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Doctoral Program in Biosciences, Universidad de La Sabana, Chia, Colombia
Women are subject to constitutional changes after menopause, which

increases conditions and diseases prone to cardiovascular risks such as

obesity and diabetes mellitus. Both estrogens and androgens influence the

individual’s metabolic mechanism, which controls the fat distribution and the

hypothalamic organization of the regulatory centers of hunger and satiety.

While androgens tend to accumulate fat in the splanchnic and the visceral

region with an increase in cardiovascular risk, estrogens generate more

subcutaneous and extremity distribution of adipose tissue. The absence of

estrogen during menopause seems to be the main factor that gives rise to the

greater predisposition of women to suffer cardiovascular alterations. However,

the mechanisms by which estrogens regulate the energy condition of people

are not recognized. Estrogens have several mechanisms of action, which

mainly include the modification of specific receptors that belong to the

steroid receptor superfamily. The alpha estrogen receptors (ERa) and

the beta receptors (ERb) have a fundamental role in the metabolic control of

the individual, with a very characteristic corporal distribution that exerts an

influence on the metabolism of lipids and glucose. Despite the significant

amount of knowledge in this field, many of the regulatory mechanisms exerted

by estrogens and ER continue to be clarified. This review will discuss the role of

estrogens and their receptors on the central regulation of caloric expenditure

and the influence they exert on the differentiation and function of adipocytes.

Furthermore, chemical substances with a hormonal activity that cause

endocrine disruption with affectation on estrogen receptors will be

considered. Finally, the different medical therapies for the vasomotor

manifestations of menopause and their role in reducing obesity, diabetes,

and cardiovascular risk will be analyzed.
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Introduction

During menopause, women experience an increase in fat

mass due to multiple factors, mainly estrogen deficiency.

Reduction in estrogen is associated with an increase in fat

mass, especially in the visceral region, compared to the typical

distribution of fat in women in a fertile state. However, the

increase in weight observed after estrogen deficiency during

menopause can be attributed in part to greater food

consumption. This single factor does not entirely explain the

increase in the accumulation of intra-abdominal fat because the

deficit of estrogens can also act on the stimulation of physical

activity and on the amount of accumulated lean mass (1). The

distribution of fat in fertile women is the characteristic gynoid

and fat is localized in the hips, thighs, and buttocks.

Similarly, estrogens can control both energy expenditure

through modulation of the activity of the hunger and satiety

centers, as well as thermogenesis at the level of the central

nervous system. In fact, the reduction of estrogen receptor alpha

(ERa) can increase body weight due to a reduction in energy

expenditure and mild hyperphagia (2).

Despite a large amount of information published, the results

of studies are not conclusive due to the complex mechanism of

estrogen activity. One of the aspects that have aroused the most

interest is the influence of environmental chemicals, some with

recognized estrogenic effects, on the metabolism of adipose cells

(3). Many of these products have a direct effect on nuclear

receptors, including estrogen receptors, leading to a propensity

for obesity. This creates a dilemma about the role of estrogens in

metabolic regulation. While during menopause, estrogen

deficiency can be a cause of obesity, some environmental

chemicals with estrogenic effects have been blamed as triggers

of obesity. In this review, we will evaluate the estrogen activity in

the accumulation of energy, emphasizing its influence on the

function of adipose cells.
Mechanism of action of estrogens

Estrogens are hormones derived from cholesterol produced

mainly in the granulosa cells of the ovaries. This hormone has a

fundamental role in the development of female sexual organs

and in the maturation of germ cells, whose purpose is to prepare

for fertilization (4). Estrogens, like testosterone in men, have the

peculiarity of redistributing the accumulation of fat mass within

the body in certain places (5). In women of childbearing age, the

accumulation of fat mass is mainly subcutaneous in the buttocks,

legs, and hips (6). In men, the distribution is largely in the

abdominal region, the visceral area, and the back. The main

activity of estrogens is mediated by receptors belonging to the

superfamily of nuclear receptors that act as transcription factors

and mediate the gene expression effects of estrogens (7, 8).
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In these circumstances, once estrogens cross the plasma

membrane, given their steroid structure, they bind to their

receptors in the cytoplasm and then translocated to the

nucleus, where bind to DNA and regulate gene expression.

Estrogen receptors have two main isoforms, called ERa and

ERb, with a wide distribution throughout the organism (9).

These receptors can form dimers and bind specific areas of the

promoter region of many genes in the so-called estrogen

receptor response elements. Gene expression regulation by

estrogens can also be indirect and not necessarily mediated by

their receptors. This function was initially postulated because

almost one-third of the genes regulated by estrogens do not have

specific estrogen response element sites (2, 10). Molecular and

biochemical studies have shown that this action of estrogens and

their receptors can be mediated by other transcription factors

that are activated through protein-protein interactions (11).

Many of the activities of estrogens do not correspond to

genomic activation, and some of the actions of estrogens have a

faster effect than expected after genomic activation. Following

the discovery of the G protein-coupled estrogen receptor

(GPER1) (12) in the first decade of this century, it was

observed that the influence of estrogens on the cardiovascular

system and metabolism can be partly mediated by GPER1 (13).

The binding of estrogens with GPER1 leads to signaling through

adenyl cyclase-cAMP-protein kinase A and other second

messenger cascades. The mRNA and protein expression of

GPER1 has been observed in the blood vessels and the heart

of several species (14). In other cells, such as adipocytes, liver

cells, and muscle cells, the expression of the GPER1 protein is

variable (Figure 1). Somehow, there is still controversy about the

true role of GPER1 in the mediation of estrogen activity in vivo

(16). Ligands-independent actions are ER-mediated effects seen

after activating other pathways, such as IGF-1 receptor. This

ligand-independent activation has been observed in the uterus,

mediated by transcription factors that translocate ERa into

chromatin (15, 17).
Estrogens and estrogen receptors in
adipose cells

Estrogens can also be produced in adipose tissue from

androgenic precursors. Within adipocytes, estrogens are

synthesized from androgens by aromatases, and their

production increases according to the volume of adipose tissue

(18). Estrone is the main estrogen produced in adipose tissue,

derived from the aromatization of androstenedione, and acts as

the main estrogen during menopause (19). The 17b-
hydroxysteroid-dehydrogenase enzyme can convert estrone to

estradiol in various tissues including primarily adipose tissue.

The main estrogen receptor present in adipose tissue is ERa (20,

21). In humans, both ERa and ERb exist in subcutaneous (SAT)
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and visceral (VAT) adipose tissue (22). However, in

postmenopausal women, ERb shows increased expression

compared to premenopausal women in VAT (23). ERa
expression has several functions in metabolism, especially

affecting body fat accumulation glucose homeostasis, and

energy expenditure (24).

Although the main estrogen receptor in adipose cells is ERa.
ERbKO mice increase fat accumulation at inguinal levels,

supporting the fact that these receptors also play a role in the

control of fat distribution. Additionally, it has been observed that

ERb has an antilipogenic effect on adipose cells. ERb deficiency

increases the accumulation of white adipose cells at the

subcutaneous level and increases the transcriptional signal of

PPARg. These observations show a negative effect of ERb on

PPARg activity (25). In postmenopausal women, ERb levels are

increased in subcutaneous adipose tissue, while there is no

variation in ERa. The discrepancy in the expression of these

receptors, in part, could determine an unstable ERa/ERb
relationship. It is possible that differences in the expression of

ERs in adipose cells may explain the characteristics of the change

in adipose distribution among pre-postmenopausal women.

Estrogens regulates lipid homeostasis through the regulation

of transcription factors belonging to the SREBP (sterol

regulatory element-binding protein). This family is made up of

three isoforms that are involved in specific processes: SREBP1c,
Frontiers in Endocrinology 03
which is involved in fatty acid synthesis, in adipose tissue

homeostasis, and in insulin-induced glucose metabolism,

mainly in the liver (26) (Figure 2). As in white adipocytes, in

brown adipocytes, the ERa is predominant (27). However, the

significance of ERb expression has peculiar characteristics, given

that the administration of a specific ERb agonist induces SAT

browning by increasing UCP1 expression. Selective agonists of

ERb, have shown anti-obesogenic effects, antidiabetic actions,

precluded hepatic lipid accumulation, and reduced lipogenic

gene expression levels (28).

The biology of adipose tissue has several physiological

aspects regulated differentially between women and men. Some

of these differences may be triggers for the greater predisposition

to metabolic diseases in men. Studies in animals have observed

that a high-fat diet increased the deposition of gonadal

adipocytes, with hypertrophy in males and hyperplasia and

hypertrophy in female mice (29). Notably, estrogen

administration after ovariectomy protects females from

hypertrophic changes and reduces inflammation and oxidative

stress (30). Other observations have shown in mice that gonadal

white adipose tissue in females is more metabolically active than

in males, observing an improvement in lipolysis and the

recruitment of brown adipocytes (31). There is growing

evidence of the differential role of mitochondria in cellular

pathologies between the sexes (32). Some observations have
A B

FIGURE 1

Traditional estrogen signaling mechanisms. (A) Genomic signaling: Estrogens cross the plasma membrane where they bind to estrogen
receptors (ERs) in the cytoplasm. The estrogen–ER complex moves into the nucleus, where it forms homodimer and/or heterodimer
complexes. These complexes bind to specific estrogen-sensitive elements (EREs) in DNA or recruit transcription factors. Nongenomic signaling:
Estrogens can perform a non-genomic effect by binding to their own receptors located on the plasma membrane. Additionally, some ERa is in
the plasma membrane that induce the signaling cascade. (B) A more direct characterization of the effects of estrogen signaling observed in (A) I.
The genomic activity of estrogens includes the binding of ERs to EREs in the regulation area of genes. II. Mechanism that involves an indirect
activity of estrogens include an indirect activity on gene regulation by binding to other transcription factors, such as the AP-1 DNA sequence
that binds to dimers of FOS/JUN. Therefore, ERa is “bound” to DNA by the binding of FOS/JUN to its DNA motif AP-1. III. Non-genomic
information is established by extracellular signaling that stimulates second messengers in the cytoplasm, there is not direct interreference on
gene activity. Responses are mediated by specific G-protein coupled receptors or estrogen receptors on the membrane. IV. ER can be subject
to ligand-independent activation by growth factor-mediated signaling that triggers the activation of intracellular signaling via the cell membrane
receptor (GFR), which activates signaling pathways such as MAPK. The signal is mediated by estrogen receptors, which modulate the activity of
specific genes. Modified (15).
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shown that the genes that regulate the mitochondrial activity,

such as uncoupling protein 1 (UCP1), are subject to variation in

the activity of estrogens. It is likely that mitochondrial function

in adipose tissue is an important factor underlying sex

differences (Figure 2). (33). A study conducted on humans

observed that the energy expenditure of adipose tissue at rest

was significantly higher in women than in men (34). They

studied the gene expression of subcutaneous adipose tissue

and observed a higher expression of genes with mitochondrial

activity including UCP1.

Thus, the ability of white adipocytes to be more flexible

phenotypically and to turn into more energetically active

adipocytes, such as beige adipocytes, is greater in premenopausal

women than in postmenopausal women and men (35). In addition,

variation in sex hormone homeostasis can influence energy balance

and glucose metabolism. These observations reinforce the

importance of a gender-specific approach in personalized

medicine. (36). This approach must consider the possibilities of

regulating the action of gonadal hormones at the adipose tissue

level. In this setting, it was observed that the specific activation of

ERa in adipose cells can stimulate mitochondrial activity,

upregulating proteins such as UCP1 and dynamin-related protein

1 (Drp1). The expression of the esr1 gene encoding ERa, is
Frontiers in Endocrinology 04
negatively associated with fat mass, and its expression is higher in

women. The expression of ESR1 can be modulated by

environmental factors, including temperature, exercise, and

caloric consumption (6, 35).

Although white adipocytes are the body’s most significant

energy store, the presence of more metabolically active

adipocytes, such as brown adipocytes or beige adipocytes, has

aroused particular interest due to their influence on energy

expenditure and prevention of metabolic diseases (37).

Evidence of these metabolically active adipocytes is highlighted

in colder temperatures. During exposure to cold, the

mitochondria induce a change in the fatty acid metabolism

substrate that, together with the increase in UCP1, generates

more heat. The activation of white adipocyte browning

significantly improves carbohydrate metabolism by weakening

insulin resistance (38). Interestingly, women, who have more

beige adipocytes before menopause, have a significant reduction

in these adipocytes after menopause. Additionally, treatment

with estradiol can increase the browning of white adipocytes in

postmenopausal women (39, 40). Excess androgen inhibits

brown adipogenesis in women, attenuates thermogenesis

activation, and reduces mitochondrial respiration. These data

provide a plausible mechanism that may contribute to reduced
A

B

FIGURE 2

Estrogen in the fat cell. (A) In white adipocytes, the activation of the ERa receptor by estrogen downregulates lipoprotein lipase and increases
the activity of the b-adrenergic receptor. It also increases the activity of Polg1 and increases mitochondrial activity. These effects can upsurge
the transdifferentiation of white adipocytes into beige adipocytes, which are more energetically active. (B) In brown adipocyte cells, ERa can
increase the expression of UCP1 by increasing the PGC1a coactivator through AMPK and by a direct effect on the receptor coactivator. UCP1,
uncoupling protein 1; PGC1a, peroxisome proliferator-activated receptor gamma coactivator 1 alpha; ERa, estrogen receptor alpha; AMPK,
AMP-activated protein kinase. LPL, lipoprotein lipase; b-AR, beta-adrenergic receptor; Polg1, mitochondrial DNA polymerase gamma; SREBP1c,
sterol regulatory element-binding transcription factor 1c.
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postprandial thermogenesis and the tendency to obesity in

women with PCOS.

The fact that generates challenges in the studies of ERs

signaling on obesity in humans is the fact that ER expression is

not static. The equilibrium and levels of ERs (ERa isoforms and

ERb) can be transformed with aging, disease, and prolonged

estrogen deficiency, all of which can alter the response to

estrogen (41, 42). For example, ERs have been reported to be

lower in postmortem coronary arteries from postmenopausal

women compared with premenopausal women and lower in

atherosclerotic coronary arteries compared with normal

coronary arteries regardless of the menopausal state.

Brown adipocytes (BAT) are metabolically more active than

white adipose tissue, and in adults is localized in the cervical,

supraclavicular, axillary, mediastinal, and paraspinal (43, 44).

BAT can be stimulated in adults and could have a relevant role in

the treatment of obesity (45, 46). Experimental studies have

shown that estrogens can intensify the thermogenic activity of

BAT by increasing the expression of UCP1 mRNA (47).

ERa is expressed in BAT and is located mainly in

mitochondria, suggesting that the mitochondria of BAT could

be the target of estrogens and suggesting a role for ERa in

mitochondriogenesis (48). The downregulation of ERs in

adipose cells induces an increase in lipid accumulation and

thus a gain in body weight. The deletion of Esr1 in adipose

cells reduces cellular respiration and the rate of fatty acid

oxidation, along with an increase in the size of adipocytes, in

both males and females (49). Experiments in mice with Esr1

deletion in white adipose cells and brown adipose cells

demonstrated the importance of Esr1 in mitochondrial

metabolism. Several genes regulating mitochondrial function

were downregulated, including Polg1, whose protein product is

involved in mitochondrial biogenesis. These authors showed

that ERa controls the expression of Polg1 and that a reduction in

ERa leads to impaired mitochondrial remodeling. Reduced ERa
induces metabolic damage in rodents and humans, such as

promoting obesity. In fact, the authors point out that the

action of ERa in adipose tissue could be a therapeutic target

for obesity and other metabolic disorders (49, 50).
Control of estrogens in the
regulating centers of appetite
and satiety

Evolutionarily, more than 300 million years ago, ERs already

had an ancestral homolog that probably acted as a sensor of

substances that had estrogen-like effects (51). These receptors

could capture signals from substances with this estrogenic

character from the environment or could even capture

information from phytoestrogen substances (52, 53). Initial

molecular physiology studies in mice showed that microinjection
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of estradiol into various brain areas could change the feeding

behavior of animals, improving body composition (54).

In the central nervous system, the primary estrogen receptor is

ERa, the functional relevance of this receptor in energy control

has been demonstrated in studies in which ERamutation induces

obesity (55, 56). Interestingly, the elimination of ERa in the brain

also affects the regulation of negative feedback by estrogens, which

results in a higher level of 17b-estradiol in the blood (55).

However, elevated 17b-estradiol in the circulation fails to

prevent obesity, suggesting that in the brain, ERa plays a

predominant role in the regulation of energy balance (57).

The hypothalamus is the nervous system region that controls

food consumption, energy expenditure, and body weight

homeostasis. The signaling mechanism of estrogen receptors

in hypothalamic neurons has not been fully elucidated. It is

thought that in addition to the activity of ERa on gene

expression, part of its action is mediated by membrane

receptors (58). Estrogen activity includes effects on different

hypothalamic nuclei with divergent functions. Both the

ventromedial nucleus (VMN), the arcuate nucleus (ARC), the

preoptic area, and the solitary nucleus of the hypothalamus may

have a preponderant role in the control of energy balance. For

example, in the VMN, a reduction in the activity of ERa
exclusively in this hypothalamic nucleus decreases the

beneficial effect on the energy balance induced by the increase

in estradiol (57, 59).

The ARC participates in controlling feeding. In this nucleus,

estrogens produce a rapid increase in pro-opiomelanocortin

(POMC) neurons, which can modulate food consumption,

energy expenditure, and reproduction. POMC neurons also can

secrete melanocortin-stimulating hormone (MSH), which acts in

the paraventricular and lateral nucleus of the hypothalamus by

binding to the melanocortin 3 (MC3) and melanocortin 4

receptors (MC4) (60). Under this consideration, estrogens can

suppress the activity of neuropeptide Y through a form of ERa
located in the membrane. Experiments in mice have shown that

estrogens from the diet are regulated in accordance with the

energetic state and ERa in the membrane such as those estrogens

that have transcriptional effects controlling food consumption

(58). The anorectic effect mediated by estrogens in the ARC

includes the activation of the mammalian target of rapamycin

and 5′AMP-activated protein kinase (AMPK) signaling. These

pathways act as cellular sensors of nutritional status and cellular

metabolism (61).

Other cerebral nuclei that can control feeding, which is in

the brainstem, are the nucleus of the solitary tract and the

nucleus of the dorsal raphe. These two nuclei have elevated levels

of ERa, and increased neuronal activities of the nucleus of the

solitary tract are associated with estradiol-induced anorexia in

female mice (55). Microinjection of estradiol improves the effect

of anorectic hormones such as cholecystokinin (62, 63). Despite

a large amount of information available, the roles of other areas

in feeding have yet to be elucidated in depth. Areas that are
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associated with food reward behaviors, such as the nucleus

accumbens and the lateral hypothalamus, have been found to

express ERa. In fact, estrogens influence the metabolism of some

monoamines, especially dopamine, in the nucleus accumbens

(64). It has been shown that estrogen increases dopamine

synthesis and decreases its degradation and reuptake,

increasing ERs levels. The effect of estrogen on the

dopaminergic system is mainly observed in the prefrontal

cortex, a region with high amounts of estrogen compared to

other cortical areas (65). Furthermore, through its effects on the

prefrontal area and limbic regions (such as the nucleus

accumbes), estrogen influences emotional and motivational

behaviors (66).

The menopausal transition is a period that has great relevance

in the circumstances of cardiovascular risk in women. During this

period the progressive reduction of the production of E2 by the

ovaries. On average, women gain 2 to 3kgs over the course of the

menopausal transition, with high inter-individual variability.

Although many of the anthropometric variations observed

around perimenopause can be attributed to estrogen deficiency.

The progressive increase in FSH can have a negative impact on

body composition in women (67). The Study of Women’s Health

Across the Nation (SWAN) provided very compelling evidence

that an accelerated gain in fat mass and loss of fat-free (lean) mass

were related to the menopause transition rather than aging (68).

Some intervention studies have observed that estrogen reduction

can increase the accumulation of abdominal fat with a reduction

in energy expenditure (69, 70). However, there is much disparity

in the results of the studies and it is possible that this is due to the

different influences of racial factors, lifestyle, cultural background,

and other epigenetic factors that may intervene in the course of

the menopausal transition period (71).
Estrogens and energy regulation

Several experiments in mice have shown that ERa positively

affects energy activity by promoting energy expenditure and

reducing intake (72). In addition to the POMC neurons of the

arcuate nucleus, estrogens can influence VMN neurons, where

there is a high concentration of ERa (73). In fact, studies

conducted with electrical, pharmacological, and hormonal

stimuli have demonstrated the relevance of the VMN in

thermogenic activation (74).

The action of estrogens in the increase of thermogenic

activity is mediated by neurons that express steroidogenic

factor 1 (SF1), which induces a neuronal activation of the

sympathetic system, generating an increase in UCP1,

peroxisome proliferator-activated receptor gamma (PPARg),
PPARg coactivator 1a (PGC1a) and the activation of b3-
adrenergic receptors in adipose cells (75, 76). The

simultaneous elimination of ERa in SF1 and POMC neurons

generates a reduction in metabolism, hyperphagia, and severe
Frontiers in Endocrinology 06
obesity (55) (Figure 3). However, some of the effects of estrogens

on the regulation of thermogenesis may be mediated by ERb
receptors. Selective ERb agonists in female mice fed a high-fat

diet upregulate the expression of UCP1 and reduce obesity.

Likely, some of the effects of estradiol on brown adipose tissue

(BAT) thermoregulation are mediated by ERb (77).

Previous studies have shown that the influence of estrogens

on metabolic control may be subject to the regulation of energy

expenditure exerted by the neuronal nuclei of the hypothalamus.

For example, inhibiting neurons of the VNM nucleus can

establish an alteration in caloric expenditure without affecting

physical activity (55).

The signaling pathway that has been described in the

regulation of energy balance in the VMN nucleus is AMP-

dependent kinase (AMPK). This molecule acts as an energetic

sensor and develops its activity as a mediator of the action of

estradiol. The microinjection of estradiol in the hypothalamus

triggers an increase in sympathetic tone and body temperature

with more significant activity of brown adipocytes. All these

events can be inhibited with a block in the activity of AMPK, and

more relevant, the activity of AMPK in the ARC nucleus is not

necessary for the reduction in weight (56).

Current data have also described a new subset of ERa-
positive neurons in the ventrolateral region of the hypothalamus

that promotes female locomotor activity. These neurons express

Tachinia (Tac), which is closely related to physical activity in

women. The deterioration of the development of these neurons

causes inactivity and obesity without changes in the

thermogenesis of BAT (78, 79). In general, this evidence

suggests that estradiol probably induces specific effects on

energy homeostasis according to neuronal populations of the

VMN. In the neurons of the VMN, the silencing of the neurons

that express the gene that codes for repression (Rprm) in females

increases the body temperature without a significant variation in

physical activity (57). The RPRM protein exerts a cell cycle

monitor function and has evident hormone-dependent

expression in tissues such as the pituitary (80).

The functional dissection of sex differences in the neural

circuits that control food intake and energy expenditure is

essential to understanding the biological basis of sex

differences in body weight control. Additionally, it can

establish the circumstances that are related to energy control

when there is a hormonal change as marked as in menopause.

Menopause is associated with significant increases in visceral

abdominal fat and body weight, without an increase in caloric

intake. The decrease in total energy expenditure can contribute

to these changes in fat accumulation in women entering

menopause. Therefore, factors that contribute to decreased

energy expenditure, such as variations in thermogenesis, could

be primary risk factors for postmenopausal obesity. The

molecular mechanism by which ERa signaling in the neurons

of the VMN that are Tac1+ and Rprm+ drives changes in

physical activity or thermogenesis will be of interest for the
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potential treatment of postmenopausal obesity. In adulthood, it

is possible that estrogen signaling activates the Tac1+ and Rprm+

neuron groups in women to increase their energy expenditure.

During menopause, the energy expenditure that accompanies

the abrupt decrease in circulating sex hormones can affect the

neurons that code for these proteins and thereby reduce energy

expenditure (81, 82).

Enzymatic control of metabolic pathways that control energy

production through glucose are regulated by estrogens. Enzymes

like hexokinase, phosphoglucoisomerase, phosphofructokinase,

aldolase, glyceraldehyde 3-phosphate dehydrogenase,

phosphoglycerate kinase 6-phosphofruct 2-kinase, fructose 2,6-

bisphosphatase, and the glucose transporters Glut3 and Glut4,

increase after estrogen therapy (83, 84). Additionally, estrogens

regulate the activity of Krebs/tricarboxylic acid cycle enzymes,

such as citrate synthase, mitochondrial aconitase 2, isocitrate

dehydrogenase, and succinate dehydrogenase (85) (Figure 4).
Estrogen and adipokine secretion

In women of childbearing age, one of the best-characterized

adipokines, leptin, is closely related to serum estrogen levels.

Leptin is an adipokine with a known pro-inflammatory effect,

which affects appetite, satiety, and energy expenditure. (86).

Estrogens increase the sensitivity to leptin of energy controllers
Frontiers in Endocrinology 07
in the hypothalamus, and an increase in estrogens exerts a positive

effect on the expression of leptin receptors in the ARC (87).

Leptin plays a major role in the central control of energy

storage and negative feedback controls weight loss. Leptin levels

are closely related to the amount of adipose tissue. When there is

a significant loss of weight, leptin levels are reduced with a

decrease in its levels in the hypothalamus, increasing the search

for food. The intake increases the amount of stored energy,

leading to a rise in free acids in adipose tissue, restoring leptin

levels and reducing appetite (88). Although leptin is elevated in

humans with obesity, these elevated levels do not influence

reducing obesity. In part because obesity triggers a state of

leptin resistance. In which inhibitory signals act on leptin

receptor activity, increased stress on the endoplasmic

reticulum, increased gliosis, and other inflammatory stimuli

that induce leptin resistance. (89, 90).

Another adipokine that has an important systemic effect is

adiponectin, which is the most abundantly expressed adipokine

with an anti-inflammatory function, found in human serum in

the mg/ml range (89, 91). Unlike all other adipokines, it is

produced predominantly in the adipose tissue of the bone

marrow (92). Adiponectin forms aggregates that circulate in

the different forms of molecular weight. The high molecular

weight form has the highest effect on improving insulin

sensitivity (93). Adiponectin has two main receptors AdipoR1

and AdipoR2, which are expressed in vascular endothelial cells,
FIGURE 3

Effects of estrogens on hypothalamic and obesity control. ERa in the brain regulates body weight in both men and women. ERa in female SF1
neurons regulates energy expenditure and fat distribution. ERa in female POMC neurons regulates food intake. The effect of estrogens
ultimately influences caloric expenditure, body composition, and food intake. POMC, pro-opiomelanocortin; SF1, steroidogenic factor 1.
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adipocytes, monocytes, macrophages, and myocytes (94, 95).

Adiponectin plays a protective role against cardiovascular

diseases by inhibiting the formation of foam cells, the

expression of adhesion molecules, and the interactions

between endothelial cells and monocytes (91, 96). It also

inhibits the synthesis of proinflammatory cytokines such as IL-

6, IL-18, and TNF-a. Adiponectin induces adipogenesis through

an expansion of adipose tissue with the formation of a fat pad

that reduces inflammation, maintaining glucose homeostasis

with a reduction in insulin resistance (97).

PPARg agonists increase adiponectin synthesis (98).

Adiponectin levels can be increased by factors such as

glucocorticoid therapy, fasting, or conditions that increase the

extension of adipose tissue in the bone marrow. In contrast, a

reduction in adiponectin levels is observed after oxidative stress,

smoking, and obesity itself (99, 100). Serum levels of adiponectin

are higher in women than in men, in fact, plasma levels of

adiponectin correlate with estrogen concentration. (101).

Oophorectomy of adult mice reduces adiponectin, which is

reversed with estrogen replacement (102, 103). Studies

performed in MDA-MB-231 cells with ectopic ERa/ERb
expression manifest that the adiponectin-sensitizing action of

E2 is executed through its classical nuclear receptors (104).

Resistin is an adipokine from white adipose tissue that plays

an essential role in the appearance of complications of obesity.

Elevated plasma Resistin levels increase inflammatory processes

that activate insulin resistance and predict the forthcoming

development of type 2 diabetes mellitus (105, 106). In vitro

studies have shown increased proinflammatory cytokines such

as TNF-a and IL-1. In addition, the functional modification of

metabolic controller AMPK may be involved in resistin-
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mediated insulin resistance (107). Visfatin is an adipokine

secreted by endothelial cells, macrophages, and adipocytes.

Recently, an association between increased visfatin levels and

increased risk of cardiovascular events has been observed in

patients with diabetes mellitus type 2. (108, 109).

In contrast to white adipose tissue, BAT secretes substances

called batokynes with multiple effects in different organs.

Compared to white adipose tissue, BAT increases heat

production because optimal oxygen consumption rapidly

metabolizes fatty acids, favoring optimal oxygen consumption

(110, 111). Many environmental or molecular stimuli induce

BAT differentiation. The embryological development of BAT

precedes white adipocytes due to its relevant role in thermogenic

regulation in the newborn. BAT develops from a subpopulation

of the dermomyotome that expresses molecular markers such as

paired Box 7 (Pax7), engrailed-1 (En1), and myogenic factor 5

(Myf5) (112, 113). BAT can secrete cytokines that influence

different tissues such as Follistatin a glycoprotein that reduce the

activities of members of the transforming growth factor family

and prevent diet-induced obesity (114).

BAT secretes other proteins such as the C-terminal fragment

of the cleft guide ligand 2 (SLIT-C). SLIT-C belongs to the family

of secreted cleft proteins that play important roles in the

chemotaxis of inflammatory cells, induce metabolic processes,

and increase white adipocyte browning (115). Myostatin (GDF8)

and growth differentiation factor 15 (GDF15) proteins members

of the transforming growth factor family are involved in

controlling neuronal circuits related to hunger. GDF15

develops insulin resistance and obesity by increasing the

expression of the thermogenic genes (116). Another factor that

regulates the physiology of adipocytes is Fibroblast growth factor
FIGURE 4

Estradiol availability affects the regulation of enzymes involved in glycolysis in the cytoplasm and in the tricarboxylic acid cycle (TCA) in
mitochondria. Estrogens increase the activity of some glycolysis enzymes listed in the figure (hexokinase, phosphofructokinase, enolase,
pyruvate kinase). E2 improves the glycolytic–pyruvate–acetyl-CoA pathway to generate the electrons necessary for oxidative phosphorylation
and thus the generation of ATP to maintain the use of glucose as a primary source of fuel.
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21 (FGF21). Which is secreted by BAT and protects against

hyperglycemia and hyperlipidemia in mice (117). FGF21 analogs

reduce dyslipidemia and hepatic steatosis in obese patients with

type 2 diabetes mellitus, although they do not improve glucose or

body weight control (118). While FGF21 seems to have anti-

inflammatory effects on white adipocytes, it remains to clarify

whether FGF21 has a similar action on BAT (118) (Figure 5).
Estrogen-like compounds and
endocrine disruption

Some substances found in plants or synthetic chemicals can

affect different aspects of estrogen activation. Because of their

multifaceted actions, they were grouped into critical

characteristics beneficial to discerning their mechanisms of

action (119). The undesirable symptoms observed in menopause

can be reversed with chemical compounds with mild estrogenic

effects. This is the case for tibolone, a synthetic substance with

mild activity on estrogen, androgen, and progesterone receptors

(120). Tibolone can improve vasomotor symptoms during
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menopause and can affect cardiovascular irrigation and body

weight in postmenopausal women (121, 122). The treatment for

one year with tibolone decreased fat mass, but tibolone combined

with 17b-estradiol and norethindrone for two years did not

significantly decrease fat mass (123). The treatment with

hormone replacement therapy and tibolone improves the waist/

hip ratio in menopausal women without observing a reduction in

body weight. (123). Tibolone has shown some beneficial effects on

cardiovascular risk in postmenopausal women (124).

Genistein is an isoflavone that has a structure like that of

17b-estradiol and can bind to ERa and ERb to mimic the actions

of estrogens in target organs. Due to its effect on ERs, genistein is

frequently used by postmenopausal women to reduce vasomotor

symptoms. Genistein administrated in higher doses increase the

oxidation of fatty acids and reduce the accumulation of fat in the

liver (125). In this way, genistein reverses the accumulation of

trunk fat in postmenopausal women and ovariectomized

rodent models.

The endocrine system preserves homeostasis of the body and

influences almost all cells and organs of the body by controlling

metabolism, growth, and energy. Because detection techniques
FIGURE 5

Proteins secreted by white adipocytes (adipokines) and brown adipocytes (“batokines”). The recognition of adipose cells as an endocrine organ
is relatively recent. Many of the cardiovascular complications observed in obesity are a consequence of the altered secretion of these proteins in
hypertrophied white adipose cells. Brown adipocytes secrete proteins that regulate some of the most important tissues involved in the control
of body weight, lipid and carbohydrate metabolism. BMP8b, bone morphogenetic protein 8b; IGF-1, insulin-like growth factor 1; IGFBP2,
insulin-like growth factor binding protein 2; IL6, interleukin 6; NRG-4, neuregulin 4; SLIT2-C, cleft 2 homologous protein; NRG4, neuregulin 4;
ANGPLT2, angiopoietin-like peptide 2; IL1, interleukin 1; FGF21, fibroblast growth factor 21; TNFa, tumor necrosis factor alpha; 12-HEPE, 12-
hydroxyeicosapentaenoic acid; AII, angiotensin II.
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have improved considerably, it has been discovered that the

endocrine system is susceptible to small changes in hormone

concentrations. As a result, concern has grown about

environmental pollutants that can mimic hormonal activity in

recent years. Endocrine-disrupting chemicals (EDCs) are

defined as chemicals that affect any aspect of hormonal action

(126) There are approximately 85,000 chemical products

available on the market, and of these, it has been shown that

approximately 1000 have endocrine-disrupting properties (127,

128) (Figure 6).

Multiple chemical substances affect the activity of estrogen

receptors, and their mechanisms of action are diverse. One

substance that has an important role in endocrine disruption

is bisphenol A (BPA). This chemical is useful for the

manufacture of plastics for everyday use. Part of its phenolic

structure resembles the A ring of estradiol, which allows it to

activate ERs (129). Several experimental studies in animals and

some in humans have shed new light on molecular mechanism

of action of BPA (130). BPA binds ERa and ERb, as well as

GPER and membrane ER (131), the concentrations of ERa and

ERb can be modified by variations in the methylation of their

promoters induced by BPA (132). The nongenomic effects of

BPA in breast cancer cells have been associated with the

activation of GPER1 (133).

Additionally, BPA has an epigenetic effect mediated by the

enrichment of the trimethylation of histone three lysine 4

(H3K4) and the specific H3K4 methyltransferases, whose effect
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is the activation of the genes. BPA can induce the activity of the

estrogen response element-binding region in the HOX antisense

RNA promoter (HOTAIR). HOTAIR is a long noncoding RNA

(lncRNA) that influences the appearance of tumors such as

breast and prostate cancer (134, 135). BPA can alter the

methylation patterns of specific genes and change their

expression. Initial studies with agouti mice showed a change in

the coat and weight of the mice after exposure to BPA, which

was prevented by folic acid supplementation (136). BPA affects

the activity of DNA methyltransferases by altering the

expression of these proteins in the hypothalamus (137).

A family of organic compounds manufactured for use in

different types of industrial applications is polychlorinated

biphenyls (PCBs). PCBs are a family of chemical compounds

with variations in the position of a chlorine group that gives

them functional specificity. Although its use was prohibited for

several years, it is general for industrial and commercial

applications in some places. They are frequently found in

electrical equipment, plastic, plasticizers in paint, and rubber

products, as well as in dyes, pigments, and especially carbonless

paper (138). One of the properties of PCBs, which have

popularized their use, are their lipophilic properties and their

resistance to decomposition. The persistence of PCBs in the

environment passes through the soil and water and eventually

accumulates in plants and crops. The adverse effects caused by

PCBs include an increase in cell proliferation, affecting cell

immunity, the nervous system, and an alteration in the
FIGURE 6

Components with estrogenic effects. Estrogens, some endocrine disruptors, and other natural products that have an estrogenic effect.
Bisphenol A is an organic compound that is used to manufacture polycarbonate polymers and epoxy resins. a-Zearalanol is a natural compound
observed in fungi that is a growth promoter used in veterinary medicine. Daidzein is a natural isoflavone compound found in products such as
soy. Genistein is an isoflavone found in several plants, including soy. DDT, dichlorodiphenyltrichloroethane. Resveratrol is a compound found in
grapes that has an estrogenic effect and may influence aging. Ethinylestradiol is a synthetic compound that is used as a contraceptive.
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function of endocrine glands (139). PCBs have demonstrated in

vitro proliferative effects in breast cancer cells (140). In the brain,

specifically at the paraventricular nucleus of the hypothalamus,

exposure to PCBs reduces the number of cells expressing ERa in

female rats (141).
Estrogen therapy and obesity

Estrogen deficiency is the primary pathophysiological

mechanism underlying the symptoms of menopause. Therapeutic

options for the symptoms of menopause include hormonal

preparations, nonhormonal drugs, and nonpharmacological

therapies. Hormone replacement therapy (HRT) with estrogens is

the most efficient therapy for vasomotor symptoms, sleep disorders,

and emotional changes in postmenopausal women. Both

experimental studies and clinical trials have shown the benefits of

HRT on menopause symptoms, especially during the so-called

“therapeutic window”. Around 10 years of menopause and under

60years of age, formulation of estrogen + progesterone has been

shown effective. However, therapy with estrogens or the

combination of estrogens and progesterone has also shown

deleterious effects including the proliferation of endometrial cells,

breast cancer, and vaginal bleeding (142). Among the therapeutic

alternatives is tibolone, which has androgenic, progestogenic, and

estrogenic effects. The estrogenic effects of tibolone are expressed

mostly in the brain, vagina, and bone tissue, while they seem to be

less important in the endometrium. In this regard, the risk of

hormone-dependent cancers is lower than with some other HT

protocols, as has been reported in recent years (143).

The position of the North American Menopause Society on

HRT provides simple recommendations for the management of

menopause. It suggests that HRT can help reduce abdominal fat

accumulation and weight gain associated with transitioning to

menopause (144).

HRT raises lean mass content and decreases abdominal fat

content (145–147). The mechanism of this process is not fully

understood. Studies in ovariectomized female mice treated with

estrogens show increased lipid oxidation and more significant

energy expenditure without affecting energy consumption.

These results are consistent with observations of higher energy

expenditure after the activation of ERa in VMN neurons in the

hypothalamus (55, 148). Estrogens influence glucose

homeostasis through increased glucose transport in cells. In

contrast, a deficiency of estrogens has been associated with a

progressive deterioration of insulin secretion after stimulation

with glucose and increased insulin resistance. HRT furthermore

contributes to the significant reduction in the diagnosis of type 2

diabetes mellitus in menopausal women. (149, 150). Despite

these observations, the studies’ designs and contexts that show

estrogens’ influence on glycemic control and insulin resistance

are highly variable. The effect is better observed in women who

have begun menopause more recently (151).
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The progesterone supplement aims to protect the uterus

against the consequences of systemic estrogen therapy, such as

endometrial pathologies. The risk/benefit ratios of all treatment

options should be considered, considering the nature and

severity of the symptoms and the individual risks related to

the treatment. (152). Estrogen/progestogen-based hormone

replacement therapy in menopausal women decreases visceral

adipose tissue and lowers fasting serum glucose. Additionally,

estrogen/progesterone therapy can have a positive impact by

reducing total cholesterol and relative low-density lipoprotein

levels (153, 154). Therefore, diminished cardiovascular risk

factors increase during menopause.

Using phytoestrogens as adjuvant therapy to reduce

cardiovascular risk in menopausal women has also yielded

contradictory results. In addition to individual clinical trials, a

couple of meta-analyses evaluated the influence of dietary

phytoestrogens on women’s body composition. In a study, a

group of 272 menopausal women was supplemented with soy

isoflavones. Isoflavone helped to reduce weight after 52 weeks of

therapy. The beneficial influence on body weight of isoflavone

was detected at low doses and during quiet periods of treatment,

as well as in patients who were not obese (BMI<30m/kg2) at the

start of therapy (155).

A recent meta-analysis showed a beneficial effect of

phytoestrogen therapy on body composition in 1,880

postmenopausal women. A reduction in waist/hip ratio was

observed in relation to a decrease in visceral fat. In contrast,

no significant changes were observed in body weight, BMI, total

fat mass, or percentage of body fat (156). Notwithstanding the

divergence of the results of both studies, it can be considered that

supplementation with phytoestrogens has a beneficial effect on

visceral fat accumulation. Therefore, phytoestrogens not only

have a favorable impact on the number and distribution of

adipose cells but also affect the metabolism and production of

adipokines. Phytoestrogens could effectively treat complications

related to visceral obesity, at least in selected subgroups of

patients (157).
Conclusion

The vast amount of information about the activity of

estrogens and their influence on different metabolic areas

has significantly developed in recent years. However,

hormone therapy for women during menopause is a great

challenge deciding the risks and benefits. There is consensus

about the benefits of hormone therapy in improving

symptoms of estrogen deficiency in women under 60 years

of age. HRT reduces the risk of coronary disease,

cerebrovascular accidents, obesity, and diabetes mellitus 2.

However, the decisions regarding the indication of hormone

therapy require the evaluation of each patient and their

potential risk, especially in the presence of breast cancer.
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New advances on the impact of ERs on the hypothalamic

regulation of the control of energy expenditure and the role of

ERs in the physiology of muscle and adipose cells have

demonstrated their importance in the physiology of body

composition. It will be necessary to standardize the research

methods to determine the effects of HRT. It is also essential

to highlight the role of new synthetic compounds with

estrogenic effects in improving body weight and mitigating

cardiovascular risk in postmenopausal women.
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