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Abstract In humans, large conductance voltage- and calcium-dependent potassium (BK)
channels are regulated allosterically by transmembrane voltage and intracellular Ca*. Divalent
cation binding sites reside within the gating ring formed by two Regulator of Conductance of
Potassium (RCK) domains per subunit. Using patch-clamp fluorometry, we show that Cca?t binding
to the RCK1 domain triggers gating ring rearrangements that depend on transmembrane voltage.
Because the gating ring is outside the electric field, this voltage sensitivity must originate from
coupling to the voltage-dependent channel opening, the voltage sensor or both. Here we
demonstrate that alterations of the voltage sensor, either by mutagenesis or regulation by auxiliary
subunits, are paralleled by changes in the voltage dependence of the gating ring movements,
whereas modifications of the relative open probability are not. These results strongly suggest that
conformational changes of RCK1 domains are specifically coupled to the voltage sensor function
during allosteric modulation of BK channels.

DOI: https://doi.org/10.7554/eLife.40664.001

Introduction

The open probability of large conductance voltage-and Ca®*-activated K* (BK or slo1) channels is
regulated allosterically by voltage and intracellular concentration of divalent ions (Barrett et al.,
1982; Moczydlowski and Latorre, 1983; Horrigan and Aldrich, 2002; Latorre et al., 2017). This
feature makes BK channels important regulators of physiological processes such as neurotransmis-
sion and muscular function, where they couple membrane voltage and the intracellular concentration
of Ca®* (Robitaille and Charlton, 1992; Hu et al., 2001: Wang et al., 2001; Raffaelli et al., 2004).
The BK channel is formed in the membrane as tetramers of o subunits, encoded by the KCNMA1
gene (Shen et al., 1994; Quirk and Reinhart, 2001). Each o subunit contains seven transmembrane
domains (SO to S6), a small extracellular N-terminal domain and a large intracellular C-terminal
domain (Wallner et al., 1996; Meera et al., 1997; Tao et al., 2017) (Figure 2a). Similar to other volt-
age-gated channels, the voltage across the membrane is sensed by the voltage sensor domain
(VSD), containing charged amino acids within transmembrane segments S2, S3 and S4 (Diaz et al.,
1998; Ma et al., 2006; Pantazis and Olcese, 2012; Tao et al., 2017). The sensor for divalent cati-
ons is at the C-terminal region and is formed by two Regulator of Conductance for K* domains
(RCK1 and RCK2) per o subunit (Wei et al., 1994, Moss and Magleby, 2001; Xia et al., 2002,
Zeng et al., 2005; Wu et al., 2010). In the tetramer, four RCK1-RCK2 tandems pack against each
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other in a large structure known as the gating ring (Wu et al., 2010; Yuan et al., 2011,
Giraldez and Rothberg, 2017; Tao et al., 2017; Zhou et al., 2017). Two high-affinity Ca®* binding
sites are located in the RCK2 (also known as ‘Ca®* bowl’) and RCK1 domains, respectively. Addition-
ally, a site with low affinity for Mg?* and Ca®* is located at the interface between the VSD and the
RCK1 domain (Shi and Cui, 2001, Zhang et al., 2001; Bao et al., 2002; Xia et al., 2002;
Yang et al., 2007; Yang et al., 2008a; Tao et al., 2017) (Figure 2a). The high-affinity binding sites
show structural dissimilarity (Zhang et al., 2010; Tao et al., 2017) and different affinity for divalent
ions (Zeng et al., 2005). Apart from Ca?*, it has been described that Cd?* selectively binds to the
RCK1 site, whereas Ba’* and Mg2+ show higher affinity for the RCK2 site (Xia et al., 2002,
Zeng et al., 2005; Yang et al., 2008b; Zhou et al., 2012; Miranda et al., 2016). Thus, intracellular
concentrations of Ca?*, Cd?*, Ba®* or Mg?" can shift the voltage dependence of BK activation
towards more negative potentials. Using patch clamp fluorometry (PCF), we have shown that these
cations trigger independent conformational changes of RCK1 and/or RCK2 within the gating ring,
measured as large changes in the efficiency of Fluorescence Resonance Energy Transfer (FRET)
between fluorophores introduced into specific sites in the BK tetramer. These rearrangements
depend on the specific interaction of the divalent ions with their high-affinity binding sites, showing
different dependences on cation concentration and membrane voltage (Miranda et al., 2013,
Miranda et al., 2016). To date, the proposed transduction mechanism by which divalent ion binding
increases channel open probability was a conformational change of the gating ring that leads to a
physical pulling of the channel gate, where the linker between the Sé transmembrane domain and
the RCK1 region acts like a passive spring (Niu et al., 2004). Such a mechanism would be analogous
to channel activation by ligand binding in glutamate receptor or cyclic nucleotide-gated ion chan-
nels, also tetramers (Sobolevsky et al., 2009; James et al., 2017). Our previous results do not sup-
port this as the sole mechanism underlying coupling of divalent ion binding to channel opening,
since the gating ring conformational changes that we have recorded: 1) are not strictly coupled to
the opening of the channel’s gate, and 2) show different voltage dependence for each divalent ion.
In addition, the recent cryo-EM structure of the full slo1 channel of Aplysia californica (Hite et al.,
2017, Tao et al., 2017) shows that the RCK1 domain of the gating ring is in contact with the VSD,
predicting that changes in the voltage sensor position could be reflected in the voltage dependent
gating ring reorganizations.

Understanding the nature of the voltage dependence associated with individual rearrangements
produced by binding of divalent ions to the gating ring is essential to untangle the mechanism
underlying the role of such rearrangements in BK channel gating. To this end, we have now per-
formed PCF measurements with human BK channels heterologously expressed in Xenopus oocytes,
including a range of VSD mutations or co-expressed with different regulatory subunits. Here we pro-
vide evidence for a functional interaction between the gating ring and the voltage sensor in full-
length, functional BK channels at the plasma membrane, in agreement with the structural data from
Aplysia BK. Moreover, these data support a pathway that couples to divalent ion binding to channel
opening through the voltage sensor.

Results

Voltage dependence of gating ring rearrangements is associated to
activation of the RCK1 binding site

BK o subunits labeled with fluorescent proteins CFP and YFP in the linker between the RCK1 and
RCK2 domains (position 667) retain the functional properties of wild-type BK channels
(Miranda et al., 2013; Miranda et al., 2016). This allowed us to use PCF to detect conformational
rearrangements of the gating ring measured as changes in FRET efficiency (E) between the fluoro-
phores (Miranda et al., 2013; Miranda et al., 2016). Binding of Ca?* ions to both high-affinity bind-
ing sites (RCK1 and Ca%* bowl) produces an activation of BK channels, coincident with an increase in
E from basal levels reaching saturating values at high Ca®* concentrations (Miranda et al., 2013 and
Figure 1a). In addition, we observed that the E signal has the remarkable property that in intermedi-
ate Ca®* concentrations (from 4 UM to 55 uM) it shows voltage dependence besides its Ca®* depen-
dence (Miranda et al., 2013 and Figure 1a). As discussed previously (Miranda et al., 2013), these
changes in E with voltage are not conformational dynamics of the gating ring that simply follow the
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Figure 1. Voltage dependence of gating ring rearrangements is associated to activation of the RCK1 binding site.
G-V (left panels) and E-V curves (right panels) obtained simultaneously at several Ca?*concentrations from (a) the

BK667CY construct, (b) mutation of the RCK1 high-affinity site (D362A/D367A), (c) mutation of the Ca?* bowl

(5D5A), or (d) both (D362A/D367A 5D5A). Note that the voltage dependence of the E signal is only abolished after

Figure 1 continued on next page
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Figure 1 continued

mutating the RCK1 high-affinity binding site (b) or both (d). Data corresponding to each Ca®* concentration are
color-coded as indicated in the legend at the bottom. Solid curves in the G-V graphs represent Boltzmann fits. For
reference, grey shadows in (a—d) left panels represent the full range of G-V curves corresponding to non-mutated
BK667CY channels from 0 pM Ca?* to 95 uM Ca?* (indicated with colored dashed lines). Data points and error
bars represent average + SEM (n = 3-14, N = 2-8). Part of the data in (a, b and c) are taken from (Miranda et al.,
2013) and (Miranda et al., 2016).

DOI: https://doi.org/10.7554/eLife.40664.002

voltage dependence of VSD. For instance, at 0 Ca®* concentrations movements of the VSD occurs
between 0 and +300 mV (Stefani et al., 1997; Horrigan et al., 1999; Horrigan and Aldrich, 2002;
Zhang et al., 2014; Carrasquel-Ursulaez et al., 2015; Zhang et al., 2017). However, we do not
observe changes in E between 0 and +240 mV (Figure 1a). Similarly, at 100 uM Ca%*, charge move-
ment takes place between —100 and +150 mV (Carrasquel-Ursulaez et al., 2015), while our FRET
signals at 95 uM Ca®* do not vary within this voltage range (Figure 1a). Independent activation of
high-affinity binding sites by other divalent ions (Ba**, Cd**, or Mg?* (Miranda et al., 2016)) led us
to postulate that Ca®* activation has a site-dependent relation to voltage. To further evaluate the
effect of individual high-affinity Ca?* binding sites on the voltage-dependent component of the gat-
ing ring conformational changes we first selectively mutated the binding sites. Mutations D362A and
D367A (Xia et al., 2002, Zeng et al. 2005) were introduced in the BK667CY construct
(BK667CYD362A/D367A) +5 remove the high-affinity binding site located in the RCK1 domain.
Figure 1b shows the relative conductance and E values for the BK667CYP362A/D367A construct at dif-
ferent membrane voltages for various Ca®* concentrations. As described previously, the G-V curves
show a significantly reduced shift to more negative potentials when Ca®* is increased, as compared
to the non-mutated BK667CY (Figure 1a-b, left panels). Specific activation of the Ca?* bowl renders
a smaller change in E values, which are not voltage-dependent within the voltage range tested
(Figure 1b, right panel). To test the effect of eliminating the RCK2 Ca®* binding site -the Ca®* bowl-
we mutated five aspartates to alanines (5D5A) (Bao et al., 2002). As expected, activation of only the
RCK1 domain by Ca?* reduced the Ca?*-dependent shift in the GV curves (Figure 1c, left panel).
Even though the extent to which the E values changed with Ca®* was reduced (Figure 1c), there was
a persistent voltage dependence equivalent to that shown in Figure 1a corresponding to the non-
mutated channel (most appreciable at 12 uM and 22 uM Ca®* concentrations; Figure 1c, right panel)
(Miranda et al., 2013). Further, at these two Ca2* concentrations the changes in E occurred within
the same voltage range (+60-120 mV) in channels with the Ca%* bowl mutated (Figure 1c) or not
(Figure 1a). This effect seems not to be attributable to Ca%* binding to unknown binding sites in the
channel, since the double mutation of the RCK1 and RCK2 sites abolishes the change in the FRET
signal (Figure 1d). Altogether, these results indicate that the voltage-dependent component of the
gating ring conformational changes triggered by Ca?* in the BK667CY construct depends on activa-
tion of the RCK1 binding site. Because the gating ring is not within the transmembrane region, it is
not expected to be directly influenced by the transmembrane voltage. Therefore, the voltage-
dependent FRET signals must be coupled to the dynamics of the gate region associated with the
opening and closing of the channel and/or those of the voltage sensor domain.

The voltage-dependent conformational changes of the gating ring are
not related to the opening and closing of the pore domain

To test whether the voltage-dependent FRET signals relate to the opening and closing of the chan-
nel (intrinsic gating) we used two modifications of BK channel function in which the relative probabil-
ity of opening is shifted in the voltage axis, yet the actual dynamics of voltage sensor are expected
to be unaltered (Figure 2b). We reasoned that, if the voltage-dependent FRET signals of the gating
ring are coupled to the opening and closing, they should follow a similar displacement with voltage.
The first BK channel construct is the o subunit including the single point mutation F315A, which has
been described to shift the voltage dependence of the relative conductance of the channel to more
positive potentials, by uncoupling the voltage sensor activation from the gate opening (Figure 2c)
(Carrasquel-Ursulaez et al., 2015). Figure 2d shows the relative conductance and E vs. voltage for
the BK667CY "> mutant at various Ca?"concentrations. Our results show that the shift of the
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Figure 2. Modification of the voltage dependence of gate opening does not affect the gating ring voltage-dependent conformational changes. (a)
Topology of the BKaw subunit where the voltage sensing domain (VSD), Ca®* sensing domain (gating ring, GR) and pore domain (PD) are indicated by
colored dashed lines boxes (see main text for a full description). (b) The three BK functional modules (VSD, PD, GR), schematically represented as
colored boxes, interact allosterically. (c) Diagram representing the main effect of the F315A mutation, which is the uncoupling of the VSD to the PD. (d)
G-V (left panel) and E-V curves (right panel) obtained simultaneously at several Ca?*concentrations after mutation of the F315 site to alanine
(BK667CY™1™) It should be noted that the extent of the shifts induced by the mutation are smaller than previously reported (Carrasquel-

Ursulaez et al., 2015), which could arise from the different experimental conditions and/or our fluorescent construct. (e) The interaction with the y1
subunit favors the VSD-PD coupling mechanism (f) G-V (left) and E-V curves (right) of BK667CY o subunits co-expressed with y1 subunits. In all panels,
data corresponding to each Ca?* concentration are color-coded as indicated in the bottom legend. Colored dashed lines represent the G-V and E-V
curves corresponding to BK667CYa channels (Miranda et al., 2013; Miranda et al., 2016). The solid curves in the G-V graphs represent Boltzmann fits.
The full range of G-V curves from 0 uM Ca?* to 95 uM Ca?* from BK&67CY is represented as a grey shadow in left panels (d and f), for reference. Data
points and error bars represent average + SEM (n = 3-8; N = 2-3).
DOI: https://doi.org/10.7554/eLife.40664.003

relative probability of opening to more positive potentials (Figure 2d, left panel) does not lead to
changes in the voltage dependence of the gating ring FRET signals (Figure 2d, right panel).

The second modification of BK function consisted in co-expressing the wild type o subunit with
the auxiliary subunit y1 (Yan and Aldrich, 2010; Yan and Aldrich, 2012, Gonzalez-Perez et al.,
2014; Li and Yan, 2016). In this case, the relative probability of opening is shifted to more negative
potentials by increasing the coupling between the voltage sensor and the gate of the channel
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(Figure 2e). This construct adds the advantage of representing a physiologically relevant modifica-
tion of channel gating. Figure 2f shows the relative conductance and E vs. voltage in oocytes co-
expressing the BK667CYo and y1 at voltages ranging from —160 to +260 mV, with three [Ca®*] con-
centrations: nominal 0, 12 uM and 22 pM. As expected, the presence of the y1 subunit drives the rel-
ative conductance curves to more negative potentials (Figure 2f, left panel) compared to the values
obtained without y1 (Figure 2f, dashed lines). Remarkably, the change in the voltage dependence
of the relative conductance induced by y1 does not alter the simultaneously recorded FRET signals
(Figure 2f, right panel), which remains indistinguishable from that recorded with BK667CYa
(Figure 2f, dashed lines).

The dynamics of the VSD are directly reflected in the gating ring
conformation

Using the allosteric HA model of BK channel function, Horrigan and Aldrich (2002) proposed that
Ca?* binding to the Ca®* bowl is coupled to the voltage sensor activation. Yet, the strength of that
interaction (allosteric constant E) was smaller than those corresponding to Ca?*- or V-sensors with
channel opening (Horrigan and Aldrich, 2002). Interestingly, when E was derived from gating cur-
rents data, a larger value was obtained (Carrasquel-Ursulaez et al., 2015). Further, Ca®* binding to
the RCK1 domain (but not to the Ca®* bowl) is voltage-dependent (Sweet and Cox, 2008), which as
the authors hypothesized might originate from physical interactions between the voltage sensors
and the RCK1 domains. Additionally, using the cut-open oocyte voltage-clamp fluorometry
approach, Savalli et al. (2012) showed that fluorescence emission from reporters within the VSD
could change upon uncaged Ca®* stimuli. This evidence indicates that the VSD is coupled to the gat-
ing ring, but none of these approaches directly monitored the conformational changes of the gating
ring structure. Therefore, we decided to explore whether the voltage dependence of the gating ring
movements is attributable to the voltage sensor activation. To this end we modified the voltage
dependence of the VSD activation by co-expression with B auxiliary subunits or by introducing spe-
cific mutations in the VSD (Figure 3 and Figure 4). The effects of co-expressing BK o subunit with
the four different types of auxiliary B subunits have been extensively studied (Tseng-Crank et al.,
1996; Behrens et al., 2000; Brenner et al., 2000; Cox and Aldrich, 2000; Uebele et al., 2000;
Lingle et al., 2001; Zeng et al., 2001; Bao and Cox, 2005; Orio and Latorre, 2005; Yang et al.,
2008a; Sweet and Cox, 2009; Contreras et al., 2012, Li and Yan, 2016). B1 subunit has been pre-
viously proposed to alter the voltage sensor-related voltage dependence, as well as the intrinsic
opening of the gate and Ca%* sensitivity (Figure 3a) (Cox and Aldrich, 2000, Bao and Cox, 2005;
Orio and Latorre, 2005; Sweet and Cox, 2009, Contreras et al., 2012; Castillo et al., 2015).
Recordings from BK667CYa. co-expressed with B1 subunits reveal the expected modifications in the
voltage dependence of the relative conductance, that is an increase in the apparent Ca®* sensitivity
(Figure 3b, left panel) (Wallner et al., 1995; Cox and Aldrich, 2000; Bao and Cox, 2005; Orio and
Latorre, 2005; Sweet and Cox, 2009; Contreras et al., 2012). In addition, it has been reported
that B1 subunit alters the function of the VSD (Orio and Latorre, 2005; Castillo et al., 2015). Nota-
bly, the E-V curves are shifted to more negative potentials (Figure 3b, right panel), similarly to the
described modification (Castillo et al., 2015). The structural determinants of the B1 subunit influ-
ence on the VSD reside within its N-terminus, which has been shown by engineering a chimera
between the B3b subunit (which does not influence the VSD) and the N-terminus of the B1 (B3bNp1)
(Castillo et al., 2015). We recapitulated this strategy. First, we co-expressed BK667CY o subunits
with B3b and observed the expected inactivation of the ionic currents at positive potentials, yet with
different blockade kinetics (see Figure 3—figure supplement 1) (Uebele et al., 2000; Xia et al.,
2000; Lingle et al., 2001). The relative open probability of this complex is like BK667CYa alone,
except that at extreme positive potentials the values of relative conductance at the tails decrease
due to inactivation (Figure 3—figure supplement 1b, left panel). The values of E vs V remained
comparable to those observed for BK667CYa (Figure 3—figure supplement 1b, right panel). We
then co-expressed the B3bNB1 chimera (Castillo et al., 2015) with BK667CYo. (Figure 3c). This com-
plex did not modify the relative conductance vs. voltage relationship (Figure 3d, left panel) as com-
pared with BK667CYo alone (Figure 3d, grey shadow). On the other hand, while the magnitude of
the FRET change is the same as in BK667CYa, the voltage dependence of E values at [Ca®*] of 4
UM, 12 uM and 22 uM shifted to more negative potentials compared to the values of BK667CYa.
alone (Figure 3d, right panel, compare dashed to solid lines). Altogether, these results indicate that
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Figure 3. Co-expression with B subunits. (a) B1 subunits have been shown to directly regulate VSD function, shifting Vi, to more negative values (b)

Left panel, G-V curves obtained at several Ca®*concentrations after co-expression of BK667CY with the B1 subunit, which induces a leftward shift in the
E-V curves obtained simultaneously (right). (c) B3bNB1 chimeras produce similar effects to B1 on VSD function, since they retain the N-terminal region of
B1 (Castillo et al., 2015). (d) G-V (left) and E-V curves (right) of BK667CY o subunits co-expressed with the B3bNB1 chimera. Data corresponding to
each Ca®* concentration are color-coded as indicated in the legend at the bottom. Colored dashed lines represent the G-V and E-V curves
corresponding to BK667CYa channels (Miranda et al., 2013; Miranda et al., 2016). The solid curves in the G-V graphs represent Boltzmann fits. The
full range of G-V curves from 0 uM Ca?* to 95 uM Ca®* from BK667CY is represented as a grey shadow in left panels (b and d), for reference. Data
points and error bars represent average + SEM (n = 3-10; N = 2-4).

DOV https://doi.org/10.7554/eLife.40664.004

The following figure supplement is available for figure 3:

Figure supplement 1. Co-expression with B3b subunits.
DOI: https://doi.org/10.7554/eLife.40664.005

the alteration of the voltage dependence of the voltage sensor induced by the amino terminal of
B1within the B3bNB1 chimera underlies the modification of the voltage dependence of the gating
ring conformational changes, reinforcing the hypothesis that this voltage dependence is directly
related to VSD function.

VSD activation can also be altered by introducing single point mutations that modify the voltage
of half activation of the voltage sensor, V,,(j). This parameter is determined by fitting data to the HA
allosteric model (Ma et al., 2006) or directly from gating current measurements (Zhang et al.,
2014). Mutations of charged amino acids on the VSD have been reported to produce different mod-
ifications in the V,(j) values. In some cases, other parameters related to BK channel activation are
additionally affected by the mutations. Mutation R210E shifts the V,(j) value from +173 mV to +25
mV at 0 Ca®* in BK channels (Figure 4a) (Ma et al., 2006). Consistent with this, introduction of this
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panel) and E-V curves (right panel) obtained simultaneously from constructs BK667CY containing the E219R mutation at several Ca?*concentrations. (e)
The R213E mutation induces a large positive shift of Vi, values. (f) G-V (left panel) and E-V curves (right panel) obtained simultaneously from constructs
BK&67CY containing the R213E mutation at several Ca?*concentrations. Data corresponding to each Ca®* concentration are color-coded as indicated in
the bottom legend. Colored dashed lines represent the G-V and E-V curves corresponding to non-mutated BK667CYa channels (Miranda et al., 2013;
Miranda et al., 2016). The solid curves in the G-V graphs represent Boltzmann fits. The full range of G-V curves from 0 uM Ca?* to 95 uM Ca?* from
BK667CY is represented as a grey shadow in left panels (b), (d and f), for reference. Data points and error bars represent average = SEM (n = 4-10;

N = 3-4).

DOV https://doi.org/10.7554/eLife.40664.006

mutation in BK667CYa, (BK667CYR?'19F) caused a shift of the relative conductance vs. voltage depen-
dence towards more negative potentials (Figure 4b, left panel) as compared to BK667CY
(Figure 4b, left panel, grey shadow). Simultaneously measured E values showed a negative shift in
the voltage dependence of the FRET signal at intermediate Ca®" concentrations (Figure 4b, right
panel). Mutation E219R had been previously shown to produce a large negative shift in Vi (j)
from +150 mV to +40 mV (AV4(j) = —110 mV; Figure 4c), additionally modifying the Ca®* sensitivity
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and the coupling between the VSD and channel gate (Zhang et al., 2014). As previously reported,
BK667CYE?"R showed modified relative conductance vs. voltage relationships at different Ca®* con-
centrations (Figure 4d, left panel) (Zhang et al., 2014). In addition, this construct revealed a shift to
more negative potentials in the E vs. voltage dependence at intermediate Ca®* concentrations (12
uM and 22 uM Ca®*; Figure 4d, right panel), paralleling the reported negative shift in Vi(j)
(Ma et al., 2006; Zhang et al., 2014). Since mutations displacing the V,,(j) to more negative poten-
tials induce equivalent shifts in the voltage dependence of the gating ring motion (measured as E),
we tested if other mutations previously reported to induce positive shifts on V(j) (Ma et al., 2006)
were also associated with changes of the E-V curves in the same direction. As shown by Ma et al.,
the largest effect on V(j) is induced by the R213E mutation, producing a shift of AVy(j)=+337 mV
(Figure 4e) (Ma et al., 2006). The BK667CYR?13E construct showed a significant shift in the voltage
dependence of the relative conductance to more positive potentials (Figure 4f, left panel). Notably,
this effect was paralleled by a large displacement in the E vs. voltage dependence towards more
positive potentials (Figure 4f, right panel). Taken together, our data show that modifications of the
Vi(j) values caused by mutating the VSD charged residues are reflected in equivalent changes in the
voltage dependence of the gating ring conformational rearrangements, which occur in analogous
directions and with proportional magnitudes at intermediate Ca®* concentrations.

All these results on the VSD modifications and their corresponding changes in FRET signals sup-
port the existence of a direct coupling mechanism between the VSD function and the gating ring
conformational changes.

Parallel alterations of the voltage dependence of VSD function and
gating ring motions by selective activation of the RCK1 binding site

We have previously shown that specific interaction of Cd®* with the RCK1 binding site leads to acti-
vation of the BK channel, which is accompanied by voltage-dependent changes in the E values at
intermediate Cd?* concentrations of 10 pM and 30 uM (Miranda et al., 2016). To further assess the
role of the RCK1 binding site activation in the voltage dependence of the gating ring motions, we
studied activation by Cd?* of selected BK667CY VSD mutants (Figure 5). Addition of Cd** to the
BK667CYF?'R mutant (Figure 5a) shifted the voltage dependence of E towards more negative
potentials at intermediate Cd®* concentrations (10 uM and 30 uM; Figure 5b) when compared to
non-mutated BK667CY (Figure 5b; dashed lines). This change in the E-V curves induced by selective
activation of the RCK1 binding site with cd?t paralleled the large negative shift (AV,(j) = —110 mV)
previously reported with the E219R mutant BK channels (Ma et al., 2006; Zhang et al., 2014). We
also tested Cd?* activation in the mutant BK667CYR?°'C, which shifts the Vi(j) parameter by 47 mV
towards positive potentials (Figure 5¢) (Ma et al., 2006). Addition of Cd?** rendered right-shifted E
vs. voltage relationships (Figure 5d, right panel), following the direction of the predicted V(j) shift
described for this mutant BK channel (Ma et al., 2006). Finally, addition of Cd** to the
BK667CY™1>A construct (Figure 5e) (Carrasquel-Ursulaez et al., 2015) did not have any effect on
the E-V relationship (Figure 5f). These results are consistent with a mechanism in which specific bind-
ing of Cd?* to the RCK1 binding site allows voltage-dependent conformational changes in the gat-
ing ring that are directly related to VSD activation.

Voltage dependence of Ba?*-induced gating ring movement is related
to function of the channel gate

Ca?*, Mg?* and Ba®* bind to the Ca®* bowl and trigger conformational changes of the gating ring
region (Miranda et al., 2016). However, the effects of these ions on BK function and gating ring
motions are fundamentally different. Notably, Ba®* induces a rapid blockade of the BK current after
a transient activation that is measurable at low Ba®?" concentrations (Zhou et al., 2012;
Miranda et al., 2016) (Figure 6a). In addition, we previously showed that the gating ring conforma-
tional motions induced by Ba%* show a voltage-dependent component, which is not observed when
Ca®* or Mg®* bind to the Ca®* bowl (Miranda et al., 2013; Miranda et al., 2016) (Figure éb). We
combined mutagenesis with the cation-specific activation strategy to identify the structural source of
the voltage dependence in Ba®*-triggered gating ring motions. In this case, alteration of VSD func-
tion by mutating charged residues (Figure 6c and e) was not reflected in any change of the E vs.
voltage relationships, as shown in Figure 6d and f for constructs BK667CYR?1%F and BK667CYR?13E,
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Figure 5. Voltage dependence of gating ring rearrangements after specific activation of RCK1 high-affinity binding site by Cd®*. (a) Effect of the VSD
E219R mutation on the selective activation of RCK1 by Cd?*. (b) G-V (left panels) and E-V curves (right panels) obtained simultaneously at several
Ca?*concentrations from constructs BK667CYE2'R (c) VSD R201Q mutation induces a positive shift of Vi (d) G-V (left panels) and E-V curves (right
panels) obtained simultaneously at several Cd*"concentrations from constructs BK667CYR?0'C (e) Effect of the F315A mutation on the selective
activation of RCK1 by Cd?*. (f) G-V (left panels) and E-V curves (right panels) obtained simultaneously at several Cd®" concentrations from constructs
BK&67CY™"5A Data corresponding to each Cd?* concentration are color-coded as indicated in the legend at the bottom. Colored dashed lines
represent the G-V and E-V curves corresponding to BK667CYa channels (Miranda et al., 2013; Miranda et al., 2016). The solid curves in the G-V
graphs represent Boltzmann fits. The full range of G-V curves from 0 uM Cd** to 100 uM Cd?* corresponding to non-mutated BK667CY is represented
as a grey shadow in left panels (b), (d), and (f), for reference. Data points and error bars represent average + SEM (n = 3-4; N = 2).

DOI: https://doi.org/10.7554/eLife.40664.007

respectively. These results indicate that the voltage dependence of Ba?*-induced gating ring confor-
mational changes, unlike those induced by Ca?* and Cd®* through activation of the RCK1 binding
site, may not be related to VSD activation. This conclusion is further supported by the lack of
changes in Ba®* responses when mutations in the VSD were made in a RCK1 Ca?* binding site
knockout (D362A D367A) background (Figure 6—figure supplement 1b & c). Next, we studied the
effect of Ba®* on BK667CY channels containing the F315A mutation (Figure 6g) (Carrasquel-
Ursulaez et al., 2015). As shown in Figure 6h, the E values reached similar levels to those of non-
mutated BK667CY channels at saturating Ba?* concentrations. However, at intermediate
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Figure 6. Voltage dependence of gating ring movements triggered by Ba®*. (a) The RCK2 site is selectively
activated by Ba®*, which additionally induces pore block. (b) FRET efficiency (E) data obtained at several Ba®*
concentrations from BK667CY constructs (Miranda et al., 2016). (c) Effect of the VSD R210E mutation after
selective activation of the RCK2 binding site by Ba" (d) E-V curves obtained at several Ba>* concentrations from

Figure é continued on next page
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Figure 6 continued

BK667CYR1OF constructs. (e) Effect of the VSD R213E mutation after selective activation of the RCK2 binding site
by Ba’". (f) E-V curves obtained at several Ba®* concentrations from BK667CYR?13E constructs. (9) Effect of the
F315A mutation after selective activation of the RCK2 binding site by Ba?* (h) E-V curves obtained at several Ba®*

YF315A constructs. Data corresponding to each Ba?* concentration are color-coded

concentrations from BK667C
according to the legend at the bottom. For reference, the curve corresponding to 100 uM Ba?* from the BK667CY
construct shown in (b) is also shown as a colored dashed line in panels (b, d, f and h). Data points and error bars
represent average + SEM (n = 4-6; N = 2-3).

DOI: https://doi.org/10.7554/eLife.40664.008

The following figure supplement is available for figure 6:

Figure supplement 1. Additional experiments to characterize voltage dependence of gating ring movements
triggered by Ba®".

DOI: https://doi.org/10.7554/eLife.40664.009

concentrations of Ba?* the E-V curves were shifted towards more positive potentials when compared
with BK667CY channels (Figure 6h, dashed line). These results suggest that the voltage-dependent
component of the conformational changes triggered by Ba?* binding to the Ca®* bowl are not
directly related to VSD activation, but rather to the function of the channel gate.

Discussion

Using fluorescently labeled BKa subunit constructs reporting protein dynamics between the RCK1
and RCK2 domains, we previously demonstrated that the channel high-affinity binding sites can be
independently activated by different divalent ions, inducing energetically-additive rearrangements of
the gating ring measured as changes in the FRET efficiency values, E (Miranda et al., 2013,
Miranda et al., 2016). Further, the effects of Ca?*, Cd?* and Ba?* on the E values showed a volt-
age-dependent component, for which we could not provide an explanation. Voltage dependence of
Ca®*-induced rearrangements seemed to be specifically related to RCK1 activation, since only the
mutation of that binding site resulted in voltage-independent E signals (Miranda et al., 2016 and
Figure 1). One possibility to explain this result is the existence of direct structural interactions of the
RCK1 domain and the VSD. Interestingly, the recently obtained cryo-EM full BK structure from Aply-
sia californica revealed the existence of specific protein-protein interfaces formed by the amino ter-
minal lobes of the RCK1 domains facing the transmembrane domain and the VSD/S4-S5 linkers
(Hite et al., 2017). According to the structural data obtained in saturating Mg?* and Ca®* concen-
trations, gating of the channel by Ca®* was proposed to be mediated, at least partly, by displace-
ment of these interfaces causing the VSD/S4-S5 linkers to move, contributing to pore opening
((Hite et al., 2017, Tao et al., 2017); but see also (Zhou et al., 2017)). Our work provides functional
data supporting this mechanism. Our data show that mutations altering the voltage dependence of
BK VSD are reflected in the voltage dependence of the gating ring movements triggered by activa-
tion of the RCK1 binding site by Ca®* or Cd?*. Mutations altering VSD function by inducing large
leftward shifts in the V(j) values (Ma et al., 2006; Zhang et al., 2014) strongly correlate with nega-
tive shifts in the voltage dependence of the E signals. Likewise, mutations inducing positive shifts in
the VSD voltage dependence of the voltage sensor function are reflected in E-V shifts towards more
positive membrane voltages. Interestingly, we also observe a correlation between the changes in the
slope of the G-V curves and that of the E-V curves (e.g. Figure 4f; see also Supplementary file 1),
suggesting the existence of an interaction between the VSD and the gating ring. This idea is further
supported by the effect of B1 which has been proposed to alter the voltage dependence of VSD
function (Wallner et al., 1995; Cox and Aldrich, 2000; Nimigean and Magleby, 2000; Bao and
Cox, 2005; Orio and Latorre, 2005; Contreras et al., 2012, Castillo et al., 2015). We observed
that B1 and B3bNB1 induce a leftward shift in the E-V curves. Conversely, two experimental strate-
gies known to influence the G-V curves without direct interference with the VSD did not affect the
voltage dependence of E. The lack of effect on the E-V curves of the mutation F315A can be
explained because the shift in the G-V curves arises from the influence of this mutation in the
C«—0 transition with minor effects on the voltage dependence of the gating currents (Carrasquel-
Ursulaez et al., 2015). Analogously, no change in the voltage dependence of E was observed after
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co-expression of BKa with the y1 subunit, which shifts the voltage dependence of pore opening by
enhancing its allosteric coupling with the voltage sensor activation (Yan and Aldrich, 2010). As with
the mutation F315A, the presence of y1 subunit produces a minor shift in the Q-V distributions, not
paralleling the large shift in the G-V curves (Carrasquel-Ursulaez and Ramon Latorre, personal
communication).

A puzzling result from our previous study was the observation that Ba?* binding to the Ca®* bowl
triggers voltage-dependent conformational changes (Miranda et al., 2016). Even though we still do
not know the mechanisms of this unique response to Ba?*, here we learned that it is not related to
the dynamics of VSD, but rather influenced by perturbations affecting the opening and closing of
the channel at the pore domain. Why Ba®* but not Ca?*? A possible answer for this question is that
Ba®* has the additional property of blocking the permeation pathway (Miller, 1987; Neyton and
Miller, 1988; Zhou et al., 2012), which could somehow be transmitted allosterically to the gating
ring. If simply ion permeation blockade is what matters, then we might expect that blocking perme-
ation with the high affinity quaternary ammonium derivative N-(4-[benzoyl]lbenzyl)-N,N,N-tributylam-
monium (bb-TBA) (Tang et al., 2009) should produce a voltage dependent FRET signal with Ca?t
activation. But, it does not (Figure 6—figure supplement 1d). Another possibility for the Ba®* effect
could be a direct allosteric interaction between the intrinsic gating in the pore and the divalent bind-
ing site in RCK2, which needs to be tested further.

Irrespectively of the fluorescent construct (Miranda et al., 2013) or the divalent ion used to acti-
vate the BK channel (Miranda et al., 2016), we have consistently observed that the conformational
changes monitored as changes in the FRET efficiency are not strictly coupled to the intrinsic gating
of the channel. In this study, we have found that the consequences of the voltage dependence of
the intrinsic gating by manipulations of the VSD and the pore region are paralleled by the FRET effi-
ciencies. These results rule out the possibilities that FRET signals derive from conformational
changes in an unknown Ca®* binding site or that they are completely uncoupled to the intrinsic
gating.

In conclusion, our functional data show a strong correlation between the VSD function and the
RCK1 conformational changes, suggesting a transduction mechanism from ion binding to change
the channel activation. This transduction mechanism is in agreement with the existence of structural
interactions between the RCK1 domain and the VSD. The correlation between VSD function and the
RCK1 conformational changes is not observed between RCK2 and VSD, suggesting the existence of
a different transduction mechanism that may include an indirect mechanism through the RCK1 or
RCK1-Sé6 linker.

Materials and methods

Molecular biology and heterologous expression of tagged channels
Fluorescent BK o subunits were labelled with CFP or YFP using a transposon-based insertion method
(Giraldez et al., 2005). Subunits labelled in the position 667 were subcloned into the pGEMHE
oocyte expression vector (Liman et al., 1992). RNA was transcribed in vitro with T7 polymerase
(Ambion, Thermo Fisher Scientific, Waltham, USA), and injected at a ratio 3:1 of CFP: YFP into Xeno-
pus laevis oocytes, giving a population enriched in 3CFP:1YFP labelled tetramers (BK667CY)
(Miranda et al., 2013; Miranda et al., 2016). Individualized Oocytes were obtained from Xenopus
laevis extracted ovaries (Nasco, Fort Anderson, WI, USA). Neutralization of the Ca®" bowl was
achieved by mutating five consecutive aspartate residues to alanines (5D5A: 894-899) (Bao et al.,
2002) on the BK667CY background. Elimination of RCK1 high-affinity Ca®* sensitivity was achieved
by double mutation D362A and D367A (Xia et al., 2002; Zeng et al., 2005; Zhang et al., 2010).
Mutations were performed using standard procedures (Quickchange, Agilent Technologies, Santa
Clara, USA). Auxiliary subunits (B3b, Y1 and chimera B3bNB1) were co-injected with the BK667CFP/
BK667YFP RNA mix at a 5:1 wt ratio, giving molar ratios above 20:1.

Patch-clamp fluorometry and FRET

Borosilicate pipettes with a large tip (0.7-1 MQ in symmetrical K) were used to obtain inside-out
patches excised from Xenopus laevis oocytes expressing BK667CY. Currents were recorded with the
Axopatch 200B amplifier and Clampex software (Axon Instruments, Molecular Devices, Sunnyvale,
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USA). Recording solutions contained (in mM): pipette, 40 KMeSO3, 100 N-methylglucamine-MeSOs,
20 HEPES, 2 KCI, 2 MgCl,, 100 uM CaCl, (pH 7.4); bath solution, 40 KMeSO3, 100 N-methylgluc-
amine-MeSQOj3, 20 HEPES, 2 KCI, 1 EGTA, and MgCl; or BaCl; to give the appropriate divalent con-
centration previously estimated using Maxchelator software (maxchelator.standford.edu)
(Bers et al., 1994). Solutions containing Cd?** were prepared with a bath solution containing KF
instead of K-Mes to precipitate the contaminant Ca®* previously to the administration of the proper
concentration of CdCl, estimated with Maxchelator. Solutions containing different ion concentra-
tions were exchanged using a fast solution-exchange system (BiolLogic, Claix, France). All experi-
ments were performed in various batches of oocytes, using different Ca®* solutions prepared over
time.

Simultaneous fluorescent and electrophysiological recordings were obtained as previously
described (Miranda et al., 2013; Miranda et al., 2016). Conductance-voltage (G-V) curves were
obtained from tail currents using standard procedures. The G-V relations were fit with the Boltzmann
function: G/Gmax = 1/(1 + exp (-zF(V-Vhalf)/RT), where Gmax is the maximum tail current, z is the
voltage dependence of activation, Vps is the half-activation voltage of the ionic current. T is the
absolute temperature (295K), F is the Faraday’s constant and R the universal gas constant. Fit param-
eters are provided in Supplementary file 1. Conformational changes of the gating ring were tracked
as intersubunit changes of the FRET efficiency between CFP and YFP as previously reported
(Miranda et al., 2013; Miranda et al., 2016). Analysis of the FRET signal was performed using emis-
sion spectra ratios. We calculated the FRET efficiency as E=(RatioA-RatioAo)/(RatioA-RatioAy),
where RatioA and RatioAq are the emission spectra ratios for the FRET signal and the control only in
the presence of acceptor respectively (Zheng and Zagotta, 2003); RatioA is the maximum emission
ratio that we can measure in our system (Miranda et al., 2013; Miranda et al., 2016). This value of
E is proportional to FRET efficiency (Zheng and Zagotta, 2003). The E value showed is an average
of the E value corresponding to each tetramer present in the membrane patch and represent an esti-
mation of the distance between the fluorophores located in the same position of the four subunits
of the tetramer. Where possible, the E-V relations were fit with the Boltzmann function: E = 1/
(1 + exp (-zF(V-Vhalf)/RT), where z is the voltage dependence of the gating ring movement (E) and
Vhaie is the half-activation voltage of the fluorescent signal. Fit parameters are provided in
Supplementary file 1.
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