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The most primitive hematopoietic stem cell (HSC)/progenitor
cell (PC) population reported to date is characterized as being
Lin�CD34þCD38�CD90þCD45R. We have a long-standing
interest in comparing the characteristics of hematopoietic
progenitor cell populations enriched from normal subjects
and patients with chronic myelogenous leukemia (CML). In
order to investigate further purification of HSCs and for
potential targetable differences between the very primitive
normal and CML stem/PCs, we have phenotypically compared
the normal and CML Lin�CD34þCD38�CD90þCD45RA� HSC/
PC populations. The additional antigens analyzed were HLA-
DR, the receptor tyrosine kinases c-kit and Tie2, the interleukin-
3 cytokine receptor, CD33 and the activation antigen CD69, the
latter of which was recently reported to be selectively elevated
in cell lines expressing the Bcr-Abl tyrosine kinase. Notably, we
found a strikingly low percentage of cells from the HSC/PC
sub-population isolated from CML patients that were found to
express the c-kit receptor (o1%) compared with the percen-
tages of HSC/PCs expressing the c-kitR isolated from umbilical
cord blood (50%) and mobilized peripheral blood (10%).
Surprisingly, Tie2 receptor expression within the HSC/PC
subset was extremely low from both normal and CML samples.
Using in vivo transplantation studies, we provide evidence
that HLA-DR, c-kitR, Tie2 and IL-3R may not be suitable
markers for further partitioning of HSCs from the Lin�
CD34þCD38�CD90þCD45RA� sub-population.
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Introduction

Hematopoietic stem cells (HSCs) are a very primitive and rare
population of cells that reside in the bone marrow and give rise
to all the cells of the blood including erythrocytes, granulocytes,
monocytes, platelets, natural killer cells and lymphocytes of
B and T lineage. Because of the unique ability of stem cells to
both self-renew and differentiate, the continued replenishment
of these various specialized blood cells (the process of home-
ostasis) is sustained for the entire lifespan of the species.1

Largely because of the relative ease with which one can
access hematopoietic tissue and the development of functional
assays to measure their activity, the HSC is perhaps the most

well-characterized stem cell on both the biological and
molecular levels. However, despite much progress, HSC studies
remain quite difficult because of their rarity within the total
heterogeneous population of hematopoietic cells (o1 in
50 000).2 Having a homogenous population of HSCs would
immensely enhance directly identifying and examining the
biological and molecular programs controlling normal stem cell
function and, importantly, determine how these programs may
be altered in leukemic stem cells (LSCs). In addition, purified
HSCs ultimately may prove to be extremely valuable for
therapeutic purposes as well.3 Over the past 40 years or so,
the enrichment of HSCs on the basis of their physical
(for example, cell size, density), cell surface antigen, and
biochemical characteristics (for example, elevated levels of
aldehyde dehydrogenase) has been intensely pursued by a
multitude of investigators including ourselves.4–12 Whereas such
efforts have culminated in the ability to purify the HSC to near
homogeneity from mouse bone marrow and fetal liver,13,14 the
same cannot be said for human HSCs. However, Irving
Weissman and colleagues15, who have made major contribu-
tions in the area of HSC purification and characterization over
the years, have moved us ever closer toward that goal. Recently,
they reported the enrichment of human HSCs from umbilical
cord blood (CB; also known to be a very rich source of HSCs16)
from an estimated starting frequency of o1 in 50 000 cells to a
frequency of 1 in 10 cells.17 Thus, they were able to demonstrate
long-term multilineage engraftment (post 12-week transplanta-
tion) in newborn nonobese diabetes/severe combined immuno-
deficiency (NOD/SCID) IL-2R gammanull (NOG) mice upon
facial injection of as little as 10 cells from their purified HSC
fractions. Mature and very primitive hematopoietic cell
populations express somewhat different cell surface antigens.15

Fluorophore-conjugated monoclonal antibodies directed against
these antigens were used with multicolor flow cytometry to
isolate phenotypically defined populations simultaneously.
Their highly enriched HSC fraction was identified as being
lineage (Lin) negative(�) CD34 positive(þ ) CD38�CD90þ
CD45RA�. This HSC phenotypic profile indeed encompasses
previous findings by Weissman and colleagues15 and those of
numerous other investigators demonstrating that the most
primitive human hematopoietic progenitor cell (PC) populations
are lineage�,6,18 CD34þ ,19 CD38�,20 CD90þ 18 and
CD45RA�.21

Given our long-standing interest in comparing the biological,
biochemical and molecular characteristics of primitive
hematopoietic PC populations enriched from normal human
subjects and from patients with chronic myelogenous leukemia
(CML),22,23 we decided to compare the expression of otherReceived 28 April 2011; accepted 25 May 2011
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well-known hematopoietic cell surface antigens by the
Lin�CD34þCD38�CD90þCD45RA� HSC/PC population
isolated from both these sources in order to determine (1) if
HSCs could be further purified on the basis of another cell
surface antigen(s) and (2) if there are any consistent phenotypic
differences between highly enriched normal HSCs and CML
LSCs. If consistent differences can be identified, they could have
significant therapeutic potential such as in purging strategies for
use in autologous transplantation or elimination of quiescent
LSCs that survive current treatment regimens. CML is a clonal
disease originating in a multipotent HSC or early PC because of
fusion of portions of the Bcr and Abl genes, which results in
constitutively increased Abl kinase activity that is thought to be
necessary and sufficient for the initiation of CML.24–26 Currently,
the front-line treatment of CML is the Bcr–Abl kinase inhibitor,
imatinib mesylate.27–30 Although this treatment has been
remarkably successful, only a minority (B25%) achieve major
molecular remissions and a significant number develop Bcr–Abl
kinase domain mutations or Bcr-Abl gene amplifications that
confer resistance.31–34 Also, there is now very strong evidence
that quiescent LSCs (or early quiescent leukemic progenitors
functioning as LSCs35) of the patients are refractory to imatinib
mesylate as well as other newly designed more potent second-
generation Bcr–Abl tyrosine kinase inhibitors such as nilotinib
and dasatinib.36–39 Because of this, patients must continuously
take these tyrosine kinase inhibitors, as discontinuation results in
the re-emergence of excessive numbers of myeloid cells. Thus,
intensive efforts remain focused on identifying new molecular
targets within or on the surface of Phþ LSCs that can be
exploited therapeutically.

The quiescent leukemic stem cell or early PCs functioning as
LSCs are known to be concentrated in the most primitive cell
compartments, because like normal cells, once stem or early
PCs become committed to differentiation and maturation, they
continue to proliferate.38

In the present studies, we have further phenotypically
examined the Lin�CD34þCD38�CD90þCD45RA� HSC/PC
population (hereafter, sometimes referred to as the
CD90þCD45RA� HSC sub-population) purified from two
normal tissue sources (CB and granulocyte colony-stimulating
factor (G-CSF) mobilized peripheral blood (MPB)), as well as
from peripheral blood or bone marrow samples from patients
with CML. The cell surface antigens analyzed include HLA-DR,
the receptor tyrosine kinases c-kitR (CD117) and Tie2 (CD202b),
the interleukin-3 cytokine receptor (IL-3R, CD123) and CD33.
Although all of these antigens have been well documented to be
expressed by various classes of human hematopoietic PCs,40–57

the number of studies investigating their expression by human
HSCs is sparse.58–62

In addition, we have looked at the expression of CD69, an
immunoregulatory glycoprotein that is transiently expressed on
the surface of all hematopoietic cells (except erythrocytes)
following their activation.63 This antigen was of particular
interest to us in light of a very recently published study64

demonstrating an upregulated expression of CD69 in the
Phþ cell line, K562, as well as in other hematopoietic cell
lines retrovirally expressing the Bcr–Abl protein. Furthermore,
they found that this upregulated expression was inhibited by the
Bcr–Abl kinase inhibitors, nilotinib and dasatinib. Unfortu-
nately, in that study, primary cells from CML patients were not
examined. If CD69 is consistently elevated on the surface of
LSCs from CML patients, it might serve as a therapeutic target.

In order to analyze the Lin�CD34þCD38�CD90þ
CD45RA� sub-population for their surface expression of HLA-
DR, c-kitR, Tie2, CD33, IL-3 receptor and CD69, we have

directly conjugated (or commercially obtained) the Alexa Fluor
700 dye to mouse monoclonal antibodies directed against these
antigens. We chose this fluorophore as it displays high
fluorescence intensity, is very photostable and exhibits essen-
tially no spectral overlap with the other fluorescent dyes when
used according to the multi-color cell sorting strategy described
below. The only other fluorochrome used in this stain that
spectrally overlaps with Alexa 700 (Invitrogen, Carlsbad, CA,
USA) is allophycocyanin (APC) and this spillover is negated
because APC-negative cells were analyzed.

This study is the first, to our knowledge, to examine the
surface expression of these antigens by the very primitive
Lin�CD34þCD38�CD90þCD45RA� HSC/PC population
purified from UB, G-CSF MPB and peripheral blood and/or
bone marrow samples obtained from CML patients. In addition,
we have further partitioned this sub-population into HLA-DR þ
and �, c-kitR þ and � and Tie2 þ and � (and IL-3Rþ and
IL-3R� in a few instances) subsets by fluorescence-activated cell
sorting and have transplanted cells from these fractions into sub-
lethally irradiated NOG mice to measure their long-term
marrow-repopulating ability. The results of these studies are
the subject of the present report.

Materials and methods

Antibodies
A panel of mouse anti-human monoclonal antibodies (MoAbs)
was used for analysis and sorting of HSC-enriched populations
including: CD2, CD3, CD5, CD10, CD14, CD19, CD20, CD56
and My-8 (generously supplied by Coulter Immunology; now
Beckman Coulter, Brea, CA, USA). CD235a (anti-Glycophorin
A) was kindly supplied by Dr Paul Edwards (Ludwig Institute for
Cancer Research). These MoAbs are directed against antigens
expressed by B and T lymphocytes, monocytes, maturing
granulocytes, erythroid cells and natural killer cells.65 All these
antibodies were biotinylated in-house using the EZ-Link Micro
Sulfo-NHS-LC-Biotinylation Kit (Pierce, Rockford, IL, USA),
purified using a Zebra desalt spin column (Pierce), and
subsequently tested and titrated (by flow cytometry) by staining
established myeloid and lymphoid cell lines expressing these
antigens. Biotinylated CD7 (cat. no. MHCD0715) was obtained
from Invitrogen. In order to detect these biotinylated MoAbs,
streptavidin PE-Cy5 (Biolegend, San Diego, CA, USA) was used
as a secondary reagent. Fluorescein isothiocyanate (FITC) anti-
CD34 (clone 581), PE-anti-CD90 (clone 5E10) and V450 anti-
CD45RA (clone HI100) were obtained from BD Biosciences
(San Jose, CA, USA). APC-anti-CD38 was purchased from
eBioscience (San Diego, CA, USA). Alexa Fluor 700 anti-CD69
(clone FN50) was purchased from BioLegend. Anti-CD117,
c-kitR (clone 104D2); CD123, a-chain of IL-3 receptor (clone
6H6); CD202b (Tie2; clone 33.1; Biolegend); CD33 (clone 906)
and HLA-DR (clone H279; gifts from Coulter) were all labeled
with Alexa Fluor 700 (cat no. A20010, Invitrogen) in-house
according to the instructions accompanying Invitrogen’s
Alexa Fluor Monoclonal Antibody Labeling Kits. Conjugated
antibodies were purified by passing the labeling reactions over a
fluorescent dye removal spin column (Pierce) to remove free Alexa
700 dye. The specificity of these labeled antibodies was confirmed
by staining established cell lines known to express these antigens.

Analysis of human engraftment was performed using anti-
human FITC–CD45 (clone HI30) and FITC–IgG1 ê isotype
control (BD Biosciences). In some instances, lineage analysis of
human cells was performed using anti-human Abs: FITC–CD13
(clone SJ1D1) and FITC–CD19 (clone J4.119) (BD Biosciences).
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Mouse leukocytes were identified by staining with PE-CD45.1
(clone A20; Biolegend) and PE-IgG1 isotype control (BD
Biosciences). Cell samples were incubated with mouse and
human FcR blocking reagents (Miltenyi Biotec, Inc., Auburn,
CA, USA) for 15 min at 4 1C before the addition of MoAbs.

Cell sources and CD34 cell enrichment
Fresh CB units were obtained from the New York Blood Center’s
National Cord Blood Program (Long Island City, NY, USA). The
blood was diluted 1:1 with Iscove’s modified Dulbecco’s
medium containing 5% fetal calf serum (FCS) and platelets
were depleted by centrifugation over Percoll (1.050 g/cm3; GE
Healthcare, Piscataway, NJ, USA) before obtaining the mono-
nuclear cell (MNC) fraction by centrifugation over Ficoll-
Hypaque as previously described.65,66 In order to reduce
the total number of MNCs while recovering essentially all the
HSC/PCs, in some cases the MNCs were further subjected to a
1.071 g/cm3 Percoll density cut.65 Enriched CD34þ cells were
then obtained by using the MACS CD34 cell isolation kit
(Miltenyi Biotec).

Cryopreserved MPB samples were obtained from the Stem
Cell Processing Laboratory at the Memorial Sloan-Kettering
Cancer Center. Patients with solid tumors and no hematological
involvement were mobilized with 10mg/kg of G-CSF for 5 days.
The hematopoietic progenitor cell-Apheresis products were
volume reduced and mixed with an equal volume (50% v/v
final) of cryoprotectant media containing 5% dimethyl sulfoxide
and 5% human serum albumin. The cryoproducts were placed
in a �80 1C freezer and frozen utilizing the ‘passive’ cryopre-
servation method. The products were then transferred to a LN2

vapor storage device and maintained at �180 to �190 1C.
After appropriate Human Protection Committee Validation

and informed consent, marrow aspirations or peripheral blood
specimens were obtained from chronic-phase CML patients
hospitalized at Memorial Sloan-Kettering during the period
1990–2006. Samples were also obtained from Dr Richard Silver
(Emeritus Director, Clinical Oncology Chemotherapy Research,
Division of Hematology and Medical Oncology, New York
Presbyterian Cornell Medical Center, New York, NY, USA).
Buffy coat cells were depleted of platelets and MNCs were
obtained and cryopreserved as previously described by us in
detail.65 In some instances, cryopreserved CML patient cell
samples were kindly provided by Drs Tessa Holyoake (Uni-
versity of Glasgow, Scotland, UK) and Adrian Morales Maravilla
(Puebla, Mexico). All patients had 100% Ph positivity in the
bone marrow as assessed by either direct cytogenetic analysis or
fluorescence in situ hybridization.

After thawing, mobilized blood cells or CML patient cells
were suspended in Iscove’s modified Dulbecco’s medium
containing 20% FCS and 80 units/ml of deoxyribonuclease
(DNase; Worthington Biochemical Corp., Lakewood, NJ, USA).
Dead cells were removed by Ficoll-Hypaque centrifugation and
viable MNCs were recovered at the interface, washed and
resuspended in Iscove’s modified Dulbecco’s mediumþ 20%
FCSþDNase and processed for CD34þ cell enrichment as
described above. In some instances, two or three CML patient
samples were pooled after thawing in order to obtain sufficient
numbers of CD34þ cells for the present studies.

Isolation of HSC/PC sub-populations by multicolor
flow cytometry
Enriched CD34þ cells were stained simultaneously with
FITC–CD34, APC-CD38, PE-CD90, V450-CD45RA and the

plethora of biotinylated mouse anti-human lineage-specific
MoAbs. Following 30 min on ice, the cells were washed in
cold sorting buffer (phosphate-buffered saline supplemented
with 2% FCS and 1% bovine serum albumin) and resuspended
in sorting buffer containing 0.5mg/ml of streptavidin PE-Cy5.
Cells were then immediately aliquoted and an optimal amount
of one of the Alexa 700-conjugated antibodies described above
was added to each aliquot. A control aliquot was always
included in which no Alexa 700-conjugated MoAb was added.
This control is referred to as the FMO (fluorescence minus one).
After a 30-min incubation on ice, cells were washed
and resuspended in cold sorting buffer containing 1mg/ml of
propidium iodide (for staining nonviable cells). Analyses and
sorting were performed on a BD FACSAria IIu cytometer (BD
Biosciences). For analyses, positivity was defined as fluores-
cence 499% of that in the absence of Alexa 700 (FMO). When
sorting the desired subsets of Lin�CD34þCD38�CD90þ
CD45RA� cells, the fluorescence sorting gates were set such
that B80% of the most negative cells and 80% of the most
positive cells for a given cell surface antigen were selected.
Sorted cells were collected into sterile 12� 75 mm polypropy-
lene round-bottom tubes containing 1 ml of the serum-free
medium, QBSF-60 (Quality Biologicals, Gaithersburg, MD,
USA) and kept in ice until transplantation or for other assays
described below. Flow cytometric data were analyzed with
FlowJo software version 9 (Tree Star, Ashland, OR, USA).

Mouse transplantation
Animal studies and procedures were approved by the Memorial
Sloan-Kettering Cancer Center Institutional Animal Care and
Use Committee. NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ mice were
either purchased from The Jackson Laboratory (Bar Harbor,
ME, USA) or bred in-house, and were housed in specific
pathogen-free facilities and fed a sulfatrim-containing diet.
Mice, 6–8 weeks old, were irradiated (2.2 Gy) 3 h before
transplantation and cells of interest were resuspended in
0.2 ml of QBSF and transplanted intravenously via the tail vein.
Unless otherwise indicated, mice were killed 12 weeks after
transplant, and the cells from both the tibiae and femurs of each
mouse were collected into cold phosphate-buffered saline
containing FCS. Red cells were lysed with ACK lysing buffer
(Invitrogen) and residual white blood cells were processed for
flow cytometry as described above. To serve as a control, bone
marrow cells from a NOG mouse that was not transplanted was
always included.

Colony-forming assays and detection of
Bcr–Abl transcripts
For CML patient samples, purified HSC sub-populations were
assayed for their colony-forming ability as previously described
in detail,10 with some modifications. Briefly, cell aliquots were
seeded in Iscove’s modified Dulbeccco’s medium containing
24% FCS, 1.3% methylcellulose, c-kit ligand (KL; 100 ng/ml),
IL-3 (10 ng/ml), G-CSF (10 ng/ml), granulocyte-monocyte (GM)-
CSF (10 ng/ml) (all gifts of the Kirin Brewing Co., Gunma, Japan),
IL-6 (10 ng/ml; R&D Systems, Minneapolis, MN, USA) and
erythropoietin (EPO; 1 unit/ml; Toyobo, New York, NY, USA)
and incubated at 37 1C in a humidified atmosphere of 5% CO2

in air. After 12–14 days, triplicate cultures were scored
for granulocytic/monocytic (CFU-GM) and erythroid (BFU-E)
colonies.

Individual colonies were analyzed for the Bcr-Abl
transcript by methods previously described by us in detail with
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some modifications.67 Briefly, colonies were removed from
the methylcellulose with a sterile, RNase-free filtered
micro-pipette tip, dispensed into 0.8 ml of Trizol reagent
(Invitrogen) and RNA was extracted following standard
Trizol protocol. Complementary DNA was then generated with
Transcriptor Reverse Transcriptase (Roche, Indianapolis, IN,
USA) using random hexamers and PCR amplification was
carried out using FastStart Taq DNA Polymerase. Amplified
products were run on a 2% agarose gel containing ethidium
bromide and visualized by ultraviolet light transillumination.
The expected products for Bcr-Abl were 394 base pairs (bp) and
319 bp, which correspond to the b3a2 and b2a2 fusion
transcripts, respectively,67 whereas the expected PCR product
generated from normal Abl (which served as a control transcript
in the same reaction vessel) was 185 bp. Primers used to amplify
normal Abl were published previously.68 In order to serve as a
negative control for PCR, colonies were also generated from
CD34þ cells obtained from CB samples and processed in the
same manner.

Suspension cultures
For some CML samples, desired cell sub-populations were
assayed in vitro for their growth potential in response to the
early growth factors KL, thrombopoietin (TPO) and FMS-like
tyrosine kinase 3 (FLT-3). Briefly, cells (500–750) were
suspended in 1 ml of QBSF-60 containing KL (100 ng), TPO
(20 ng) and FLT-3 (20 ng) (R&D Systems). Cultures were done in
48-well plates and maintained in a humidified atmosphere
of 5% CO2 at 37 1C for 21 days and aliquots were removed at
14 and 21 days to assess viability by Trypan blue exclusion.

Results and discussion

Further phenotypic characterization of the Lin� CD34þ
CD38� CD90þ CD45RA� HSC/PC sub-population
purified from CB, G-CSF MPB and CML patient samples
Data compiled from numerous investigators have indicated
that the most primitive hematopoietic cells including the HSCs
reside in a lineage-negative sub-population with a CD34þ
CD38� CD90þ CD45RA� phenotype. Very recently, using a
multicolor sorting strategy to purify this subset from CB and
subsequently transplanting them into NOG mice, Weissman’s
lab demonstrated that up to 10% of these cells were long-term

SCID-mouse repopulating cells (LT-SRCs).17 This enrichment
strategy is quite impressive given that the starting frequency of
these LT-SRCs in unseparated CB cells is most likely o1 in
50 000. Using in-vitro colony-forming assays, they also found
that B33% of the cells from this primitive sub-population were
committed colony-forming cells, predominantly CFU-GM
progenitors.

Employing a very similar multicolor sorting scheme, likewise,
we were able to identify a Lin�CD34þCD38�CD90þ
CD45RA� cell sub-population from CB (Figure 1). This sub-
population comprised 16.7±7.1% (n¼ 14) out of the
Lin�CD34þCD38� cells, which is in the range of what
Weissman’s lab previously observed.17 As the expression of
CD34 and CD38 antigens is not bi-modal (on/off), placement of
gates defining positive and negative antigen-expressing cells is
subjective, leading to some variability in published reports.
Similar antigen expression profiles (Figures 1a and b) were also
obtained when this strategy was used for sorting cells from MPB
and CML patient samples (Supplementary Figure S1); however,
the mean percentages of CD90þCD45RA� cells within the
Lin�CD34þCD38� cell population were somewhat higher for
MPB (28.2±16.4% s.d., n¼ 7) and CML patients (32.3±20.5%
s.d., n¼ 10). We then examined the Lin�CD34þCD38�
CD90þCD45RA� sub-population for their expression of
HLA-DR, c-kitR, Tie2, CD33, IL-3R and CD69 antigens by
using MoAbs (to these antigens) that were labeled with the
fluorophore Alexa700. For illustrative purposes, Figure 1c shows
an example of an HLA-DR expression profile that was obtained
by gating on CB CD90þCD45RA� cells. Figure 2 shows the
percentage of CD90þCD45RA� cells, in individual experi-
ments, expressing the above-named antigens, whereas Figure 3
depicts representative Alexa 700 flow cytometry profiles (gated
on the CD90þCD45RA� subset) obtained for each of these
antigens. The percentage of CD90þCD45RA� cells expressing
the HLA-DR antigen was consistently high from those obtained
from CB (75±3.6% s.e.m.), whereas the percentage of
CD90þCD45RA� cells purified from CML samples and MPB
were lower and highly variable, 66±18% s.e.m. and 40±18%
s.e.m., respectively (Figure 2). However, it can be seen in
Figure 3 that the population of CD90þCD45RA� cells stained
with anti-HLA-DR antibody showed an increased Alexa 700
fluorescence compared with the Alexa 700 unstained control;
essentially the entire population shifted. Such a shift suggests
that the cells classified as negative in our gating scheme were in
fact expressing low amounts of HLA-DR antigen but the number

Figure 1 CB- enriched CD34-positive cells were analyzed for the expression of lineage markers CD34, CD38, CD90, CD45RA and HLA-DR by
flow cytometry. The left panel (a) is gated on lineage-negative (Lin�) viable cells whereas the center panel (b) is gated on the Lin�CD34þCD38�
cells. The right panel (c) is gated on the Lin�CD34þCD38�CD90þCD45RA� HSC/PC sub-population and shows the distribution of the
HLA-DR antigen (blue histogram) within this primitive subset. The histogram in red is the fluorescence histogram obtained for the gated cells
(CD90þCD45RA�) in the absence of staining with an Alexa 700-conjugated MoAb and is referred to as the FMO (Fluorescence Minus One)
control. The number under each descriptive sub-population represents the percentage of positive cells within the total population of Lin�CD34þ
enriched (a) or the CD34þCD38� (b) cells. Data shown represent one of three separate MPB experiments.
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of antigen molecules were not enough to cleanly separate the
dim cells from autofluorescence.

With respect to the expression of the c-kit receptor, the mean
percentage of CD90þCD45RA� cells classified as c-kitRþ
was very disparate between the three tissue sources (Figure 2),
50±7% s.e.m., 10±4% s.e.m. and 0.9±0.3% s.e.m. for CB,
MPB and CML, respectively. There is also a significant Alexa
700 fluorescence profile shift seen with anti-c-kitR antibody-
stained CB cells (Figure 3), indicating that there could be a low
expression of the c-kit receptor on the CD90þCD34RA� cell
population classified as c-kitR negative. The Alexa 700
fluorescence profile shift on anti-c-kitR-stained MPB and CML
was much less pronounced than that seen for CB; however, MPB
and CML contained an additional population of cells expressing
high amounts of c-kitR antigen, although at different frequen-
cies. Most intriguing was that, relative to the percentages of CB
and MPB CD90þCD45RA� cells that expressed c-kitRþ , the
number of CD90þCD45RA� cells isolated from CML patients
that expressed the c-kit receptor was drastically lower. Although
the significance of this novel finding is presently not clear, it is
provocative that we previously reported10 that primitive GM
progenitors isolated from CML patients have a greatly reduced
requirement for KL in order to achieve optimal growth with the
cytokines, G-CSF and GM-CSF. More recently,69 using the
tyrosine kinase inhibitor PD173955, we provided pharmacolo-
gical evidence that the Bcr–Abl kinase activity constitutively
present in Phþ primary primitive PCs disrupts the normal
synergistic activity of KL with G-CSFþGM-CSF such that
primitive CML GM progenitors have a greatly reduced require-
ment for KL in achieving optimal activation and growth in the
presence of G-CSFþ GM-CSF. Whether or not these abnormal
responses of CML primitive progenitors to KL are attributable
to an abnormally low number of kit receptors on these cells
must be investigated.

Other studies have shown that CML erythroid progenitors
are also more sensitive than normal progenitors to growth
stimulation with KL as well as to EPO and other cytokines
known to act on stem/progenitor (S/P) cells.38,70,71 Once
quiescent CML progenitors are stimulated to begin proliferating,
they undergo further differentiation and maturation more rapidly
than normal progenitors, but both granulopoiesis and erythro-
poiesis are less efficient than in normal hematopoiesis, as shown
in cloning experiments in which the CML cells form many more
small colonies and clusters but fewer large and extra-large CFU-
GM and BFU-E than normal S/P cells.10,12,23,38,70,71 Whereas
normal CD34þ cells form almost entirely CFU-GM clusters and
colonies in clonogenic experiments when stimulated by
cytokines in the absence of EPO, CML G0 cells consistently
form a mixture of GM and CFU-E and BFU-E without EPO; this
spontaneous formation of erythroid colonies by CML G0 cells
appears to be correlated with overexpression of numerous genes
belonging to the megakaryocyte-erythroid lineages as well as to
underexpression of Prominin-1 (CD133/2).72

Correlative biological and gene expression studies comparing
highly enriched normal and CML quiescent (CD34 G0) and
proliferating (CD34þ G1/S/G2/M) S/P cells have also shown
that CML CD34þ G0 cells are in a more advanced stage of
development and that gene expression is more similar to the
proliferating (G1/S/G2/M) cells than normal G0 cells are to G1/S/
G2/M cells.72 Numerous genes that are known to be over-
expressed in normal hematopoietic S/P cells compared with
more differentiated cells are downregulated in CML G0 cells
compared with normal G0 cells, including six genes belonging
to the polychrome repressive complex 1 (PRC1) and one (EPC2)
belonging to the PRC2 group, providing additional evidence that
CML G0 cells are more differentiated than normal G0 cells as
both PRC complexes belong to groups of epigenetic regulators
involved in maintenance of adult and embryonic stem cells.

Figure 2 CB-, MPB- and CML-enriched CD34þ cells were gated on the Lin�CD34þCD38�CD90þCD45RA� sub-population
(as demonstrated in Figure 1) and analyzed for their expression of HLA-DR, c-kitR, Tie2, CD69, CD33 and the IL-3R by flow cytometry using
Alexa Fluor 700-conjugated MoAbs to each of these antigens. Each data point in the figure represents the percentage of cells in an individual
experiment that was positive for the antigen shown. Control samples represent percentage of positive cells obtained in the absence of any Alexa
700 MoAb (FMO). Crossbars represent the arithmetic means of the data points in each column.
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In keeping with their more advanced stage of differentiation and
greater similarity to G1/S/G2/M cells, there is upregulation of genes
involved in DNA replication and mitotic spindle machinery in

CML G0 blasts compared with normal G0 blasts. The gene
expression differences indicating that CML G0 cells are more
poised to begin proliferating than normal quiescent S/P cells
correlates nicely with the biological studies showing that CML G0

cells are more sensitive than normal G0 cells to growth stimulation
by single cytokines (for example, KL, G-CSF, GM-CSF and EPO),
or to combinations (KLþ FLþ TPO) known to act on early S/P
cells.72 Although CML and normal G0 blasts are almost equally
responsive to maximum stimulation by multiple cytokines,
the CML cells are triggered into cycle more rapidly.

In examining the expression of Tie2, it can be seen in Figure 2
that the number of CD90þCD45RA� cells expressing this
tyrosine kinase receptor was extremely low, regardless of
whether they were purified from CB, MPB or CML (1.9±0.4%
s.e.m., 1.5±0.9% s.e.m. and 1.0±0.5% s.e.m., respectively).
Curiously, others have shown that the Tie2 receptor is present
on HSCs in the quiescent state in adult murine bone marrow;52

yet, in some of the present experiments we have found that
496% of the primitive CD90þCD45RA� cells purified from
CB are quiescent (as assessed in situ by the absence of the
proliferation-associated Ki67 protein;73 data not shown). More-
over, our results appear to be at odds with other previously
published studies50,51 demonstrating that Tie2 is expressed by
the majority of CD34þCD38� cells isolated from both human
bone marrow and CB. However, it must be kept in mind that
Lin�CD34þCD38�CD90þCD45RA� cells represent only a
subset (B8–30%) out of the total CD34þCD38�population.
It should also be pointed out that the antibodies used to detect
Tie2 in other studies (clones 10F11, 3C4, 7E8, 8G3 pooled, see
Shackelford et al.40; cloneHT50, see Schlossman et al.41) were
different than the one presently used (clone 33.1). In light of the
findings of these other investigators, we will confirm the present
observations by examining the CD90þCD45RA� HSC/PC
subset using other Alexa700-labeled Tie2 antibodies. Also, it
would be worthwhile to examine the expression of Tie2 by
Lin�CD34þCD38�CD90þCD45RA� HSC/PCs purified from
human bone marrow.

With regard to expression of the myeloid antigen CD33, we
found that the mean percentages of MPB and CML
CD90þCD45RA� cells that expressed the CD33 antigen was
very low (o2% for both; Figure 2). In contrast, a significantly
higher percentage (although highly variable) of CB CD90þ
CD45RA� cells expressed CD33 (mean¼ 25%±11 s.e.m.).
Also, there was an Alexa 700 fluorescence profile shift (Figure 3)
on the anti-CD33-stained cells, again indicating that there could
be a low expression of CD33 on the population of CB
CD90þCD45RA� cells classified as CD33 negative.

In looking at the expression of the IL-3 cytokine receptor, the
CD90þCD45RA� sub-population isolated from MPB con-
tained the highest percentage of IL-3R-positive cells (43±14%
s.e.m.) followed by those isolated from CB (19±4% s.e.m.) and
CML (7±2% s.e.m.) (Figure 1). However, IL-3R staining also
exhibited a fluorescence profile shift for CB, MPB and CML
(Figure 2), indicating that there could be low expression of the
IL-3R on the populations of CD90þCD45RA� cells classified
as IL-3R negative from all three tissue sources. Our finding of a
relatively high percentage of IL-3R-positive cells within
the CD90þCD45RA� subset isolated from MPB would be
consistent with the fact that MPB is known to be enriched for
committed myeloid PCs whose growth and maturation are well
documented to be supported by the IL-3 cytokine.56

Last, in examining the CD69 molecule on the surface of the
CD90þCD45RA� subsets, we found that this so-called
activation antigen was expressed by a relatively minor
percentage of these primitive cells from all three sources and,

Figure 3 Representative expression profiles of six surface markers in
the Lin� CD34þCD38�CD90þCD45RA� sub-population isolated
from CB, MPB and CML patient samples. The six markers were (a)
HLA-DR, (b) c-kitR, (c) Tie2, (d) CD69, (e) CD33 and (f) IL-3R. Red
histograms are the control FMOs (see Figure 1) whereas those in blue
are the expression profiles obtained by staining the cells with the Alexa
700-conjugated MoAbs.
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in addition, there was no salient increase in either the
percentage of CD69þ cells (Figure 2) or its intensity of
expression (Figure 3) within the CD90þCD45RA� HSC/PC
sub-population isolated from patients with CML in the chronic
phase versus those purified from CB and MPB (CB: 16±11%
s.e.m., MPB: 4±1% s.e.m., CML: 10±5% s.e.m.). Nevertheless,
it will be interesting to sort this CD69þ cell subset for further
functional studies in order to determine what these primitive
cells represent. In light of the recently reported finding of
Hantschel et al.64 that antigen CD69 is increased on the surface
of cells from cell lines expressing the Bcr–Abl protein, it remains
possible that CD69 is elevated on HSCs isolated from CML
patients in the accelerated and/or blastic phases of the disease;
however, this warrants further examination.

LT- repopulating HSCs from CB are heterogeneous
with respect to their HLA-DR, c-kitR or Tie2 cell
surface expression
In an effort to systematically determine if the LT-SRCs residing
within the Lin�CD34þCD38�CD90þCD45RA� sub-popula-
tion can be further partitioned according to their surface antigen
expression (or lack of), we sorted this primitive HSC/PC sub-
population into HLA-DRþ /�, c-kitRþ /� and Tie2 þ /� cell
subsets, and injected these cells into NOG mice for detection of
human marrow-repopulating cell activity. Because of their
extremely high rates of engraftment of human HSCs,74 NOG
mice currently serve as perhaps the best model for xenotrans-
plantation studies. It should be noted that for the majority of
these sorting experiments, a fluorescence gate separating cells as
Alexa 700 negative and positive was set such that 80% of most
negative and 80% of most positive cells were sorted. Our results
to date are summarized in Table 1 (see Supplementary Table S1
for total engraftment data) show that long-term repopulating
HSCs residing within the CB Lin�CD34þCD38�CD90þ
CD45RA� sub-population are heterogeneous with respect
to their cell surface expression of either HLA-DR, c-kitR or
Tie2. In the present studies, engraftment is defined as having
detected at least 0.1% human CD45-positive cells in mouse
bone marrow cell samples and chimerism is defined as the
percentage of human CD45-positive cells within a mouse bone
marrow cell sample. Thus, post 12-week transplantation, HLA-
DRþ and HLA-DR� subsets exhibited comparable rates of
engraftment (83% and 88%, respectively) and comparable
levels of chimerism (mean of 19% CD45 human cells and
14% CD45 human cells, respectively). Likewise, c-kitRþ and
c-kitR� subsets showed similar mean rates of engraftment
(100% vs 80%) and mean percentages of CD45 cells (13% vs
18%, respectively). Although Tie2þ and Tie2� cell subsets
exhibited the same rates of engraftment (100%), the mean level

of human chimerism achieved with the former cell subset was
much lower than with the latter (2.7% CD45þ vs 28%
CD45þ ). Coupled with the fact that an average of 96% of the
cells are recovered in the Tie2� subset indicates that the
overwhelming majority of LT-HSCs residing within the
Lin�CD34þCD38�CD90þCD45RA� sub-population from
CB are Tie2�. Lineage specificity of the human CD45þ cells
was analyzed on the bone marrow cells of some of the NOG
mice engrafted with cells from the HLA-DR þ and � and c-kitR
þ and � subsets. We found the human CD45þ cells to contain
both myeloid (CD13) and B-lymphoid (CD19) cells, indicating
that LT-HSCs in CB possessed myeloid and lymphoid differ-
entiating capability (data not shown); a finding consistent with
that of Majeti et al.17

Based on these preliminary studies, it would appear, on first
pass, that HLA-DR, c-kitR and Tie2 surface markers may not be
useful for the further purification of LT-SRCs. However, previous
studies by other investigators75,76 have clearly demonstrated
that HSCs are functionally heterogeneous and represent a
hierarchy of cells with differing self-renewal, proliferative and
repopulating abilities. In light of this heterogeneity, secondary
and perhaps tertiary transplants using bone marrow cells
harvested from primary transplanted NOG mice will be required
to determine if there are differences in the self-renewal potential
(and therefore primitiveness) of the HSCs residing within the
HLA-DRþ /�, c-kitRþ /� and Tie2þ /� subsets.

We have also sorted the Lin�CD34þCD38�CD90þ
CD45RA� HSC fraction purified from MPB into HLA-DRþ /�,
c-kitRþ /� or IL-3Rþ /� subsets for xenotransplantation and the
results are summarized in Table 2. Of note, we did not detect
CD45þ human cells post 12 weeks after transplantation of
HLA-DRþ /� and c-kitRþ /�subsets, although a similar number
of cells were transplanted as with CB transplants. In two
separate MPB experiments, IL-3Rþ /� subsets were sorted from
the CD90þCD45RA� sub-population and both these subsets
(150–2500 cells injected) elicited similar low levels of chimer-
ism at 12 weeks post transplantation. This suggests that LT-HSCs
at least in MPB are heterogeneous for their expression of the
IL-3R. Clearly, more transplantation experiments must be
performed using higher numbers of cells in order to quantitate
LT-SRC activity from HLA-DRþ /�, c-kitRþ /� and IL-3Rþ /�
subsets. However, our preliminary xenotransplantation studies
indicate that there are fewer LT-SRCs within the
Lin�CD34þCD38�CD90þCD45RA� HSC/PC population
derived from MPB versus those purified from CB. This is
consistent with the previous xenotransplantation studies of
Wang et al.2 demonstrating a significantly higher frequency of
LT-SRCs in CB compared with MPB. Rather, MPB has been
shown to be enriched for committed myeloid progenitors
including colony-forming cells.56

Table 1 Summary of long-term (12 weeks) bone marrow engraftment of sub-populations of the human cord blood
Lin�CD34+CD38�CD90+CD45RA� HSC/PC fraction injected into NOG mice

Subset No. of CB
samples

Median no. of cells
injected (range)

% Engraftment Avg % human
chimerism (range)

HLA-DR (�) 7 137 (50–194) 83% (10/12) 19% (0–55)
HLA-DR (+) 6 128 (50–194) 88% (7/8) 14% (0–47)
c-kitR (�) 4 150 (40–200) 100% (5/5) 13% (0.3–57)
c-kitR (+) 4 150 (40–200) 80% (4/5) 18% (0.06–47)
Tie2 (�) 4 100 (35–200) 100% (4/4) 28% (0.35–62)
Tie2 (+) 4 90 (35–150) 100% (4/4) 2.7% (0.17–6.9)

Abbreviations: CB, cord blood; HSC, hematopoietic stem cell; NOG, nonobese diabetes/severe combined immunodeficiency (NOD/SCID) IL-2R
gammanull; PC, progenitor cell.
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Table 3 summarizes xenotransplantation experiments using
the cells of different HSC/PC sub-populations purified from CML
patient samples. No engraftment was observed when NOG mice

were transplanted with either the Lin�CD34þCD38�CD90þ
CD45RA� cell fraction (385–3000 cells injected) or the
more differentiated Lin�CD34þCD38�CD90�CD45RA� cell
fraction (150–1800 cells injected). We also did not see any
engraftment when the CD90þCD45� HSC population
was further sorted into IL-3þ /� or HLA-DRþ /� subsets for
transplantation. PCR analysis of colonies generated in vitro from
the cells of the various subsets in Table 3 were 100% positive for
Bcr-Abl (data not shown). Again, although limiting dilution
experiments will have to be done using higher numbers of cells
from these various purified HSC subsets to quantitate marrow-
repopulating cell activity in NOG mice, our preliminary results
do indicate that, similar to MPB, the frequency of LT-SRCs
within the Lin�CD34þCD38�CD90þCD38� sub-population
purified from hematopoietic tissue from CML patients is much
lower than that seen in CB. The reduced engrafting ability of
CML HSC/PC sub-populations is in keeping with the observa-
tions noted earlier that the great majority of CML total
progenitors and precursors as well as highly enriched CML
Lin� Blasts and CD34þ G0 cells have greatly reduced
proliferative and cloning potential than comparable normal
cells.10,12,23,38,70–72 Eaves et al.77 previously found that highly
enriched primitive CML cells display increased cycling (relative
to similarly enriched primitive cells from normal bone marrow)
and that only the quiescent HSC subset within their primitive
fraction repopulated NOD/SCID mice. Consequently, xeno-
transplantation studies with CML HSC/PC fractions could
underestimate the frequency of CML stem cells. Unfortunately,
we did not look at the expression of the Ki67 antigen in the
HSC/PC cell fractions given in Table 3 to see if they contain an
increased number of cycling cells (relative to the negligible
number found in comparable HSC/PC sub-populations isolated
from CB); however, this must be determined in future studies.
Of note, we have maintained the CD90þCD45RA� and
CD90�CD45RA� subsets, derived from at least three separate
CML patient samples, in liquid culture for 3 weeks in the
presence of the early acting growth factors KL, TPO and FLT-3
and have consistently observed that the CD90þ subset
proliferates to a much greater degree than the CD90� subset,
indicating that the latter cells are less primitive (data not shown).
Our observation is consistent with the studies of Majeti et al.17

that demonstrated that the more primitive CD90þCD45RA�
cells, not surprisingly, also proliferate to a much higher degree
in vitro than do CD90�CD45RA� cells purified from CB.

In summary, the studies presented here have extended the
phenotypic characterization of the rare, primitive Lin�CD34þ
CD38�CD90þCD45RA� sub-population from CB17 to include
HLA-DR, CD33, c-kitR, Tie2, IL-3R and the activation antigen
CD69. In addition, we have also examined the expression
of these antigens on the CD90þCD45RA� cells isolated
from MPB and CML patient samples. Expression profiles were
achieved by using Alexa Fluor 700-conjugated MoAbs directed
against each of these antigens in conjunction with a slight
modification of a previously published17 multicolor scheme
designed to identify Lin�CD34þCD38�CD90þCD45RA�
cells by flow cytometry. Furthermore, we have demonstrated
LT-marrow-repopulating cell activity within the HLA-DRþ /�,
c-kitRþ /� and Tie2þ /� subsets of CB CD90þCD45RA� cells
as well as within the IL-3Rþ /� subsets of MPB
CD90þCD45RA� cells. Based on these preliminary findings,
it appears that HLA-DR, c-kitR, Tie2 and possibly the IL-3R may
not be suitable markers for further purification of normal
hematopoietic HSCs. However, as HSCs are known to be
functionally heterogeneous with respect to their self-renewal,
proliferative and repopulating potential,75,76 more extensive

Table 3 Mouse engraftment data of long-term bone marrow
transplantation of CD90+CD45RA� (and HLA-DR and IL-3 subsets)
and CD90� CD45RA� sub-populations purified from CML patients

Subset Sample No. of cells injected % Chimerism

CD90+CD45RA� 3 1500 Na

3 3000 N
4 385 N

CD90�CD45RA� 1 150 N
3 1500 N
3 1500 N
4 900 N
4 1800 N

HLA-DR (�)b 1 113 N
HLA-DR (+)b 1 150 N
IL-3R (�)b 2 1000 N

2 4000 N

IL-3R (+)b 2 400 N
2 800 N

Abbreviations: CML, chronic myelogenous leukemia; IL-3R, inter-
leukin-3 cytokine receptor.
aN¼no engraftment, and therefore no human CD45-positive cells (or
o0.1%) detected by flow cytometric analysis in 12-week mouse bone
marrow cell samples.
bHLA-DR (�), HLA-DR (+), IL-3R (�) and IL-3R (+) subsets were
isolated from the Lin�CD34+CD38�CD90+CD38� sub-population.

Table 2 Engraftment data of long-term bone marrow transplanta-
tion of sub-populations of human mobilized peripheral blood
Lin�CD34+CD38�CD90+CD45RA� HSC/PC fraction into mice

Subset Sample No. of cells
injected

% Chimerism

HLA-DR (�) 1 100 Na

2 120 N
3 150 N

HLA-DR (+) 1 100 N
2 120 N
3 150 N

c-kitR (�) 1 100 N
2 120 N
3 78 N

c-kitR (+) 2 120 N
3 73 N

IL-3R (�) 4 150 0.7
4 450 1.0
5 1000 Nb

5 2500 1.4b

IL-3R (+) 4 500 2.7
4 2000 6.0
5 715 1.4b

5 2500 0.14b

Abbreviations: CB, cord blood; HSC, hematopoietic stem cell; IL-3R,
interleukin-3 cytokine receptor; NOG, nonobese diabetes/severe
combined immunodeficiency (NOD/SCID) IL-2R gammanull;
PC, progenitor cell.
aN¼no engraftment, that is, no human CD45-positive cells (or
o0.1%) detected (by flow cytometric analysis) in 12-week mouse
bone marrow cell samples.
bFlow cytometric analysis of 9-week mouse bone marrow cell
samples.
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functional studies will be needed to determine if these various
phenotypically defined HSC/PC subsets are also functionally
distinguishable by the level of primitiveness of the HSCs residing
within each subset. Our studies also indicate that the frequency
of LT-SRCs within CD90þCD45RA� subsets isolated from
MPB and CML patient samples is significantly lower than that
seen within CD90þCD45RA� cell subsets isolated from CB.
This finding is consistent with previous observations by others
demonstrating that MPB is more enriched for committed
hematopoietic PCs56 and that patients with CML exhibit
elevated numbers of Phþ committed PCs.78 Thus, the present
findings reinforce those of Majeti et al.17 demonstrating that the
Lin�CD34þCD38�CD90þCD45RA� phenotype is not ex-
clusively assigned to HSCs but rather includes a substantial
population of committed primitive PCs. That said, the fluores-
cence-activated cell sorting flow cytometric multicolor stain
presently described for phenotypically analyzing and sorting of
subsets of the primitive Lin�CD34þCD38�CD90þCD45RA�
sub-population provides a useful strategy for investigating other
candidate hematopoietic cell surface antigens for the further
purification of human HSCs. Such candidate antigens include
CD133, CXCR4 and Robo4, all of which have been reported
to be expressed by human HSCs.79–81
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