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ABSTRACT
DNA methylation is one of the potential epigenetic mechanisms associated with various adverse
cardiovascular effects; however, its association with cardiac autonomic dysfunction, in particular, is
unknown. In the current study, we aimed to identify epigenetic variants associated with alterations in
cardiac autonomic responses. Cardiac autonomic responses were measured with two novel markers:
acceleration capacity (AC) and deceleration capacity (DC). We examined DNA methylation levels at more
than 472,506 CpG probes through the Illumina Infinium HumanMethylation450 BeadChip assay. We
conducted separate linear mixed models to examine associations of DNA methylation levels at each CpG
with AC and DC. One CpG (cg26829071) located in the GPR133 gene was negatively associated with DC
values after multiple testing corrections through false discovery rate. Our study suggests the potential
functional importance of methylation in cardiac autonomic responses. Findings from the current study
need to be replicated in future studies in a larger population.
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Introduction

Despite the fact that numerous therapies have been developed in
cardiovascular medicine, cardiovascular disease (CVD) remains
one of the leading causes of morbidity and mortality world-
wide.1-3 Understanding the biological mechanisms and predic-
tors of CVD may have important implications in prevention
and treatment of this public health concern. The cardiac auto-
nomic nervous system consists of two major branches—the
sympathetic branch and the parasympathetic branch—and it is
essential in modulation of cardiac electrophysiology.4 Failure of
parasympathetic control, which is often measured by conven-
tional heart rate variability (HRV) parameters,5,6 has been a
strong predictor of cardiovascular mortality in both high-risk
and low-risk populations.7,8 Meanwhile, the associations of
reduced HRVwith various environmental and occupational pol-
lutants, such as particulate matter air pollution with aerody-
namic diameter <2.5 mm (PM2.5),9,10 ozone,11 and heavy
metals,12 have been consistently reported. However, the biologi-
cal mechanisms by which these pollutants trigger alterations in
cardiac autonomic responses remain unclear.

Previous genome-wide association studies (GWAS) have
identified several genetic variants associated with cardiac
autonomic responses.13,14 More recent studies suggested
that epigenetic regulation, such as DNA methylation, may

also play an important role in alterations in cardiac auto-
nomic responses. PM2.5 exposure has been associated with
both gene-specific methylation (e.g., iNOS gene),15,16 and
HRV changes in previous air pollution studies. To date, no
epigenome-wide association study (EWAS) has been con-
ducted to systematically examine DNA methylation and
cardiac autonomic responses. Understanding this relation-
ship may help elucidate the biological pathway of cardiac
autonomic responses, which may further have implications
for the management and development of therapies for car-
diovascular disease.

Welders have higher exposure to welding fumes than other
trades involved with welding. Welding fumes often contain a
variety of hazards, such as metals, gases, and chemicals, which
can cause various cardiovascular disorders.17-19 We previously
observed in several cross-sectional studies that welders had
decreased HRV parameters following a 6-hour work shift. Fur-
ther, exposure to metal-rich welding fumes across the work
shift was strongly associated with decreased HRV parame-
ters.17,19 In this study, we conducted an EWAS to identify epi-
genetic variants that were associated with exposure-induced
cardiac autonomic responses. Two novel markers—acceleration
capacity (AC) and deceleration capacity (DC)—were used as
indices of cardiac autonomic responses.
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Results

Characteristics of the study population are shown in Table 1.
The study population was comprised of 75 male welders. The
majority of them were Caucasian (93.3%) with an age average
of 41.6 years (range: 21.6–71.2). Close to 40% were current
smokers, and average BMI was 28.7 kg/m2. The baseline DC
and AC values were 7.64 [Standard deviation (SD) D 3.64] ms
and ¡6.42 (SD D 4.05) ms, respectively. Compared with base-
line, the estimated post-work natural killer (NK) cell, mono-
cyte, and granulocyte proportions were significantly higher,
whereas post-work CD4C T cell, CD4C T cell, and B cell pro-
portions were not significantly different (Table 2).

We examined the associations of methylation levels at
472,506 CpG probes in the whole-genome with AC and DC,
while adjusting for age, BMI, smoking status, work-shift, time
of sample collection, and cell type composition for whole blood.
For DC analyses, only one CpG (cg26829071), located in the
GPR133 gene on chromosome 12 (Fig. 2), reached genome-
wide significance using a threshold of false discovery rate
(FDR) q-value � 0.1(Table 3). There was a significant negative
association between methylation levels at this CpG and DC
(bD¡0.32, SED 0.06; PD 7.75E-08). In addition, we observed
suggestive evidence of associations at cg12991522 (b = 0.47, SE
= 0.09; P D 1.82E-07), located in the PPL gene on chromosome
16, with DC. For AC analyses, one CpG (cg15273468) was
genome-wide significant with FDR q values � 0.1 (Table 4).
However, this CpG was not linked with any known functional
genes.

The Quantile-Quantile (Q-Q) plots suggested sizable
inflation in AC analyses and better calibrated test statistic
in DC analyses. To quantify this observation, we calculated
the genomic inflation factor (λ) as the median of the
observed distribution of the test statistic divided by the
expected median. We observed λ D 0.81 for AC analyses

and λ D 1.02 for DC analyses (Fig. 1). Taken together, the
observed associations for DC analyses were unlikely due to
population stratification.

Discussion

In the current study, we aimed to identify epigenetic locations
at which the methylation levels were associated with cardiac
autonomic changes among a population of welders. There was
a significantly negative association between methylation at
cg26829071 and DC values. Annotation analysis indicated that
this significant CpG was located in the gene body of the
GPR133 gene.

GPR133 encodes an adhesion G-protein-coupled receptor
(aGPCR), which is commonly characterized by long extracellu-
lar N termini that are composed of a seven transmembrane
spanning domain.20 It is primarily expressed in the central ner-
vous system21 as well as heart (ventricles, atria, and septal
tissues). Bohnekamp et al.22 have reported a concentration-
dependent relationship between GPR133 and intracellular
cyclic adenosine 30,50-cyclic adenosine monophosphate
(cAMP) levels, suggesting that GPR133 may be coupled to the
Gs protein, activate adenylate cyclase, and stimulate G protein
cascades. In the heart, the activation of adenylate cyclase is
associated with various cardiovascular effects including modu-
lation of heart rate. Adenylyl cyclase may activate the produc-
tion of intracellular cAMP,23,24 which serves as the second
messenger that further binds to protein kinase A and modulates
cardiac contractility.25 Meanwhile, intracellular cAMP is also
essential for the generation of action potential in the sinoatrial
node.26 However, further research is needed to replicate previ-
ous findings and to explain the role of GRP133 in cardiac auto-
nomic dysfunction.

Both toxicological studies and GWAS have documented
associations of several subtypes of GPCRs with adverse cardio-
vascular effects, such as hyperproliferative vascular malforma-
tions (GPR124),27 myocardial wall thinning (GPR126),28 stroke
(CELSR1),29 and myocardial infarction (CELSR2).30 To date,
several GWAS studies have been conducted to explore genetic
contributions to cardiac autonomic responses. Arking et al.14

identified the NOS1AP (CAPON) gene associated with the elec-
trocardiographic (ECG) QT interval variations among partici-
pants from the KORA cohort in Germany. Marroni et al.13

observed similar findings and they additionally identified the
associations of variants in GPR133 gene with the ECG RR inter-
val alterations. Newton-Cheh et al.31 examined 70,987 common
genetic variants and six conventional heart rate variability
(HRV) parameters among 1345 participants from the Framing-
ham Heart Study Original and Offspring cohort and found
there was no genomic hit that yielded a genome-wide signifi-
cance. Our study, however, expands the literature with EWAS
and suggests that epigenetic regulation of the GPR133 gene
may also play a role in heart rate modulation.

The role of DNA methylation in regulation of gene-
expression may vary depending upon different genomic con-
texts.32 DNA methylation in the promoter sequences is known
to downregulate gene expression,33 whereas methylation in the
gene body is often positively associated with gene expression.34

Decreased DC, which reflects impaired cardiac autonomic

Table 1. Demographics of study population (n D 75).

Characteristic

Male 75 (100)a

Current smoker 28 (37.3)a

Average age (years) 41.6 § 12.8b

Age range (years) 21.6–71.2
Average BMI (kg/m2) 28.7 § 5.3b

Acceleration capacity (ms) ¡6.42 § 4.05b

Deceleration capacity (ms) 7.64 § 3.64b

an (%)
bmean § SD

Table 2. Estimated cell type composition (%) by time.

Cell type Post-worka Baselinea P valueb

CD8CT cell 4.27 (4.66) 4.08 (4.59) 0.39
CD4CT cell 13.89 (4.67) 13.73 (4.21) 0.81
NK cell 4.47 (4.61) 2.93 (3.22) <0.01
B cell 3.68 (2.5) 3.92 (2.35) 0.08
Monocyte 7.64 (2.45) 7.08 (2.5) 0.04
Granulocyte 64.15 (9.23) 66.27 (8.13) <0.01

aUnadjusted mean percentage (SD); nD 208
bComparison between prior and post exposure using linear mixed regression
models.
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function, has been identified as a strong predictor of cardiovas-
cular mortality among patients after myocardial infarction.35,36

Our study suggests the important role of DNA methylation in
cardiac autonomic dysfunction. However, the underlying bio-
logical mechanisms of whether and how methylation at
cg26829071 may affect gene expression and induce decreased
DC remain to be elucidated.

The second-ranked CpG associated with DC is located in the
PPL gene (encoding periplakin). The PPL gene is a protein-cod-
ing gene responsible for keratinocyte intercellular adhesion as
well as tissues integrity.37 Decreased periplakin expression has
been associated with urothelial carcinoma of the urinary bladder
(UCB),38 and serum periplakin has been suggested as a bio-
marker for UCB.39 However, there was no evidence suggesting a
role for periplakin in cardiovascular disease. Its association with
cardiac autonomic responses may warrant further research.

To the best of our knowledge, this is the first EWAS investi-
gating epigenetic variants associated with cardiac autonomic
responses. GPCRs are one of most studied receptor families
that are used as pharmacological targets.40 In the heart, the
adrenergic GPCR signaling pathways are within the major tar-
gets of pharmaceuticals for the treatment of cardiovascular dis-
ease. For example, beta-blockers have been extensively used for
the management of arrhythmia, hypertension, and chronic
heart failure.41 Our study indicated a potential role of GPR133
in cardiac autonomic dysfunction, primarily through affecting
the deceleration capacity of heart rate. Future studies may
investigate the association of the GPR133 gene with various car-
diovascular diseases, such as abnormal heart rhythms and heart
failure.

Our study is limited by the relatively small sample size and
lack of independent replication. Therefore, our findings need to
be confirmed in future studies in a larger population. In addi-
tion, previous studies have reported strong associations of acute
and chronic PM2.5 exposure with DNA methylation in several
genes as well as cardiac autonomic responses. Both short-term
and long-term particulate matter exposure from welding fumes
were significantly associated with AC and DC as well as con-
ventional HRV parameters changes among this welder
cohort.17,42 PM2.5 exposure has also been negatively associated
with gene-specific (iNOS) methylation in a population of boil-
ermaker construction workers as well as elderly men from the
VA Normative Aging Study.16 Hence, we cannot preclude the
potential confounding effects of PM2.5 due to lack of data in
this study. Meanwhile, there might be other potential con-
founders in the occupational settings, such as heavy metals and
psychological factors, in addition to PM2.5.

In conclusion, results of our study indicate that methylation
at the GPR133 gene may play a role in cardiac autonomic dys-
function. However, we cannot preclude chance or bias due to
lack of replication, small sample size, and potential confound-
ing by pollutants exposure. Hence, our preliminary findings
need to be confirmed in future research.

Materials and methods

Study population

The Harvard Boilermakers Study is a prospective cohort study
conducted among a population of welders from a local boiler-

Figure 1. Quantile-Quantile (Q-Q) plot. The observed P-values (Y-axis) were plotted against the expected P-values under the null hypothesis (X-axis). The red diagonal line
denotes the pattern under null hypothesis.

Figure 2. Manhattan Plots for AC and DC analysis. The Manhattan plot denoting the P-values for the association of DNA methylation levels at autosomal sites (X-axis).
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maker union in Quincy, MA. These welders primarily assemble
or weld boilers in large power plants. The study population
included 75 welders recruited from 6 sampling occasions in
January 2003, January 2004, June 2010, January 2011, June
2011, and June 2012. Workers were allowed to participate mul-
tiple times within the 6 sampling occasions. The inclusion crite-
ria were: a) male welders � 18 years of age; b) unionized
welders including both apprentice and journeyman; c) contrib-
uted blood and ECG samples at least once. The exclusion crite-
ria were self-reported physician diagnosed cardiovascular
disease prior participation.

During each sampling occasion, participants were moni-
tored at a union welding school on an approximate 6-hour
workday. Their major occupational activities included welding,
grinding, and cutting tasks. We collected urine, blood, and rest-
ing ECG recordings at both prior- (baseline) and post-work.
We also collected self-administrated questionnaires including
age, height, weight, current smoking status and/or smoking his-
tory, medical history, and medication use during the previous
six months from each participant at baseline, with this informa-
tion being updated at each sampling occasion. The Harvard
T. H. Chan School of Public Health Institutional Review Board
reviewed and approved the study protocol and we obtained a
written informed consent from each participant at each
sampling occasion.

Electrocardiographic recording and sample analysis

During each sampling occasion, participants were fitted with a
7-lead ambulatory ECG Holter monitor. We collected 12-min-
ute resting ECG recordings from each participant at both prior-
and post-work. During the 12-minute resting period, partici-
pants were asked to remain seated and quiet; walking, talking,
or eating was not allowed. The ECGs samples were then sent to
the Cardiovascular Epidemiology Research Unit of Beth Israel

Deaconess Medical Center (Boston, Massachusetts, USA),
where trained technicians blinded to exposure status processed
and analyzed these samples. The methods of processing ECGs
samples for AC and DC analysis have been discussed in our
previous study.17 Briefly, to compute DC values, RR intervals
longer than the immediate preceding interval were defined as
anchors; to compute AC values, RR intervals shorter than the
immediate preceding interval were defined as anchors. Seg-
ments of interval data that had the same size around these
anchors were identified and aligned at those anchors. Upon
alignment of all segments, RR intervals at all defined anchors
(X0), immediate preceding (X1) and following the anchors (X-
1) were averaged separately. The quantities of AC or DC were
obtained by computing the difference between the sum of X0
and X1 and the sum of (X-1) and (X-2).35 For ECG sample
analysis, the first two minutes of the ECG recordings were dis-
carded to allow for acclimation. AC and DC quantities were
summarized every 5 minutes through the PRSA method, as
described by Bauer et al.35 A total of 208 5-minute AC and DC
values were obtained and repeated measurements of AC and
DC values were modeled separately for each subject.

DNA methylation profiling and data quality control

We collected whole blood samples (n D 208) from each partici-
pant at both prior- and post-work through venous phlebotomy
in EDTA tubes. Plasma was extracted and blood pellets were
bisulfite-converted. DNA methylation levels of the entire
genome that covers more than 480,000 CG dinucleotide (CpG)
probes from both pre- and post-shift blood samples were deter-
mined through Infinium HumanMethylation450 BeadChip
assay (Illumina, Inc.) following the Infinium HD Methylation
Assay protocol guide. The BeadChips were scanned using the
Illumina iScan and raw data was imported into GenomeStudio
where image intensities were extracted. A methylation score

Table 4. List of top-ranking CpGs associated with AC.

Name Chromosome Strand Gene name Location b SE P value FDR q value

cg15273468 10 R ¡0.31 0.05 6.60E-08 0.03
cg19458608 3 R LOC729375 TSS1500 ¡0.92 0.19 5.67E-06 1.00
cg14004557 11 F ¡0.28 0.06 1.81E-05 1.00
cg26905268 19 R KANK2 Body ¡0.54 0.12 2.00E-05 1.00
cg05434952 17 R CCDC137 1stExon ¡0.95 0.22 2.45E-05 1.00
cg10414946 11 F MS4A2 Body ¡0.42 0.10 2.64E-05 1.00
cg02069944 17 R AZI1 Body 1.28 0.29 2.83E-05 1.00
cg27445005 18 R 0.49 0.11 2.98E-05 1.00
cg11945929 7 F ¡0.15 0.03 3.05E-05 1.00
cg24078451 6 F PSMB8 1stExon ¡0.36 0.08 3.83E-05 1.00

Table 3. List of top-ranking CpGs associated with DC.

Name Chromosome Strand Gene name Location b SE P value FDR q value

cg26829071 12 F GPR133 Body ¡0.32 0.06 7.75E-08 0.04
cg12991522 16 F PPL 1stExon 0.47 0.09 1.82E-07 0.04
cg12071328 11 F NELL1 Body 0.39 0.08 2.81E-06 0.44
cg20928238 14 R ¡0.24 0.05 6.11E-06 0.64
cg01520463 2 F SDC1 Body 0.18 0.04 8.03E-06 0.64
cg25048985 12 F ¡0.29 0.06 1.05E-05 0.64
cg12454595 22 R FAM19A5 Body 0.68 0.15 1.14E-05 0.64
cg12479444 7 F 0.62 0.13 1.21E-05 0.64
cg12044338 1 F AQP10 TSS1500 0.41 0.09 1.27E-05 0.64
cg06716283 19 F RELB TSS1500 0.39 0.09 1.42E-05 0.64
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(b value) was quantified on a scale from 0 to 1 to represent the
percentage of methylated signal at each CpG, such that a value
of 0 represents fully unmethylated signal and a value of 1 repre-
sents fully methylated signal.

Following background subtraction and dye bias adjustment,
both sample-level and probe-level quality control procedures
were performed. Samples with detection P-value > 0.05 in
more than 5% probes were excluded; probes with detection P-
value > 0.05 in more than 5% samples or probes with very low
variation (CV < 5%) were omitted. Sex chromosomes and sin-
gle nucleotide polymorphism-associated probes were also
excluded. In addition, Houseman’s algorithm43 in minfi44 was
applied to estimate the cell type composition in blood samples.
Beta-mixture quantile normalization45 was conducted for probe
design bias correction. The b values were normalized with
functional normalization and batch effect adjustment was per-
formed with ComBat.46 In total, there were 472,506 CpG
probes included in the final association analyses.

Statistical analysis

In the current study, we compared the post-work blood cell
type composition with baseline composition through linear
mixed effects models. We fitted separate linear mixed effects
models with random intercepts to examine whether DNA
methylation at each CpG was associated with AC and DC. A
number of covariates including age (continuous in years), body
mass index (BMI; continuous weight in kilograms divided by
height squared in meters), current smoking status (non-
smoker, former smoker, or current smoker), time (baseline or
post-work) and cell type composition were adjusted for in all
models as they have been suggested as potential confounders.
In addition, all models were adjusted for the variable “time in
day,” which reflects the time when blood and ECG samples
were collected, to account for the potential circadian variations
of AC and DC.

To correct for multiple comparisons, we computed the false
discovery rate (FDR) adjusted P- value (q value). We consid-
ered an FDR q value � 0.1 as statistically significant.

We fitted the QQ plot to visualize the expected distribution
of test statistics of the association analyses across the CpG
probes (X-axis) vs. the observed values (Y-axis). We also calcu-
lated the genomic inflation factor (lambda) to assess the bulk
inflation and false positive rate.47 All analyses were performed
with R 3.2.2 (R Core Team 2015).
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