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Abstract
Aims/hypothesis The gut microbiome is hypothesised to be related to insulin resistance and other metabolic variables. However,
data from population-based studies are limited.We investigated associations between serologic measures of metabolic health and
the gut microbiome in the Northern Finland Birth Cohort 1966 (NFBC1966) and the TwinsUK cohort.
Methods Among 506 individuals from the NFBC1966 with available faecal microbiome (16S rRNA gene sequence) data, we
estimated associations between gut microbiome diversity metrics and serologic levels of HOMA for insulin resistance (HOMA-
IR), HbA1c and C-reactive protein (CRP) using multivariable linear regression models adjusted for sex, smoking status and BMI.
Associations between gut microbiome diversity measures and HOMA-IR and CRP were replicated in 1140 adult participants
from TwinsUK, with available faecal microbiome (16S rRNA gene sequence) data. For both cohorts, we used general linear
models with a quasi-Poisson distribution and Microbiome Regression-based Kernel Association Test (MiRKAT) to estimate
associations of metabolic variables with alpha- and beta diversity metrics, respectively, and generalised additive models for
location scale and shape (GAMLSS) fitted with the zero-inflated beta distribution to identify taxa associated with the metabolic
markers.
Results In NFBC1966, alpha diversity was lower in individuals with higher HOMA-IR with a mean of 74.4 (95% CI 70.7, 78.3)
amplicon sequence variants (ASVs) for the first quartile of HOMA-IR and 66.6 (95% CI 62.9, 70.4) for the fourth quartile of
HOMA-IR. Alpha diversity was also lower with higher HbA1c (number of ASVs and Shannon’s diversity, p < 0.001 and p =
0.003, respectively) and higher CRP (number of ASVs, p = 0.025), even after adjustment for BMI and other potential
confounders. In TwinsUK, alpha diversity measures were also lower among participants with higher measures of HOMA-IR
and CRP.When considering beta diversity measures, we found that microbial community profiles were associated with HOMA-
IR in NFBC1966 and TwinsUK, using multivariate MiRKAT models, with binomial deviance dissimilarity p values of <0.001.
In GAMLSS models, the relative abundances of individual genera Prevotella and Blautia were associated with HOMA-IR in
both cohorts.
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Conclusions/interpretation Overall, higher levels of HOMA-IR, CRP and HbA1c were associated with lower microbiome
diversity in both the NFBC1966 and TwinsUK cohorts, even after adjustment for BMI and other variables. These results from
two distinct population-based cohorts provide evidence for an association between metabolic variables and gut microbial
diversity. Further experimental and mechanistic insights are now needed to provide understanding of the potential causal
mechanisms that may link the gut microbiota with metabolic health.
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Abbreviations
ASV Amplicon sequence variants
BCAA Branched-chain amino acids
CRP C-reactive protein
FDR False discovery rate
GAMLSS Generalised additive models for

location scale and shape
MiRKAT Microbiome Regression-based

Kernel Association Test
NFBC1966 Northern Finland Birth Cohort
VIF Variance inflation factors

Introduction

Obesity and type 2 diabetes have reached global epidemic
proportions and are recognised as major causes of morbidity

and mortality [1, 2]. Insulin resistance is a pathophysiological
condition that precedes the development of type 2 diabetes
[3]; however, its aetiology is not fully understood. Obesity is
a recognised risk factor for insulin resistance but not all
insulin-resistant individuals are overweight or obese [4];
indeed, the existence ofmetabolically healthy obese and meta-
bolically unhealthy normal weight individuals has been
described in previous studies [5]. Despite the well-
established epidemiological links between insulin resistance,
its related variables (i.e., poor glucose control and high levels
of inflammation) and chronic diseases including obesity and
type 2 diabetes, the potential role of the gut microbiome in the
development of insulin resistance and type 2 diabetes is not
fully understood.

Previous studies have suggested a link between the gut
microbiome and metabolic health [6, 7], and have
described differences of microbial composition and func-
tionality in type 2 diabetes patients compared with healthy
participants [7, 8]. The gut microbiome is potentially
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associated with host metabolic health through several
pathways including energy extraction, intestinal barrier
integrity, metabolism of bile acids and host metabolic
and signalling pathways, which are directly or indirectly
related to insulin resistance development [9]. For exam-
ple, circulating levels of branched-chain amino acids
(BCAA) have been positively associated with insulin
resistance [10] and BCAA levels in insulin-resistant indi-
viduals correlate with specific changes in gut microbiome
composition and functions, such as enriched potential for
BCAA biosynthesis and deprivation of genes encoding
for BCAA transport into bacterial cells [11]. However,
because of the cross-sectional nature of these studies, it
is impossible to conclude whether these differences in
microbial composition are a cause or a consequence of
metabolic dysfunction.

Despite an important expansion of research on the relation-
ship between the human gut microbiome and metabolic disor-
ders in recent years, human data on the link between the gut
microbiota and insulin resistance from population-based stud-
ies are lacking. In this study, we investigated the relationship
between measures of metabolic health (i.e., insulin resistance,
glucose control and inflammation) and gut microbial diversi-
ty, independent of BMI, among individuals in the Northern
Finland Birth Cohort (NFBC1966) and then sought to repli-
cate these findings in the TwinsUK cohort.

Methods

Ethics approval and consent to participate

Informed written consent was obtained from all
NFBC1966 participants, and the research protocols were
approved by the Ethics Committee of Northern
Ostrobotnia Hospital District, Finland. Written informed
consent was obtained from all the TwinUK volunteers
upon registration and also during their clinical visits,
and the research protocols had ethical approval as part
of the TwinsUK (EC04/015) study from the Local
Research Ethics Committee at the Department of Twin
Research and Genetic Epidemiology, King’s College
London. The study was approved by the International
Agency for Research on Cancer Ethics Committee.

Northern Finland Birth Cohort

Study design and samples The NFBC1966 was established in
1965 and included 12,055 pregnant women with expected
delivery dates between 1 January and 31 December 1966,
and subsequently 12,058 children representing 96% of live
births in two Finnish provinces, Oulu and Lapland (https://
www.oulu.fi/NFBC1966/) [12]. Pregnancies were followed

prospectively and children were followed through
childhood, adolescence and early adulthood up to 46 years
of age. At 31 and 46 years of age, information about health,
behaviour, work and social background were collected using
self-administered questionnaires and clinical examinations
were performed. At 31 and 46 years of age, measures of meta-
bolic health were generated using blood samples.
Additionally, at 46 years of age, the participants were asked
to collect a stool sample at home using a collection tube with-
out additive that was provided by study investigators.
Participants were asked to return the sample to the study facil-
ity the same day; if the specimen was taken 1–2 days in
advance, the participants were asked to store the stool sample
at −20°C. At the study laboratory, the stool samples were first
transferred to −20°C freezers and after, to long-term −70°C
freezers without any additive within days of collection.

This investigation builds upon a related study conducted by
Loftfield et al within the NFBC1966, which aimed to explore
associations of BMI history and adult BMI with faecal micro-
bial diversity (n = 565) and microbial metabolite levels (n =
340) [13]. In the current analysis, participants were selected
from the same cohort with faecal microbial diversity data and
were included if measures of metabolic health (i.e., insulin [μU/
ml], glucose [mmol/l], high-sensitivity C-reactive protein [mg/
l], and HbA1c [mmol/mol]) were available at 46 years of age. In
total, 506 participants were included in our analytic sample,
comprising 187 men (37.0%) and 319 women (63.0%).

At age 46 years, participants underwent clinical examina-
tion, during which height and weight were measured, and they
completed self-administered questionnaires reporting lifestyle
and demographic characteristics. BMI was estimated as
measured weight (kg) divided by measured height (m)
squared (kg/m2). BMI was categorised according to the
WHO international classification system: normal weight
(18.5–24.9), overweight/pre-obese (25.0–29.9), obese (≥
30.0). Smoking status was categorised as never, former or
current smoker.

Laboratory methods The laboratory methods have previously
been described in detail [14]. Metabolic markers were
measured for all individuals after an overnight fasting period
(12 h). Fasting plasma glucose was analysed by an enzymatic
dehydrogenase method (Advia 1800, Siemens Healthcare
Diagnostics, Tarrytown, New York, USA). Fasting serum
insulin was analysed by a chemiluminometric immunoassay
(Advia Centaur XP, Siemens Healthcare Diagnostics,
Tarrytown, New York, USA). HOMA for insulin resistance
(HOMA-IR) is a commonly used measure of insulin resis-
tance and is calculated as previously described [15].
HOMA-IR values were subdivided into quartiles based on
their distribution across all included participants: Q1: <1.20,
Q2: 1.20–1.91, Q3: 1.92–3.1, Q4: >3.11 for categorical analy-
ses. The concentrations of HbA1c were measured using
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immunochemical assay methods. High-sensitivity C-reactive
protein (CRP) was analysed by an immune-nephelometric
assay (BN ProSpec, Siemens Healthcare Diagnostics,
Newark, Delaware, USA). HOMA-IR, HbA1c and CRP were
log-transformed (natural logarithm) for continuous analyses.

DNA extraction, amplification and sequencing Faecal samples
were processed at the University of California, San Diego (La
Jolla, California). DNA extraction, PCR amplification and
sequencing were completed as described by Loftfield et al
[13] and by Vogtmann et al [16], using the universal bacterial
primer set 515F/806R [17]. In brief, study samples were
randomly ordered and distributed within the batches. For tech-
nical reproducibility, replicate faecal samples from three indi-
viduals (n = 62) were distributed within and across batches.
Four quality control samples were also included within each
DNA extraction batch: artificial community, chemostat
community [18], extraction blank and PCR blank. DNA was
extracted with the MO-BIO PowerSoil DNA isolation kit and
the V4 region of the 16S rRNA gene was PCR amplified and
2 × 150 bp paired-end sequencing was performed on the
MiSeq (Illumina, San Diego, CA). After removing singletons
and reads with read errors, the mean coverage was approxi-
mately 112,000 reads per sample.

Bioinformatics Processing was performed using QIIME 2
2017.8 [19]. Sequences were demultiplexed, and quality control
on forward reads was performed with DADA2 [20]. Paired-end
reads were not joined because shorter 16S rRNA gene sequences
would be dropped, resulting in systematic bias in community
composition. Taxonomy was assigned to amplicon sequence
variants (ASVs) using q2-feature-classifier [21] and the
Greengenes 13_8 reference database [22]. A phylogenetic tree
was built by aligning ASVs with MAFFT [23], filtering highly
variable positions via q2-alignment, and applying FastTree [24]
to construct an unrooted tree, followed bymidpoint rooting using
q2-phylogeny midpoint-root. Diversity metrics (i.e., Shannon
index, observed sequence variants, binomial deviance dissimilar-
ity, Jaccard, weighted and unweighted UniFrac) were computed
using the ‘vegan’ [25] and ‘microbiome’ packages in R (version
3.6.0) at a depth of 10,000 reads per sample to represent the
diversity of unique sequences in each sample. As described by
Loftfield et al, inspection of quality control data suggested good
reproducibility within and across batches [13].

TwinsUK

Study design and samples The design of the TwinsUK cohort
has been described previously [26]. In brief, the TwinsUK
cohort is one of the largest adult twin registries comprising
over 14,000 volunteers followed over more than two decades.
Participants were predominantly female (>80%) and middle-
aged (mean age 59). Data were collected during visits to the

Department of Twin Research and Genetic Epidemiology,
King’s College London, resulting in biochemical, behaviour-
al, dietary and socioeconomic characterisation. In the current
study, we analysed data on the gut microbiome and both
HOMA-IR and CRP from 1140 female participants.
Anthropometric measurements, including height and weight,
were measured during each participant’s annual clinic visit,
allowing BMI to be calculated. Questionnaires were used to
define age (from birthdate) and smoking status.

Laboratory methods Plasma glucose and insulin were
measured for all individuals after a 10 h overnight fast.
Insul in was quantif ied by immunoassay (Abbott
Laboratories, Maidenhead, UK) and glucose was measured
by an Ektachem 700 multichannel analyser using an enzymat-
ic colorimetric slide assay (Johnson and Johnson Clinical
Diagnostic Systems, Amersham, UK), as previously
described [27]. Highly sensitive CRP was measured by
latex-enhanced nephelometry on a Siemens Prospec
Nephelometer. HOMA-IR was calculated as described above
for NFBC1966. HOMA-IR, HbA1c and CRP were log-
transformed (natural logarithm) for continuous analyses.

DNA extraction, sequencing and bioinformatics Faecal
samples were collected at home and brought or sent on ice to
the clinical research facility where they were stored at −80°C.
Samples were then processed to determine gut microbial
composition by 16S rRNA gene sequencing, as previously
described [28]. Briefly, amplicon PCR was performed on the
V4 region of the 16S rRNA gene using the primer pair 515f to
806r with Golay error-correcting barcodes on the reverse prim-
er. The barcoded amplicon pool was purified with theMO-BIO
UltraClean PCR cleanup kit and sequenced on the Illumina
MiSeq platform. Sequence data were demultiplexed using the
QIIME2 2017.8 [19]. ASVs were generated with DADA2 [20].
Diversity metrics (i.e., Shannon index, observed sequence vari-
ants, binomial deviance dissimilarity, Jaccard, weighted and
unweighted UniFrac) are presented in electronic supplementary
material (ESM) Table 1 and were computed using the ‘vegan’
(25) and ‘microbiome’ packages in R (verion 3.6.0).

Statistical analyses

Descriptive characteristics of the participants were
presented by BMI groups. As presented in Table 1, the
majority of NFBC1966 participants were female, and
29.2%, 45.9% and 24.9% were normal weight, over-
weight and obese, respectively. The TwinsUK cohort
was entirely female and older than the NFBC1966 cohort
(mean age 62.9 and 46.6 years, respectively). Although
the NFBC1966 results presented here include both men
and women, sensitivity analyses were performed in
women only (n = 319) with similar results obtained (data

1752 Diabetologia (2021) 64:1749–1759



not shown). In NFBC1966, 31.9% of current smokers
were obese vs 16.5% in TwinsUK.

Spearman correlations were calculated to estimate correla-
tions between the different measures of metabolic health and
BMI. In NFBC1966, BMI was strongly correlated with
HOMA-IR (R = 0.64; 95% CI 0.58, 0.68) and more moderate-
ly correlated with CRP (R = 0.37; 95% CI 0.29, 0.44) and
HbA1c (R = 0.23; 95% CI 0.14, 0.31) (ESM Fig. 1). In
TwinsUK, BMI was moderately correlated with HOMA-IR
(R = 0.43; 95% CI 0.38, 0.47) and moderately correlated with
CRP (R = 0.37; 95%CI 0.31, 0.41). Prior to conducting multi-
variable analyses, variance inflation factors (VIF) were calcu-
lated to evaluate potential multicollinearity between alpha
diversity metrics, BMI and HOMA;moderate VIF were found
with these two covariates (VIF BMI 1.37, VIF HOMA-IR
1.43), suggesting that these predictors are not correlated with
other variables. To estimate the association of the measures of
metabolic health as categorical and continuous variables with
the alpha diversity metrics, general linear models with a quasi-
Poisson distribution were used. The estimated value in Table 2
signifies how much the mean of the dependent variable
(measures of microbiome diversity) changes given a one-
unit shift in the independent variable (markers of metabolic
health) while holding other variables in the model constant. In
the NFBC1966, no visual clustering was observed by
measures of metabolic health using the first three principal
coordinate analysis vectors from four beta diversity matrices
(results not shown). For the association between microbial
community profiles using beta diversity metrics and the
measures of metabolic health, MiRKAT tests were performed
[29]. To identify the taxa associated with HOMA-IR, CRP
and HbA1c, after grouping ASVs at the genus level, a

generalised additive model for location scale and shape
(GAMLSS) fitted with the zero-inflated beta distribution was
computed using the ‘gamlss’ package in R [30]. Likelihood-
ratio tests between models including adjustment factors only
and models including the measures of metabolic health and
adjustment factors were performed. P values <0.05 were consid-
ered as indicators of an association betweenmetabolic health and
distribution of the taxonomic component. The p values were then
adjusted using a Benjamini–Hochberg false discovery rate
(FDR) <0.05. All statistical tests described above were adjusted
for BMI, sex and smoking status in the NFBC1966 cohort and
for BMI, age and smoking status in the TwinsUK cohort. Other
possible confounders (i.e., education, alcohol, fruit, vegetables,
cereals, fish, red and processed meat, poultry, dairy and physical
activity) were considered but not selected in the final models,
based on a bidirectional stepwise selection.

Results

Alpha diversity

Overall, alpha diversity declined with increasing quartiles of
HOMA-IR in the NFBC1966 (Table 2). For example, the
mean number of ASVs was lower in the 4th quartile of
HOMA-IR (66.6, 95% CI 62.9, 70.4) compared with the 1st
quartile (74.4, 95% CI 70.7, 78.3) (ESM Table 2). Similar
results were found in the TwinsUK cohort where Shannon’s
diversity was lower in the 4th quartile of HOMA-IR (3.72,
95% CI 3.65, 3.79) than the 1st quartile (3.91, 95% CI 3.84,
3.98) (ESM Table 2). In NFBC1966, the number of observed
ASVs was inversely associated with HOMA-IR (estimate per

Table 1 Description of the study
population stratified by BMI
category in NFBC1966 and
TwinsUK

NFBC1966 (n=506) TwinsUK (n=1140)

BMI, kg/m2 BMI, kg/m2

Variable 18.5 to 24.9 25.0 to 29.9 over 30 18.5 to 24.9 25.0 to 29.9 over 30

Total study
population

148 (29.2) 232 (45.9) 126 (24.9) 499 (43.8) 411 (36.1) 230 (20.2)

Male 32 (17.1) 108 (57.8) 47 (25.1) 0 0 0

Female 116 (36.4) 124 (38.9) 79 (24.8) 499 (43.7) 411 (36.1) 230 (20.2)

Age, years 46.6±0.6 46.6±0.5 46.7±0.6 62.9±8.9 64.2±8.5 61.8±8.4

Never smoker 98 (33.9) 128 (44.3) 63 (21.8) 300 (43.7) 235 (34.2) 152 (22.1)

Former smoker 29 (23.6) 61 (49.6) 33 (26.8) 152 (45.0) 127 (37.6) 59 (17.5)

Current smoker 21 (22.3) 43 (45.8) 30 (31.9) 47 (40.9) 49 (42.6) 19 (16.5)

HOMA-IR 1.32±0.7 2.26±1.3 4.61±4.4 0.84±1.32 1.12±1.46 1.56±1.37

CRP, mg/l 1.08±1.7 1.45±2.7 2.95±6.6 1.88±2.95 2.89±6.29 5.17±8.41

HbA1c, mmol/mol 33.20±2.0 34.02±4.2 35.03±3.6 – – –

HbA1c, % 5.2 5.3 5.4 – – –

Data are shown as n (%) or mean ± SD
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unit increase = −0.072, p = 0.002), CRP (estimate per unit
increase = −0.032, p = 0.025) and HbA1c levels (estimate per
unit increase = −0.113, p < 0.001) in continuous models.
Shannon’s diversity was also inversely associated with
HOMA-IR (estimate per unit increase =−0.047, p= 0.001) and
HbA1c levels (estimate per unit increase = −0.042, p = 0.003) in
NFBC1966. In TwinsUK, Shannon’s diversity was inversely
associated with HOMA-IR (estimate per unit increase =
−0.062, p < 0.001) and CRP (estimate per unit increase =
−0.018, p = 0.031). The number of observed ASVs was also
inversely associated with HOMA-IR (estimate per unit
increase = −0.106, p = 0.001) and CRP (estimate per unit
increase = −0.041, p = 0.019). In the NFBC1966, the association
between BMI and the number of observed ASVs was no longer
significant after adjustment for HOMA-IR (p value without
HOMA-IR: 0.001, p value in model including HOMA-IR:
0.489) and CRP (p value in model including CRP: 0.082)
(ESM Table 3). However, the association between BMI and
the number of observed ASVs remained significant in multivar-
iable models including HbA1c. In the TwinsUK cohort, BMI
remained strongly inversely associated with alpha diversity
following adjustments for HOMA-IR or CRP (ESM Table 3).

Beta diversity

HOMA-IR, CRP and HbA1c were associated with all commu-
nity composition measures except for weighted UniFrac and
binomial deviance dissimilarity for CRP in the NFBC1966
(Table 3). Similar results were found for HOMA-IR in the
TwinsUK cohort. However, CRP was only associated with
Jaccard (p = 0.043) in TwinsUK. BMI was associated with
all community composition measures except for weighted
UniFrac in the NFBC1966 cohort and with all beta diversity
measures in TwinsUK (ESM Table 4). However, the associa-
tions between BMI and microbial composition for binomial
and unweighted UniFrac metrics were no longer significant
after adjustment for HOMA-IR in NFBC1966 (ESMTable 4).
BMI remained strongly associated with four beta diversity
matrices, regardless of the inclusion of HOMA-IR or CRP in
the model in the TwinsUK cohort.

Relative abundance at the genus level

In the NFBC1966 cohort, 16 individual genera met FDR-
adjusted significance level (<0.05) for their associations with

Table 2 Associations of meta-
bolic variables (continuous and
categorical) with measures of
alpha diversity in NFBC1966 and
TwinsUK

NFBC1966 (n=506)a TwinsUK (n=1140)b

Shannon’s diversity Observed ASVs Shannon’s diversity Observed ASVs

Variable Estimate p value Estimate p value Estimate p value Estimate p value

HOMA-IR

Continuous −0.047 0.001 −0.072 0.002 −0.062 <0.001 −0.106 0.001

Quartile 1 Ref Ref Ref Ref Ref Ref Ref Ref

Quartile 2 −0.022 0.282 −0.033 0.304 −0.021 0.051 −0.019 0.413

Quartile 3 −0.019 0.379 −0.055 0.118 −0.027 0.017 −0.041 0.083

Quartile 4 −0.078 0.003 −0.111 0.008 −0.055 <0.001 −0.093 <0.001

CRP

Continuous −0.016 0.085 −0.032 0.025 −0.018 0.031 −0.041 0.019

Quartile 1 Ref Ref Ref Ref Ref Ref Ref Ref

Quartile 2 −0.031 0.154 −0.007 0.843 −0.007 0.523 −0.01 0.657

Quartile 3 −0.023 0.303 −0.028 0.415 −0.006 0.599 −0.009 0.688

Quartile 4 −0.027 0.263 −0.049 0.195 −0.028 0.016 −0.063 0.01

HbA1c

Continuous −0.042 0.003 −0.113 <0.001 – – – –

Quartile 1 Ref Ref Ref Ref – – – –

Quartile 2 0.039 0.099 0.008 0.822 – – – –

Quartile 3 0.005 0.832 −0.038 0.256 – – – –

Quartile 4 −0.021 0.347 −0.093 0.007 – – – –

a Adjusted for BMI, sex and smoking status
b Adjusted for BMI, age and smoking status
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HOMA-IR, ten with CRP and nine with HbA1c. Nineteen
individual genera met FDR-adjusted significance (<0.05) with
HOMA-IR and eight with CRP in the TwinsUK cohort.
Higher values of HOMA-IR were strongly associated with
higher mean relative abundances of members of the
Peptococcaceae (estimate per unit increase = 11.62,
p < 0.001), Bifidobacteriaceae (genus Gardnerella) (estimate
per unit increase = 2.64, p < 0.001), Veillonellaceae,
Lachnospiraceae (genus Blautia) and Prevotellaceae (genus
Paraprevotella) families and lower mean relative abundances
of members from the Peptostreptococcaceae (estimate per unit
increase = −0.52, p < 0.001), Peptococcaceae (estimate per
unit increase = −0.23, p < 0.001), and Prevotellaceae (genus
Prevotella) families (ESM Table 5) in the NFBC1966 cohort.
Higher values of HOMA-IR were also associated with higher
mean relative abundances of members from Lachnospiraceae
(genus Blautia) and Prevotellaceae (genus UCG-003) and
lower mean relative abundances of Prevotella in TwinsUK
(ESM Table 6). Higher CRP was associated with lower mean
relative abundances of members from the Paraprevotellaceae,
Peptococcaceae, Veillonellaceae and Peptostreptococcaceae
families and higher mean relative abundance of one genus,
Peptococcus in NFBC1966 (ESM Table 5). Higher levels of
CRP were associated with higher mean relative abundances of
members from the Enterobacteriaceae, Elusimicrobiaceae,
Erysipelotrichaceae and Prevotellaceae families and lower
mean relative abundance of Dysgonomonas and NK4A214
group (family Ruminococcaceae) in TwinsUK (ESM
Table 6). Higher levels of HbA1c were associated with lower
mean rela t ive abundances of members f rom the
Bifidobacteriaceae, Peptococcaceae, Veillonellaceae and
Peptostreptococcaceae families and higher mean relative
abundance of one genus, Oxalobacter, in the NFBC1966
cohort (ESM Table 5). The metabolic biomarkers were not
associated with the presence/absence of individual genera
except for the genus Gardneralla and HbA1c (estimate per
unit increase = 3.87, p = 0.013) in NFBC1966. Higher values
of HOMA-IR were associated with higher presence of
members of the Lachnospiraceae family and Veillonella in
TwinsUK.

Discussion

In this analysis of gut microbiome profiles and metabolic vari-
ables in two population-based cohorts, higher levels of
HOMA-IR, CRP and HbA1c were associated with lower
diversity of the gut microbiome, even after adjustment for
BMI and other factors. In addition, HOMA-IR, CRP and
HbA1c were associated with differences in microbial commu-
nity between individuals as indicated by associations with
three beta diversity measures, but were not associated with
weighted UniFrac, suggesting that the metabolic biomarkers
were associated with differences in the presence or absence of
bacteria in different communities but not with differences in
abundance.

The unweighted UniFrac measure allows the detection of
differences in the presence or absence of lineages of bacteria
in different communities. On the other hand, the weighted
UniFrac measure helps to detect differences in abundance
even when the overall groups of organisms that are present
in each sample remain the same [31]. In weighted UniFrac,
low-abundance taxa have a much lower weight than in
unweighted UniFrac and so will have a lower impact on the
total distance reported by the metric. Further, HOMA-IR,
CRP and HbA1c were mainly associated with the relative
abundance of specific genera, and less with their presence or
absence, indicating that the associations between the metabol-
ic biomarkers and microbiome diversity captured by beta
diversity measures were potentially driven by a consortium
of bacteria present at low relative abundance. In addition,
although only observed in the NFBC1966 cohort, in an
exploratory analysis we found that the association of BMI
and microbiome diversity was attenuated when adjusting the
model for HOMA-IR, supporting that some degree of the
BMI–microbiome relation might be explained by the associ-
ation of insulin resistance with microbial diversity.

Our data support the hypothesis that greater gut
microbiome diversity is associated with better insulin sensi-
tivity [6]. A clinical trial studying the effect of faecal trans-
plant from lean donors to men diagnosed with the metabolic
syndrome found that insulin sensitivity had improved and gut

Table 3 Association of metabolic variables with community composition using measures of beta diversity in NFBC1966 and TwinsUK

NFBC1966 (n=506)a TwinsUK (n=1140)b

Variable Binomial p
value

Jaccard p
value

Weighted UniFrac
p value

Unweighted
UniFrac p value

Binomial p
value

Jaccard p
value

Weighted UniFrac
p value

Unweighted
UniFrac p value

HOMA-IR <0.001 <0.001 0.563 0.004 <0.001 <0.001 0.072 <0.001

CRP 0.112 0.007 0.384 0.047 0.345 0.043 0.241 0.099

HbA1c <0.001 <0.001 0.112 <0.001 – – – –

a Adjusted for BMI, sex and smoking status
b Adjusted for BMI, age and smoking status
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bacterial diversity had increased 6 weeks post transplantation
[32]. These results corroborate other studies identifying gut
microbial alterations and attenuation of the metabolic
syndrome after various weight-loss interventions [33, 34].
As described previously, the gut microbiome can trigger
inflammatory processes associated with obesity and insulin
resistance by stimulating immune cells through lipopolysac-
charides derived from bacterial membranes [35, 36].
Furthermore, microbial-derived short-chain fatty acids,
including butyrate [37], can enhance insulin sensitivity [38]
and suppress insulin-mediated fat accumulation [39]. CRP is a
marker of chronic low-grade systemic inflammation associat-
ed with obesity and insulin resistance [40]. Previous studies
have found a similar relationship between systematic inflam-
mation, through analysis of high-sensitivity CRP plasma
levels and reduced bacterial diversity, supporting our findings
[41]. Our results suggest that higher levels of HbA1c were also
associated with lower bacterial diversity. Existing literature on
the association between HbA1c level and gut microbiome
composition are inconsistent. Some studies reported evidence
of an association between HbA1c level and bacterial group
counts [42] while others did not find any relationship [43].
These findings could be explained by the fact that elevated
insulin levels or HOMA-IR appeared to identify certain traits
of the metabolic syndrome, especially abdominal obesity,
earlier than that seen in changes to both HbA1c and measures
of glucose [44].

Consistent with other studies, BMI was inversely associat-
ed with gut microbiome diversity in this study [13]. However,
following adjustment for HOMA-IR and CRP, the associa-
tions between BMI and some measures of alpha- and beta
diversity were no longer detected, suggesting that the
observed relationship between BMI and gut microbiome
diversity might be indirect and influenced by measures of
insulin resistance and inflammation. This hypothesis needs
to be further explored in other cohorts as results from
TwinsUK suggested that associations between BMI and gut
microbial diversity were attenuated but remained significant.

The relative abundance of individual genera was associated
with HOMA-IR (16 and 19 genera in NFBC1966 and
TwinsUK, respectively), with CRP (ten and eight genera in
NFBC1966 and TwinsUK, respectively) and with HbA1c

(nine genera in NFBC1966). Overall, the GAMLSS models
showed that metabolic biomarkers were more associated with
the relative abundance of the taxa rather than their presence or
absence. At the genus level, Blautia was positively and
Prevotella inversely associated with HOMA-IR in both
cohorts. In previous studies, Blautia has been reported to be
related to disturbances in glucose metabolism and type 2
diabetes [45–48]. At the mechanistic level, exposure of human
tissue to Blautia species has been shown to induce an inflam-
matory response greater than that induced by lipopolysaccha-
ride stimulation [49]. In addition, in a rat diabetes model,

exposure to Blautia was positively correlated with inflamma-
tory indicators including, IL-1β, TNF-α, IL-6 and lipopoly-
saccharides [50]. These results suggest that Blautia might be
related to metabolic health through its effects on specific
inflammatory pathways. Lower abundance of Prevotella in
diabetic patients was previously observed, consistent with
our data on insulin resistance and metabolic health [51–53].
In addition, Prevotella was shown to be positively associated
with dietary fibre-induced improvement in glucose metabo-
lism by potentially playing a role in the fermentation of
complex polysaccharides and in the storage of glycogen
[54]. In contrast, increased abundance of Prevotella strains
were associated with insulin resistance in a non-diabetic
cohort [11] with obesity [55, 56] and with low-grade inflam-
mation in the gut [57]. However, it was speculated that these
effects may not be causally linked to the presence of
Prevotella and that other members of the Prevotella-dominat-
ed microbiome may have the propensity to promote inflam-
mation [58] Overall, these findings indicate that Blautia and
Prevotella may induce biological changes particularly in
inflammatory pathways that may explain their association
with metabolic health in our study. Further experimental stud-
ies are needed to identify mechanisms by which these bacteria
may be related to host metabolic health.

A limitation of our study was the cross-sectional nature of
the analyses. Repeated, prospectively collected samples are
now needed to identify potential causal relationships between
gut microbiome and markers of metabolic health and to assess
their respective association with risk of diseases related to
metabolic dysfunction such as type 2 diabetes or certain
cancers. Other limitations were that TwinsUK only included
female participants, although sensitivity analyses restricted to
women in the NFBC1966 showed similar results. Further,
data on HbA1c were not available in TwinsUK to validate
the NFBC1966 results. We also note differences between
the studied NFBC1966 and TwinsUK populations in terms
of age, obesity prevalence and metabolic variables.
However, being able to observe consistent associations
between gut microbiome composition and measures of meta-
bolic health in two different populations and independently of
other potential factors such as age and obesity may indicate
the results are generalisable across different populations. An
additional limitation is that the observed associations of
microbiome diversity measures with metabolic health
biomarkers in both cohorts may have also been inflated or
attenuated by unmeasured or poorly measured confounders,
such as dietary and fibre intake and the use of medication.
Finally, we recognise the limited taxonomic resolution and
accuracy of the 16S rRNA gene sequencing methodology,
preventing us from adequately performing species-level asso-
ciative analysis and resulting in a limited overlap between the
two cohorts when focusing on associations with individual
genera. To unambiguously discriminate low-abundance taxa
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from noise and further replication and extension (e.g.,
metagenomics) of results in other population-based studies is
warranted.

Our study suggests that general population cohorts are
valuable in identifying potential associations between micro-
bial features and measures of metabolic health. However, the
use of cross-sectional data does not allow us to causally inter-
pret these associations, since interactions between metabolic
biomarkers and the gut microbiome are complex and dynamic
and can be strongly affected by behavioural changes.
Therefore, it is now critical for future studies to collect longi-
tudinal data of both lifestyle exposures and the microbiome to
help understand the dynamic relationship between the gut
microbiome and host metabolism. Integration of microbiome
data paired with faecal metabolomics data may also provide a
more complete picture of the metabolic microbial mechanisms
that contribute to metabolic balance between the host and the
gut microbiome.

In conclusion, markers of insulin resistance, poor control of
blood glucose levels and systemic inflammation were associ-
ated with lower gut microbiome diversity and distinct micro-
bial community structures in both the NFBC1966 and
TwinsUK cohorts, even after adjustment for BMI and other
variables. These results from two distinct population-based
cohorts provide evidence that individuals with worse metabol-
ic control have lower gut microbial diversity. It is, however,
impossible to conclude if these differences in microbial
composition and taxa associations are a cause or a conse-
quence of metabolic dysfunction. Thus, large-scale, prospec-
tive studies with collection of faecal samples and longitudinal
data on lifestyle and metabolic biomarkers at several time-
points are now needed to validate and extend these
observations.
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