8)

d̃j,t =
∑p

i=1
𝜙d̃j,t−i +

∑q

i=1
𝜃𝜀j,t−i + 𝜀j,t

𝜀j,t = 𝜎j,tzj,t

𝜎𝛿
j,t
= 𝜔 + 𝛼1

����𝜀j,t−1
��� − 𝛾1𝜀j,t−1

�
+ 𝛽1𝜎

𝛿
j,t−1

,

(9)

CBB7

(
u1, u2|�U , �L

)
= 1 −

(
1 −

{[
1 −

(
1 − u1

)�]−�
+
[
1 −

(
1 − u2

)�]−�
− 1

}−1∕�
)−1∕�

,

Fig. 2  Decomposition intraday log-returns series at the levels: a d̃
1
 , b d̃

3
 , c d̃

6
 and d d̃

8
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These measures were used to quantify the asymmetric dependence, i.e, determine 
if the relationship between the intraday log-returns, in the different timescales, has 
intensified in periods of market downward ( �L ) or during the market upward ( �U).

The results were obtained with the software (Team 2019). The data were pro-
vided by alphavantager package by Dancho and Vaughan (2019). The analysis was 
performed with the packages wtmsa by Constantine and Percival (2017) for the 
MODWT application, fgarch by Wuertz et al. (2019) for margins adjustment, and 
Vine-copula by Nagler et al. (2019) for D-Vine PCC with the BB7 copula.

Results

Modelling of marginal distributions

The univariate margin models were defined with ARIMA(p, 0, q)-APARCH(1, 1) in 
the 15-min, 1-h and 1-day scales, which presented stochastic noise and short vari-
ations. As the 1-week frequency case reflects the trend of the short term, just the 
conditional mean was adjusted appealed to ARIMA(p, 1, q) class models. The speci-
fication of margins is according to the results of Table 3.

The estimate results of the coefficients are found in Tables 4, 5, 6 and 7. In gen-
eral, the results corroborating statistical characteristics commonly present in finan-
cial time series. In the � equation, it became evident that stock returns price move-
ments to become more persistent (Schulmeister 2009) and the presence of intraday 
seasonality (Morettin 2017). And, the � results reflect volatility persistence, heavy-
tails, and asymmetry (Patton 2004). In some cases were evidenced significant lever-
age effects ( 𝛾1 > 0 ), the phenomenon that arises when periods of falling prices are 
followed by significant volatility (Ding et al. 1993).

Copula modelling

Subsequent to this marginal specification, we obtained matrix of dependence 
through Kendall’s tau to select the order in PCC estimation. The criterion adopted 
was the absolute sum of dependence between each index with all others. The D-vine 

Table 3  Margin distributions for 
levels j = 1, 3, 6, 8

*model with specific lags.

ARIMA(p,d,q) - APARCH(1, 1)

Stock d̃
1

d̃
3

d̃
6

d̃
8

PETR4 (2,0,0)(1,1) (0,0,7)(1,1) (4,0,3)(1,1) (2,1,1)(0,0)
MGLU3 (0,0,1)(1,1) (0,0,7)(1,1) (4,0,3)(1,1) (1,1,1)(0,0)
WEGE3 (1,0,1)(1,1) (0,0,7)(1,1) (1,0,4)(1,1) (3,1,5)(0,0)
USIM5 (1,0,1)(1,1) (0,0,7)(1,1) (4,0,3)(1,1) (2,1,4)(0,0)
AZUL4 (0,0,1)(1,1) (0,0,7)(1,1) (5,0,2)(1,1) (4,1,4)(0,0)
BBDC4 (1,0,1)(1,1) (0,0,7)(1,1) (4,0,2)(1,1) (9,1,2)*(0,0)
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PCC order result was USIM5, PETR4, MGLU3, BBDC4, AZUL4, and WEGE3. 
The results are verified in Table  8. It is observed a moderate positive association 
between all stocks analyzed (34% in mean). The result shows that some stocks pairs 
can move together, emphasizing the diversification question. The greatest magnitude 
of dependence was related to the pair PETR4 and USIM5, reaching 41%. Moreover, 
we noted that the stocks with a higher dependency are associated with the sectors 
that are sensitive to the actual world economic situation due to COVID-19 impacts, 
for example, the commodity sector.

With order among log-returns established, the D-Vine PCC was adjusted with 
standardized residuals of the marginal distributions. The dependence parameters of 
BB7 copula were converted in the measures of the lower tail ( �L ) and upper tail ( �U ) 
presented in Table 9.

As demonstrated in the literature, the asymmetry pattern is captured in the major-
ity of relationships between the stock’s returns, in the different time frequencies 
analyzed. The general pattern of association between these stocks is more intense 
during the market upward ( 𝜏U > 𝜏L ) in all scales. It means that a rising in B3 prices 
tends to occur simultaneously in the period (de Melo Mendes and Accioly 2012). 
This may also suggest an asymmetry to the right in the multivariate distribution as 
indicated (Silva Filho et al. 2014). Some left asymmetry ( 𝜏L > 𝜏U ) between pairs of 
stocks has been observed in variations intraday (15 min and 1 h) in the first trees. 

Table 4  Estimated parameters and diagnostics of residuals of the ARIMA-APARCH models for d
1
 series

Parameters PETR4 MGLU3 WEGE3 USIM5 AZUL4 BBDC4

�
1

− 0.6402 − 0.0528 − 0.0982 − 0.0590
(0.0220) (0.0211) (0.0245) (0.0009)

�
2

− 0.3129
(0.0232)

�
1

− 0.9840 − 0.9570 − 0.9979 − 0.9743 − 0.9972
(0.0028) (0.0064) (0.0013) (0.0036) (0.0016)

� 0.0006 0.0009 0.0019 0.0019 0.0015 0.0035
(0.0001) (0.0004) (0.0007) (0.0011) (0.0007) (0.0014)

�
1

0.7338 0.2669 0.2684 1.0000 0.3436 0.2920
(0.1846) (0.0804) (0.0615) (0.3956) (0.1258) (0.0860)

�
1

− 0.0517 0.1499 0.0544 − 0.0161 0.0469 − 0.0325
(0.0728) (0.0937) (0.0905) (0.1026) (0.0874) (0.0994)

�
1

0.5552 0.8342 0.7954 0.8750 0.8164 0.7919
(0.0457) (0.0399) (0.0419) (0.0558) (0.0460) (0.0415)

� 1.1154 0.7800 0.7090 0.9074 0.7181 0.5482
(0.1960) (0.1228) (0.1179) (0.1777) (0.1373) (0.1024)

� 0.9847 0.9990 1.0022 0.9639 0.9582 0.9944
(0.0252) (0.0232) (0.0239) (0.0216) (0.0213) (0.0243)

� 2.4164 2.2855 2.3715 2.0071 2.1900 2.334
(0.1733) (0.1467) (0.1590) (0.0015) (0.1374) (0.1760)

Q(20) 0.83 0.96 0.99 0.96 0.99 0.99
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Note that in all scales, in the trees with USIM5,AZUL4|PETR4,MGLU3,BBDC4 
and PETR4,WEGE3|MGLU3,BBDC4,AZUL4 have concerned �L = 0 , indicating 
independence of the lower tail. This condition indicates that, in general, the adjusted 
BB7 D-vine has multivariate dependence of the higher tail (Joe et al. 2010). 

The results of the magnitude of dependence in the trees demonstrate that the 
estimates of �U and, mainly, �L have presented decreasing behavior due to the 
nature of the hierarchical construction, as indicated by Joe et  al. (2010). These 
results highlight the importance of asset diversification in the way that (Markow-
itz 1952) had intended. The decrease in the joint probability obtained in tails 
indicates that it possibilities to minimize portfolio risk based on asset allocation 
in these stocks, especially in times of negative innovations, such as the scenario 

Table 5  Estimated parameters and diagnostics of residuals of the ARIMA-APARCH models for d
3
 series

Parameters PETR4 MGLU3 WEGE3 USIM5 AZUL4 BBDC4

�
1

0.9457 0.9333 0.9306 0.9450 0.9722 0.9170
(0.0059) (0.0060) (0.0112) (0.0076) (0.0082) (0.0089)

�
2

0.8563 0.9425 0.9121 0.9531 0.8839 0.8293
(0.0094) (0.0077) (0.0110) (0.0038) (0.0141) (0.0095)

�
3

0.8163 0.8753 0.8215 0.8978 0.8588 0.7573
(0.0098) (0.0075) (0.0136) (0.0048) (0.0139) (0.0087)

�
4

− 0.9770 − 0.9679 − 0.9876 − 0.9814 − 0.9813 − 0.9705
(0.0031) (0.0026) (0.0027) (0.0042) (0.0020) (0.0039)

�
5

− 0.9284 − 0.9069 − 0.9271 − 0.9300 − 0.9578 − 0.8984
(0.0063) (0.0059) (0.0116) (0.0104) (0.0076) (0.0069)

�
6

− 0.8500 − 0.9130 − 0.9095 − 0.9365 − 0.8780 − 0.8196
(0.0141) (0.0077) (0.0115) (0.0054) (0.0130) (0.0088)

�
7

− 0.8153 − 0.8516 − 0.8237 − 0.8882 − 0.8566 − 0.7602
(0.0102) (0.0070) (0.0133) (0.0066) (0.0127) (0.0075)

� 0.00008 0.0002 0.00002 0.0004 0.0001 0.0001
(0.00004) (0.0001) (0.00001) (0.0008) (0.00005) (0.00005)

�
1

0.1770 0.1351 0.1761 0.1710 0.1783 0.2069
(0.0348) (0.0297) (0.0335) (0.0419) (0.0399) (0.0442)

�
1

0.1696 0.2597 0.0832 0.0197 0.0072 0.1002
(0.1065) (0.1170) (0.0922) (0.2198) (0.0964) (0.0992)

�
1

0.8870 0.9038 0.8794 0.8701 0.8801 0.8592
(0.0203) (0.0191) (0.0204) (0.0714) (0.0259) (0.0230)

� 0.8526 0.7029 1.0730 0.7131 0.8475 0.8290
(0.1583) (0.1419) (0.1856) (1.1797) (0.1400) (0.1568)

� 1.0240 1.0472 0.9755 1.0108 0.9926 0.9951
(0.0277) (0.0278) (0.0296) (0.0262) (0.0276) (0.0271)

� 2.5050 2.5757 2.7570 2.4776 2.6440 2.6420
(0.1925) (0.2406) (0.2167) (0.1914) (0.2016) (0.2723)

Q(20) 0.99 0.94 0.71 0.98 0.98 0.95
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of the COVID-19 pandemic. Among the scales, increments at the magnitude of 
dependence measures were noticed in the majority of trees in lower frequencies, 
which can reflect the effects of continuous changes in the movements of the prices 
of the assets in time horizons of minutes and hour (Billio et al. 2012; Xu 2018).

Table 6  Estimated parameters and diagnostics of residuals of the ARIMA-APARCH models for d
6
 series

Parameters PETR4 MGLU3 WEGE3 USIM5 AZUL4 BBDC4

�
1

− 0.0311 0.1628 0.9855 0.5851 1.0000 0.9412
(0.0032) (0.0212) (0.0060) (0.0556) (0.0040) (0.0085)

�
2

0.8560 − 0.1316 − 0.4684 0.3275 − 0.5431
(0.0041) (0.0187) (0.0530) (0.0152) (0.0072)

�
3

0.0928 0.9325 0.3279 − 0.3301 0.5555
(0.0036) (0.0199) (0.0554) (0.0151) (0.0120)

�
4

− 0.5389 0.7720 0.4860 0.1012 0.0283
(0.0035) (0.0185) (0.0470) (0.0044) (0.0087)

�
5

− 0.1172
(0.0045)

�
1

1.0000 0.7929 − 0.0240 0.3442 − 0.0216 0.0310
(0.0019) (0.0223) (0.0059) (0.0062) (0.0015) (0.0082)

�
2

1.137 0.9671 0.0540 0.8551 − 04021 0.5684
(0.0035) (0.0108) (0.0016) (0.0443) (0.0168) (0.0084)

�
3

− 0.5636 0.7949 − 0.0286 0.4247 0.0957
(0.0017) (0.0017) (0.0033) (0.0053) (0.0040)

�
4

0.01840 0.1383 − 0.0053
(0.0067) (0.0012) (0.0004)

� 0.000002 0.00002 0.00005 0.0000006 0.000004 0.0001
(0.0000006) (0.000001) (0.000004) (0.0000004) (0.000004) (0.00009)

�
1

0.0486 0.0622 0.0718 0.0747 0.0794 0.1210
(0.0123) (0.0128) (0.0192) (0.0174) (0.0227) (0.0330)

�
1

0.1437 − 0.1920 − 0.1813 0.1939 − 0.0160 0.0941
(0.2192) (0.1465) (0.1798) (0.1305) (0.0160) (0.1472)

�
1

0.9769 0.9607 0.9585 0.9566 0.9552 0.9326
(0.0056) (0.0062) (0.0098) (0.0074) (0.0123) (0.0171)

� 1.0470 0.9884 0.9384 1.1450 0.9132 0.5901
(0.1527) (0.1001) (0.1623) (0.1505) (0.1271) (0.1083)

� 1.0020 1.0010 1.0220 0.9911 0.9915 1.0140
(0.0230) (0.0252) (0.0244) (0.0248) (0.0241) (0.0215)

� 2.2850 2.6850 2.4070 2.5940 2.4840 2.1750
(0.1745) (0.2045) (0.1706) (0.0206) (0.1794) (0.1238)

Q(20) 0.08 0.25 0.43 0.99 0.87 0.99
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Final remarks

In the relevance’s face of multivariate analysis in the financial area, in this paper, 
we explored the asymmetric dependence from intraday frequency components of 

Table 7  Estimated parameters and diagnostics of residuals of the ARIMA models for d
8
 series

Coefficients PETR4 MGLU3 WEGE3 USIM5 AZUL4 BBDC4

�
1

0.2058 − 0.5241 0.2139 0.7484 0.7835 0.5515
(0.0880) (0.2365) (0.0165) (0.1554) (0.0992) (0.1024)

�
2

− 0.2000 − 0.2109 − 0.4771 − 1.2786 − 0.6018
(0.0284) (0.0138) (0.1255) (0.1209) (0.0868)

�
3

0.9343 0.3726
(0.0153) (0.1159)

�
4

− 0.5488
(0.0712)

�
5

�
6

�
7

�
8

0.0705
(0.0210)

�
9

− 0.1189
(0.0206)

�
1

− 0.3171 0.5561 − 0.3290 − 0.8574 − 0.8185 − 0.6370
(0.0886) (0.2291) (0.0300) (0.1542) (0.1114) (0.1078)

�
2

0.1635 0.5126 1.1179 0.5351
(0.0285) (0.1376) (0.1361) (0.0942)

�
3

− 0.9714 − 0.1208 − 0.2419
(0.0160) (0.0380) (0.1297)

�
4

0.0890 0.1276 0.3439
(0.0276) (0.1298) (0.0790)

�
5

0.1235 0.3440
(0.0259) (0.0840)

Q(20) 0.46 0.33 0.03 0.09 0.23 0.07

Table 8  Kendall’s tau 
dependence matrix of the 
intraday log-returns ( Δ =

15minutos)

PETR4 MGLU3 USIM5 AZUL4 WEGE3 BBDC4

PETR4 1.00 0.35 0.41 0.35 0.31 0.38
MGLU3 0.35 1.00 0.36 0.35 0.34 0.35
USIM5 0.41 0.36 1.00 0.33 0.32 0.38
AZUL4 0.35 0.35 0.33 1.00 0.30 0.31
WEGE3 0.31 0.34 0.32 0.30 1.00 0.29
BBDC4 0.38 0.35 0.38 0.31 0.29 1.00
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financial assets. For the portfolios formed by intraday series of log-returns of the 
Brazilian stock market: PETR4 (Petrobras), AZUL4 (Azul), USIM5 (Usiminas), 
BBDC4 (Bradesco), WEGE3 (Weg) e MGLU3 (Magazine Luiza), we compute the 
asymmetric dependence in the domain of time–frequency. The scenario analyzed 
reflected the COVID-19 pandemic effects and the Brazilian economics policies.

The evidence about financial markets like non-linearity, kurtosis excess, asym-
metry dependence structures, and high-frequency was considered. We quantified the 
higher and lower tail dependence through the D-Vine PCC by Bedford and Cooke 
(2002) at intraday, daily, and weekly scales. The D-Vine PCC method reflects the 
dependence on extremes with the construction of a multivariate distribution, esti-
mating different marginal without normality presupposition. For this purpose, the 
estimation process was based on the MODWT details series which reflects the finan-
cial market variations, capturing the effects of the trade activity in the different time 
horizons. The frequencies analyzed were related to short-term trade: 15 min, 1 h, 1 
day and 1 week.

The univariate marginal distributions were specified as ARIMA(p,  0,  q)-
APARCH(1, 1) and ARIMA(p, 1, q) models by Eq. (8). We can see that all the 
scales the information passed of series affect the conditional mean and condi-
tional variance of returns, reflecting the dynamic of stock price movements and 
seasonality intraday. In addition, asymmetric and heavy tails were evidenced for 
scales related to minutes, hour, and day. The asymmetric dependence was cap-
tured based on BB7 copula parameters, present in Eq. (9), that quantified the 
dependence on extremes with the tail dependence coefficients. The upper tail 
dependence exceeded the absolute and lower tail ones in many cases, which 

Table 9  D-Vine PCC results for the levels d
1
,d

3
,d

6
 e d

8

Stocks d
1

d
3

d
6

d
8

�L �U �L �U �L �U �L �U

USIM5|PETR4 0.31 0.32 0.40 0.40 0.39 0.44 0.41 0.50
PETR4|MGLU3 0.30 0.31 0.36 0.31 0.31 0.42 0.39 0.45
MGLU3|BBDC4 0.35 0.27 0.30 0.25 0.22 0.40 0.34 0.43
BBDC4|AZUL4 0.32 0.24 0.24 0.37 0.28 0.37 0.33 0.42
AZUL4|WEGE3 0.31 0.33 0.35 0.28 0.25 0.40 0.28 0.41
USIM5.MGLU3|PETR4 0.10 0.26 0.10 0.23 0.15 0.22 0.10 0.17
PETR4.BBDC4|MGLU3 0.11 0.18 0.14 0.35 0.16 0.22 0.07 0.27
MGLU3.AZUL4|BBDC4 0.08 0.34 0.14 0.22 0.17 0.25 0.10 0.24
BBDC4.WEGE3|AZUL4 0.04 0.17 0.08 0.07 0.03 0.17 0.06 0.19
USIM5.BBDC4|PETR4.MGLU3 0.07 0.18 0.05 0.11 0.02 0.20 0.04 0.19
PETR4.AZUL4|MGLU3.BBDC4 0.02 0.10 0.08 0.16 0.02 0.10 0.01 0.13
MGLU3.WEGE3|BBDC4.AZUL4 0.10 0.13 0.09 0.24 0.02 0.21 0.09 0.21
USIM5.AZUL4|PETR4.MGLU3.BBDC4 0.02 0.07 0.01 0.09 0.00 0.12 0.01 0.07
PETR4.WEGE3|MGLU3.BBDC4.AZUL4 0.00 0.09 0.00 0.09 0.00 0.12 0.01 0.11
USIM5.WEGE3|PETR4.MGLU3.BBDC4.AZUL4 0.00 0.01 0.00 0.03 0.00 0.06 0.00 0.08
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indicates the presence of asymmetry in many relationships and a market upward 
pattern. It was observed also a decreasing magnitude of the dependence in all 
cases, due to the nature of the D-Vine PCC.

These results reflecting important practical aspects, regarding financial man-
agement. First, the importance of skewness and asymmetric dependence in stock 
returns for asset allocation. We conclude that a portfolio constructed based on the 
distribution model that allowed for asymmetric dependence can lead to signifi-
cantly better asset allocation decisions in time horizons analyzed. Based on the 
traditional mean-variance analysis by Markowitz (1952), studies such as Patton 
(2004), Hatherley and Alcock (2007), Jondeau (2016) and Wang and Xie (2016), 
and others have indicated that these benefits are results of more flexibility speci-
fying the dependence structure on the portfolio. The measurement of asymmetric 
dependence allows diversifying the allocation of resources in portfolios, provid-
ing a balance between risks and returns.

A second point is the performance with changes in the investment time hori-
zon. The attention to the horizon to be employed in investment analysis is evi-
denced by papers as Gunthorpe and Levy (1994). Considering the frequency 
dynamics enabled us to study the different degrees of behaviors of stock returns 
of the B3 market and its relations stemming from heterogeneous shocks. We show 
that the different investment planning horizons can change the portfolio strategies 
as Ibragimov et al. (2011) and Chakrabarty et al. (2015). A view that focuses on 
short fluctuations, with the use of dealing strategies in short-term scales, can also 
result in a portfolio with considerable profits as Zhang et al. (2016), Baralis et al. 
(2017) and Berger and Gençay (2019) suggests.

When incorporating the effects of asymmetric correlations in asset allocation, 
in different time frequencies, this study contributes to emphasizes the importance 
of statistics applications about financial analysis, principally in the short-term. 
A multiscale multivariate financial analysis through wavelet techniques allows 
obtaining specific information of certain periods, which jointly with the flexibil-
ity of copulas methods for measuring the asymmetrical dependence of non-aggre-
gated way over time has the potential of assisting as in the strategies process of 
selection/diversification of investment portfolios, as in the control and manage-
ment of risks.
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