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ABSTRACT

By capturing and sequencing the RNA fragments
protected by translating ribosomes, ribosome pro-
filing provides snapshots of translation at sub-
codon resolution. The growing needs for comprehen-
sive annotation and characterization of the context-
dependent translatomes are calling for an efficient
and unbiased method to accurately recover the sig-
nal of active translation from the ribosome profiling
data. Here we present our new method, RiboCode, for
such purpose. Being tested with simulated and real
ribosome profiling data, and validated with cell type-
specific QTI-seq and mass spectrometry data, Ri-
boCode exhibits superior efficiency, sensitivity, and
accuracy for de novo annotation of the translatome,
which covers various types of ORFs in the pre-
viously annotated coding and non-coding regions.
As an example, RiboCode was applied to assem-
ble the context-specific translatomes of yeast under
normal and stress conditions. Comparisons among
these translatomes revealed stress-activated novel
upstream and downstream ORFs, some of which are
associated with translational dysregulations of the
annotated main ORFs under the stress conditions.

INTRODUCTION

Ribosome profiling, also called Ribo-seq, generates
genome-wide allocations and quantifications of the ribo-
some protected RNA fragments (RPF) (1), which provide
real-time snapshots of translation (translatome) across
the whole transcriptome. Many studies have exploited this
powerful technique to systematically characterize multiple
features of translation, including the translational rates
(2–4), pausing upon stress signals (5–7), stop codon read-
through (8), translation potential of non-coding sequences

(9–12), and alternative reading frames (10,13). Many
previously unannotated open reading frames (ORFs) have
been identified from the published ribosome profiling data
and indexed by the specialized databases (14,15). How-
ever, it has also been frequently shown that the ribosome
occupancy itself, as indicated by the RPF reads mapped
on the transcriptome, is not sufficient for calling of the
active translation, given the possible noise from the data
processing and experimental procedures, regulatory RNAs
that bind with the ribosome, and ribosome engagement
without translation (16,17). This therefore necessitates a
specially designed methodology to recover the active trans-
lation events from the usually distorted and ambiguous
signals in the ribosome profiling data. Such method should
fully account for the complexity of translation itself, such
as alternative initiation sites and overlapping open reading
frames (ORFs).

Owing to its subcodon resolution, ribosome profiling re-
veals the precise locations of the peptidyl-site (P-site) of
the 80S ribosome in the RPF reads, given that the exper-
iment itself was properly performed and the RPF reads
were correctly filtered. Aligned by their P-site positions, the
RPF reads resulted from the translating ribosomes should
therefore exhibit 3-nt periodicity along the ORF, which is
the strongest evidence of active translation. Only recently
have different strategies been developed to assess the trans-
lation by testing the distribution of ribosome engagement
at the subcodon resolution (11,12,18–23). These methods
have been comprehensively reviewed in (24). Some of these
methods used the strategy of machine learning, which re-
quires prior annotation of the known coding transcripts
for training of the model (12,21). Like many supervised
methods in general, the results of these methods heavily
rely on the pre-annotated training set, source of a poten-
tial intrinsic bias. On the other hand, only a couple of other
methods were designed for de novo translatome annota-
tion by directly assessing the 3-nt periodicity, and these in-
clude the strategy of ORFscore (11), RiboTaper (18) and
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RP-BP (22). In the present study, we have developed a
new statistically vigorous method, RiboCode, for the de
novo annotation of the full translatome by quantitatively
assessing the 3-nt periodicity (Figure 1). Tested with both
simulated and real data, and further benchmarked with
cell-type specific QTI-seq and mass spectrometry data, Ri-
boCode exhibited superior efficiency, sensitivity and accu-
racy to the existing de novo and supervised methods. We
then performed detailed comparisons between RiboCode
and the existing methods for discovery of the uncanonical
ORFs such as the upstream ORFs (uORFs), and several
representative case examples were provided. Furthermore,
to showcase the application of RiboCode in reconstructing
the context-dependent translatomes, we applied RiboCode
on a published ribosome profiling dataset to assemble the
translatomes of yeast under normal condition, heat shock,
and oxidative stress (25). Comparisons among these trans-
latomes revealed novel ORFs in the canonically non-coding
regions that were activated in response to heat shock and
oxidative stress. Quantitative analysis of the ORFs further
showed that some of the upstream ORFs (uORFs) and
downstream ORFs (dORFs) were indeed associative with
the potential translation dysregulation of the previously an-
notated main coding regions of the mRNA transcripts.

MATERIALS AND METHODS

Pre-processing of the ribosome profiling and RNA-seq data

The five sets of ribosome profiling data, including two in
HEK293 cell (18,26), and one for each in Zebrafish (11),
mouse liver cell (26), and cancer cell line PC3 (3), were
downloaded from the NCBI Sequence Read Archive and
the Gene Expression Omnibus (GEO) database. The ac-
cession IDs are SRA160745 for HEK293 (Gao et al.) and
mouse liver cells, GSE73136 for HEK293 (Calviello et al.),
GSE35469 for PC3 and GSE53693 for Zebrafish. The ribo-
some profiling data of yeast under normal, oxidative stress,
and heat shock conditions was also downloaded from GEO
(GSE59573).

The pre-processing procedure of the ribosome profiling
data has been described previously (27). Specifically, the cu-
tadapt program (28) was used to trim the 3′ adaptor in the
raw reads of both mRNA and RPF. Low-quality reads with
Phred quality scores lower than 20 (>50% of bases) were
removed using the fastx quality filter (http://hannonlab.
cshl.edu/fastx toolkit/). Next, sequencing reads originat-
ing from rRNAs were identified and discarded by align-
ing the reads to rRNA sequences of the particular species
using Bowtie (version 1.1.2) with no mismatch allowed.
The remaining reads were then mapped to the genome and
spliced transcripts using STAR with the following parame-
ters: –outFilterType BySJout –outFilterMismatchNmax 2
–outSAMtype BAM –quantMode TranscriptomeSAM –
outFilterMultimapNmax 1 –outFilterMatchNmin 16. To
control the noise from multiple alignments, reads mapped
to multiple genomic positions were discarded.

RiboCode step 1: preparation of the transcriptome annotation

This step defines the annotated transcripts, from which
the candidate ORFs will be identified. This is done by

the prepare transcripts command in the RiboCode pack-
age, with inputs of a GTF file and a genome FASTA file.
The GTF and FASTA file (release 74 for human, and re-
lease 87 for Zebrafish) were downloaded from the En-
sembl FTP repository (http://www.ensembl.org/info/data/
ftp/index.html). Each transcript was assembled by merg-
ing the exons according to the structures defined in the
GTF file. The transcript sequences were then retrieved
from the genome FASTA file. The yeast genome (version
R61-1-1) was retrieved from SGD database (http://www.
yeastgenome.org) and the transcriptome annotation was
obtained from (29).

Note that RiboCode requires the GTF file in the stan-
dard format, which includes the three-level hierarchy anno-
tations (genes, transcripts and exons). Such standard GTF
files can be obtained from the ENSEMBL/GENCODE
databases. Those from other sources or the custom GTF
files may lack the gene and transcript annotation informa-
tion. The RiboCode package thereby provides a command
GTFupdate, which adds the missing information to a non-
standard GTF file and converts it into the standard for-
mat. Please refer to the software instruction page at https:
//pypi.python.org/pypi/RiboCode for more information.

RiboCode step 2: filtering of the RPF reads and identification
of the P-site locations

The purpose of this step, with the metaplots command in
the RiboCode package, is to (i) select the length range of the
RPF reads that are most likely originated from the translat-
ing ribosomes and (ii) identify the P-site locations for dif-
ferent lengths of the RPFs. This was done with a meta-gene
analysis of the RPF reads mapped on the previously anno-
tated coding genes (Figure 1). Specifically, for each set of
the RPF reads with a particular length, the distances from
their 5′ ends to the annotated start and stop codons were
calculated and summarized as histograms (Supplementary
Figure S14 as an example). The length range, in which the
pooled RPF reads showed strong 3-nt periodicity from their
5′ ends to the start and stop codons, should then be deter-
mined by the user, for the following analysis of RiboCode.
In the examples shown in Supplementary Figure S14, the
RPF length range was deemed to be 26–29 nt for HEK293
and 28–29 nt for Zebrafish.

Also from the histograms for each of the RPF lengths
selected above, the P-site locations were inferred according
to the offsets of the 5′ end of the RPF reads mapped on
the start codons. In the examples shown in Supplementary
Figure S14, the P-sites were identified as the +12th nt of all
the RPF reads within the selected length range for HEK293
and Zebrafish data. Supplementary Table S8 presented the
selected read lengths and the P-site positions for the differ-
ent ribosome profiling datasets used in the present study.

Based on our experience, in most cases, selection of the
RPF reads around 28–30 nt is generally appropriate, and
their P-site positions are usually at +12. However, we be-
lieve that it is critical to run this step of RiboCode to ex-
tract the RPFs that are most likely from the translating ri-
bosomes and to precisely determine their P-site positions.
Alternatively, the users have the option to skip this step and
directly provide the information of read length and P-site

http://hannonlab.cshl.edu/fastx_toolkit/
http://www.ensembl.org/info/data/ftp/index.html
http://www.yeastgenome.org
https://pypi.python.org/pypi/RiboCode
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Figure 1. The methodology design of RiboCode. Schematic description of RiboCode. Further details are provided in the Materials and Methods section.

positions based on their experiences, although this is not
recommended, especially when the experimental conditions
(species, culturing condition, stress) or the procedure of ri-
bosome profiling (nuclease, buffer, library preparation) have
been changed.

RiboCode step 3: identification of the candidate ORFs and
assessment of the 3-nt periodicity

As the primary analysis procedure of RiboCode, this step
is executed with a single command RiboCode (Figure 1).
It starts with a transcriptome-wide search for the candi-
date ORFs from a canonical start codon (AUG) to the next
stop codon. Optionally, alternative start codons provided
by the users, for example CUG and GUG, can also be in-
cluded in the search for the candidate ORFs in the regions
outside of the ORFs with the canonical start codon AUG.

Next, based on the mapping results of the RPF reads within
the length range identified in the second step, for each nu-
cleotide of the candidate ORF, RiboCode counts the num-
ber of reads, of which the P-sites were allocated on the par-
ticular nucleotide. Eventually, RiboCode generates a spec-
trum of the P-site densities at each nucleotide along each
candidate ORF.

Mathematically, the spectrum of the P-site densities along
each candidate ORF is a numerical vector with the length of
the ORF. From this vector, we simply derived three shorter
vectors, each with one-third of the length of the ORF. As
shown in Figure 1, one of these three vectors, F0, represents
the P-site density along the first nucleotide of each codon,
from the start to the stop codon. Similarly, the other two
vectors, F1 and F2, represent the P-site densities along the
second and the third nucleotide, respectively, of each codon.
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To assess the 3-nt periodicity, the Wilcoxon signed rank test
strategy was modified and used to evaluate whether F0 is
generally greater than F1 and F2 at the non-zero positions.
Accordingly, this would yield two P-values, indicating the
significance levels of F0 > F1 and F0 > F2. Finally, an in-
tegrated P-value was derived with Stoufer’s method, which
represents the overall statistical significance of the 3-nt pe-
riodicity.

Many transcripts have multiple start codons upstream
of the stop codon, and we followed two simple principles
to identify the translation initiation sites for the candidate
ORFs. (i) We used the same procedure of the modified
Wilcoxon signed rank test, as described above, to assess
the 3-nt periodicity of the RPF reads mapped between the
most upstream (first) start codon and the next one (second)
downstream. This was done only if there were more than 10
codons in this region, of which the in-frame RPF counts are
larger than zero. If this test resulted in a statistically signif-
icant 3-nt periodicity (P-value smaller than the cutoff pro-
vided by the user, e.g. 0.05), we defined the first start codon
as the translation initiation site. Otherwise, we disregard it
and repeat the same procedure for the region between the
second start codon and the subsequent one. Note that the
capability of RiboCode in dealing with short sequences, as
shown in Figure 2B, makes it possible to assess the 3-nt pe-
riodicity between the two neighboring start codons, which
are usually close. (ii) If the two start codons are too close or
if there are limited RPF reads (fewer than 10 codons with
none-zero in-frame RPF counts) between two neighboring
start codons, we chose the upstream start codon of the re-
gion, in which the codons that have more in-frame than off-
frame RPF reads (frame0 > frame 1 and frame0 > frame2)
are greater than the ones that do not (frame0 < = frame 1
and frame0 < = frame2).

Generation of the simulation datasets

The exon-level simulation datasets used in Figure 2A–C
and Supplementary Figure S2 were generated from the
five datasets of ribosome profiling with RNA-seq in par-
allel, in HEK293 (Gao et al. and Calviello et al.), Ze-
brafish, mouse liver and PC3. The P-site data track for
each CCDS exon from the Ensembl annotation was cre-
ated using the RiboTaper package (P sites all tracks ccds
and Centered RNA tracks ccds files in data tracks gener-
ated by RiboTaper). The read lengths and P-site locations
used in these data are provided in Supplementary Table S8.
For the RNA-seq data used as true negatives, the 25th po-
sition was arbitrarily defined as the P-site position. Exons
shorter than 10 nt were discarded. The RiboTaper package
was used to calculate the ORFscore and P-value of Ribo-
Taper (results ccds generated by RiboTaper).

The ribosome profiling datasets with different levels of
noise, used in Supplementary Figure S3A, were generated
by subsampling different fractions of the RPF reads of
the HEK293 data (26) and shuffling their P-site positions
among –1, 0, and +1 in relative to the original position (+12
nt). For the datasets with reduced sequencing depth, used
in Supplementary Figure S3B, we just randomly discarded
different percentages of the RPF reads in the HEK293 data
(26).

The gene-level simulation datasets used in Figure 3 and
Supplementary Figure S4 were also generated from the
five datasets in HEK293, Zebrafish, mouse liver, and PC3.
Specifically, from the original ribosome profiling data, the
RPF reads uniquely mapped on 1000 randomly selected
annotated protein coding genes (with RPF reads count >
5) were collected. The protein-coding transcripts of these
genes were considered as true positives of translation. Next,
true negatives were also defined from these 1000 genes, of
which the RNA-seq data was simply used as the simulated
RPF reads. Each of the five datasets, two used in Figure
3 and the other three in Supplementary Figure S4A, was
therefore composed of the RPF reads of 1000 coding genes
for positives and the RNA-seq reads for negatives.

RiboCode and other existing methods were applied on
these simulated datasets. Overall performances of the tested
methods were assessed by ROC and precision analysis using
the R package ROCR. The statistical significance (P-value)
of the difference between two ROC curves was inferred with
an online tool at http://vassarstats.net/roc comp.html based
on the method in the reference (30).

Running of the existing methods

All the existing methods were applied with their default set-
tings. The same pre-processed ribosome profiling datasets
(simulated or real) and the same transcriptome annota-
tion files were supplied to the different methods, including
RiboCode, RiboTaper (1.3), RP-BP (version 1.1.8), ORF-
RATER, RibORF (version 0.1). For RiboTaper, the val-
ues of ‘ORF pval multi ribo’ indicate the statistical sig-
nificance of the translations, thereby used for ranking of
the ORFs, from low to high. For RP-BP, the values of
‘bayes factor mean’ were used for ranking the predicted
ORFs, of which the larger value indicates stronger signal
of translation. For RibORF, the value ‘pvalue’ was used to
evaluate the possibility of translation of an ORF. Similarly,
for ORF-RATER, the value ‘orfrating’ was used. For all
these method, the same predefined read lengths and P site
positions were set as shown in Supplementary Table S8.

All our scripts used for running the existing algorithms
have been provided in Supplementary File 1, which also
includes detailed tutorials to help the users run these al-
gorithms. The scripts and tutorials can also be found in
Github at https://github.com/xryanglab/ORFcalling.

Validations with QTI-seq and MS data

The cutoffs were set so that all the methods identified
the same total number of ORFs, except ORF-RATER, of
which the predicted ORFs are much fewer than any of the
other methods. Given that not all the methods were de-
signed for identification of the exact translation initiation
sites, the ORFs predicted by different methods but with the
same stop codon were considered the same, and the longest
ORF was selected for the validations with QTI-seq data and
MS data. The types of ORFs from the coding genes were
defined based on their coordination relative to the longest
CDS on the genome. The peptide sequences predicted by
all the methods were pooled together for searching in the
MS/MS data.

http://vassarstats.net/roc_comp.html
https://github.com/xryanglab/ORFcalling
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Figure 2. Performance of RiboCode compared with the de novo methods RiboTaper and ORFscore. (A) The numbers of CCDS exons identified by
different methods with the RPF data in HEK293 cells. The cutoffs used for three methods, RiboCode, RiboTaper and ORFscore, were calibrated so
that they produced the same numbers of false positives with the RNA-seq data. (B) Distributions of the lengths, total read counts, and coverage of the
CCDS exons identified by RiboCode, RiboTaper and ORFscore. (C) ROC and precision curves generated with the results of RiboCode, RiboTaper and
ORFscore with two simulation datasets, one generated from the HEK293 cell data in Gao et al. (left) and the other one from the Zebrafish data in Bazzini
et al. (right). The P-values of the ROC curve differences between RiboCode and the second best method were provided in Supplementary Figure S2B. (D)
A representative ROC curve generated with the results of RiboCode on a simulation dataset specifically for the overlapping ORFs. Such simulation for
overlapping ORFs were performed for 20 times, and the box plot inside summarizes the AUC of the 20 ROC curves from the results of RiboCode applied
on these 20 datasets.

Annotation of the ORFs from QTI-seq data

For each initiation site identified by the QTI-seq data (26),
we selected the closest downstream in-frame stop codon,
thereby annotating an ORF. If one initiation site has more
than one in-frame stop codon in different transcripts of the
same gene, only the one harbored in the longest transcript
was chosen.

Mass spectrometry data collection and processing

Human MS/MS data of HEK293 cells were obtained
from our previously published study (31) and ProteomeX-
change Consortium (PXD002389). Zebrafish MS/MS data
was downloaded from ProteomeXchange Consortium
(PXD000479, tissue of Testis). The peptides were searched
using the SEQUEST searching engine of Proteome Discov-
erer (PD) software (version 1.4). The same search criteria
as published before (31) was used. The false discovery rate
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Figure 3. Performance of RiboCode compared with the supervised methods and de novo method RP-BP. (A) ROC and precision curves generated with the
results of RiboCode, RibORF, ORF-RATER and BR-BP with two simulation datasets. The P-values of the ROC curve differences between RiboCode
and the second best method were provided in Supplementary Figure S4B. (B) The numbers of true positives identified by different methods with the RPF
data in HEK293 cells and Zebrafish. The cutoffs used for these methods were calibrated so that they produced the same numbers of false positives (RNA).

(FDR), calculated using Percolator provided in PD, was set
to 0.1 for peptides and proteins.

Counting of the RPF reads of the ORFs

For the yeast data, the RPF reads on each ORF were
counted based on HTSeq-count (27,32) in intersection-
strict mode. The RibocCode package provides a function
ORF counts for such purpose. Only the RPF reads with
length between 27 and 29 nt, which were found to exhibit
strong 3-nt periodicity, were used for counting. Due to the
potential accumulation of ribosomes around the starts and
ends of the coding regions (9,33), reads aligned to the first
15 and last 5 codons were excluded for counting of RPF
reads for the ORFs longer than 100 nt. Note that it is op-
tional for the function ORF counts to include or exclude the
reads close to the start and the stop codon. The raw read
counts of each ORF across the three conditions were fur-
ther subjected to median-of-ratios normalization (34).

RESULTS

Methodology design of RiboCode

The methodology of RiboCode primarily relies on evalu-
ation of the 3-nt periodicity of the RPF reads aligned by
the P-sites on the RNA transcripts. Considering the usually
distorted patterns of RPF read allocations and potentially
high noise level of the ribosome profiling data, we adapted
the Wilcoxon signed-rank test to assess the oddness of con-
sistently higher in-frame reads along the whole ORF.

The workflow of RiboCode is composed of three major
steps, (i) preparing the transcriptome for search of the can-
didate ORFs, (ii) determining the length range of the RPF

reads that are most likely to be from active translation, and
identifying the P-site positions in these reads and (iii) assess-
ing the active translation event via statistical comparisons
among the three vectors representing the RPF read densi-
ties in and off the reading frame along each candidate ORF.
The analysis strategy of RiboCode is illustrated in Figure
1, and the details of the method design are provided in the
Materials and Methods section.

The performance of RiboCode for de novo translatome anno-
tation

Here we compared the performance of RiboCode with
those of the existing methods that were designed for de novo
annotation of the translatome, including RiboTaper (18)
and ORFscore (11). Since the methodology of RiboTaper
was based on testing of each annotated exon, and its per-
formance was originally benchmarked at the exon level (18),
our comparisons among RiboCode, RiboTaper and ORF-
score were similarly executed at the exon level. Note that
the other de novo method, RP-BP, does not work on ex-
ons, and therefore will be included for comparison in the
next session. We first used a published ribosome profiling
dataset in human HEK293 cell (26), which was the most fre-
quently used dataset for evaluating the existing methods in
literature, including RiboTaper, and RP-BP. RPF reads of
the consensus coding sequence (CCDS) exons were consid-
ered as positives for translation, and the paralleled RNA-
seq data was included to mimic the negatives, i.e., simu-
lated RPF reads of untranslated RNA that lack the 3-nt
periodicity. We calibrated the cutoffs for all three methods,
RiboCode, RiboTaper and ORFscore, to achieve the same
false positive rate (∼7.5%, 3215). As a result, RiboCode re-
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covered many more CCDS exons than the other two meth-
ods did (Figure 2A, detailed results in Supplementary Table
S1).

In addition, unlike the other methods, RiboCode yielded
significant distinctiveness when processing the RPF reads
and RNA-seq reads, which is not or only slightly dependent
on the length, read counts, or coverage of the CCDS exons
(Supplementary Figure S1A–C). Indeed, the distributions
of the lengths, RPF read counts, and coverages of the results
are highly concordant with those of the full CCDS exon set
as a background (Figure 2B), suggesting limited bias of Ri-
boCode when annotating the full translatome. Note that the
exons with the RPF read count fewer than 10 or the cover-
age smaller than 0.1 were discarded. The other two meth-
ods, however, showed some bias towards the ORFs with
high read counts and coverage (Figure 2B, Supplementary
Figure S1A–C). The P-value distributions of the results of
RiboCode indeed showed a much cleaner separation of the
CCDS exons called from the RPF reads and the ones from
the RNA-seq reads (Supplementary Figure S1D).

To further systematically evaluate the sensitivity and
specificity of the three methods, we prepared ROC and
precision curves with the results of the different methods
applied on five published ribosome profiling datasets, in
HEK293 cells (18,26), Zebrafish (11), mouse liver cells (26)
and cancer cell line PC3 (3) (results of HEK293 (Gao et al.)
and Zebrafish in Figure 2C, and results of mouse liver cell,
PC3, and HEK293 (Calviello et al.) in Supplementary Fig-
ure S2A). The paralleled RNA-seq data was again used as
true negatives. The detailed results are provided in Supple-
mentary Table S1. The statistical significances (P-values) of
the performance differences between RiboCode and the sec-
ond best method, by comparing the ROC curves, were sum-
marized in Supplementary Figure S2B. These test runs illus-
trated the superior sensitivity and specificity of RiboCode
compared to the two other existing methods.

The tolerance to the sometimes unavoidable technical
noise is important for the broad applications of a method.
This is especially true for the analysis of ribosome profiling
data, given its nature of high noise resulting from contami-
nations of non-ribosome-bound RNA, regulatory RNA in
the ribosomal complex, inappropriate RPF read length se-
lections, and inaccurate P-site position. These noises result
in either contamination of the RPF reads or incorrect align-
ments of the reads, both of which should weaken the 3-nt
periodicity. Essentially, such noise can be simulated by shuf-
fling the P-site among the three positions, –1, 0, or +1 in rel-
ative to the original position, for a randomly selected subset
of the RPF reads, which by definition weakens the overall
3-nt periodicity of the RPF reads. Stress tests of the three
methods were performed with such datasets generated from
the HEK293 data (26), in which different percentages of the
RPF reads were disturbed. The ROC analyses with the re-
sults showed that RiboCode consistently out-performed the
other two methods with low- to high-noise data (Supple-
mentary Figure S3A). In addition, considering that the se-
quencing depth of the different ribosome profiling studies
could vary significantly, we also tested the performance of
the three methods with different numbers of RPF reads. As
Supplementary Figure S3B shows, RiboCode was able to
deliver relatively good performances, which were not much

sacrificed with fewer total RPF reads. Taken together, these
tests suggest that RiboCode is of great value for annotating
the translatomes with ribosome profiling datasets that are
of relatively low quality or with limited number of usable
RPF reads.

One of the major challenges for the de novo annotation of
the translatome is the complicated re-coding events, includ-
ing the frequently found overlapping off-frame ORFs. The
methodology design of RiboCode genuinely allows assess-
ment of the overlapping ORFs, while the two existing meth-
ods for de novo translatome annotation, RiboTaper and
ORFscore, cannot recover such recoding events by design.
Here, we used a simulation dataset to test the performance
of RiboCode in annotating the actively translated overlap-
ping ORFs. Specifically, with the previously used HEK293
dataset (26), we overlaid the RPF reads of two annotated
CCDS with a +1 or +2 frame shift to simulate the RPF
reads from an artificial pair of overlapping ORFs. For a neg-
ative case, without changing the RPF reads, we randomly
assigned an artificial ORF that partly overlaps (with a frame
shift) with an annotated CCDS. As Figure 2D shows, such
simulation was repeated for 20 times, and RiboCode always
exhibited high sensitivity and accuracy in capturing the ac-
tively translated overlapping ORFs.

Comparisons between RiboCode and other existing methods

In addition to the unsupervised de novo methods for anno-
tating the translatome, two other methods, ORF-RATER
(21) and RibORF (12), both of which use the strategy of
machine learning, can also be used to assess the RNA trans-
lation. However, these methods rely on subsets of the ORFs
that were pre-defined to be actively translated. Although
technically they were not designed for de novo annotation of
the translatome, we also performed systematic comparison
between these supervised methods and RiboCode. Here, we
also included the de novo method, RP-BP, which works at
the transcript level and thereby was not included in the pre-
vious comparison.

We again used the five published ribosome profiling
datasets, in HEK293 cells (18,26), Zebrafish (11), mouse
liver cells (26) and cancer cell line PC3 (3) to test the four
methods. RPF reads of 1000 randomly selected consensus
protein-coding genes were considered as positives for trans-
lation, and the paralleled RNA-seq data was included to
mimic the negatives. The detailed results are provided in
Supplementary Table S2. ROC and precision curves were
prepared to illustrate the sensitivity and specificity of the
four methods (Figure 3A for HEK293 (Gao et al.) and
Zebrafish, and Supplementary Figure S4A for mouse liver
cells, PC3 cells and HEK293 (Calviello et al.)). Again,
RiboCode significantly out-performed the two supervised
methods and the de novo method RP-BP (Supplementary
Figure S4B). Indeed, when controlling the total number of
false positives, i.e. transcripts identified as actively trans-
lated based on the RNA-seq data, RiboCode recovered
many more coding genes based on the RPF data, than the
other three methods did (Figure 3B). These test runs there-
fore indicated the superior sensitivity and specificity of Ri-
boCode compared to the other existing methods.
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Finally, it is worth noting that owing to the efficient sta-
tistical design, RiboCode is very user-friendly and requires
little computation resource. Annotation of the full trans-
latome with the ribosome profiling dataset in HEK293 cells
(26) took about 8 min with RiboCode on a single-core com-
puter (8 core-minutes), which is trivial compared to Ribo-
Taper (∼20 h on a 16-core server, 3570 core-minutes), ORF-
RATER (82 core-minutes) and RP-BP (240 core-minutes)
(Supplementary Figure S5). Only RibORF takes the similar
computing time (6 core-minutes), but this does not include
the time for model training in its machine learning pipeline.

Validations of the predicted ORFs by QTI-seq data

Multiple studies have reported widespread alternative
translation initiation (9,35,36), which is suspected to be
context-dependent. A precise annotation of the translation
initiation sites is therefore critical for the complete assembly
of the translatome. Several bioinformatics tools have been
developed for searching of the AUG start codons from the
mRNA sequences, and only recently the ribosome profiling
data was used for training of the method in calling the AUG
and near–cognate start codons from the mRNA sequences
(37). Experimentally, blockage of elongation from the newly
assembled initiation complex with antibiotics such as har-
ringtonine and lactimidomycin (9,35) allows the efficient
screening of the translation initiation sites with ribosome
profiling. However, such experimental setting is not a com-
mon practice in the previous and recent ribosome profiling
experiments. After all, one of the primary goals of ribosome
profiling is to quantify the translation efficiencies (TE), and
blocking the translation elongation would make such appli-
cation unfeasible.

Therefore, it would be greatly beneficial to have a method
that can precisely allocate at least some of the translation
initiation sites directly from the regular ribosome profiling
data.

We used a QTI-seq dataset that comprehensively mapped
the translation initiation sites of the coding genes in
HEK293 cells (26), to test the performances of RiboCode
and the other existing methods in correctly annotating the
real start codons with the ribosome profiling data in the
same cellular context. The results of all the methods, for a
complete translatome annotation with the regular ribosome
profiling data in HEK293 cells (26), were provided in Sup-
plementary Table S3, in which the detailed information of
the ORFs including the initiation sites can be found. How-
ever, RP-BP and RibORF were not designed for annotat-
ing the translation initiation sites, and therefore they were
not included in the following comparison. The accumula-
tion curves were prepared to show the proportions of the
presumably true initiation sites (identified by QTI-seq) that
were correctly recovered by the three methods with the ribo-
some profiling data (Figure 4A). It appears that RiboCode
is indeed more efficient in annotating the translation initi-
ation sites. It is worth noting that ORF-RATER generated
the ORF predictions that were much fewer than all the other
methods did (also seen in Figures 3B and 4B). As reported
in its original article, ORF-RATER was designed to capture
the most high-confidence ORFs and expected to have a high
false negative rate (21). In fact, the more preferred applica-

tion scenario for ORF-RATER, by design, would be mining
of the ribosome profiling datasets from the untreated cells
in parallel with the cells treated with the antibiotics such as
harringtonine and lactimidomycin that inhibit translation
elongation (21).

By capturing the accumulated ribosomes at the initiation
sites due to stalled translation elongation, the QTI-seq data
was also used to predict the actively translated ORFs of the
coding genes, including both the annotated main coding se-
quence (CDS) and unannotated ORFs, such as the uORFs
and the previously discussed overlapping ORFs. We then
evaluated the overlaps between the ORFs inferred from the
QTI-seq data and the ORFs identified by RiboCode and
the existing methods with ribosome profiling data. The ac-
cumulation curves (Figure 4B) indicate the proportions of
the ORFs from the QTI-seq data that were also identified by
the different methods with the ribosome profiling data, and
clearly, RiboCode illustrated higher sensitivity to the ORFs
identified by QTI-seq (Figure 4B). In other words, with the
same total number of predicted ORFs, RiboCode recovered
more ORFs that were also supported by QTI-seq data, than
the other methods did. These include the previously anno-
tated protein-coding ORFs, uORFs, dORFs and overlap-
ping ORFs (Figure 4C–F). With a pre-set total number of
predicted ORFs (9000 as shown on Figure 4B, to fit the
result of RibORF), RiboCode identified the largest num-
ber of annotated coding ORFs, with the highest validation
rate by QTI-seq (Figure 4C). As a result, RiboCode identi-
fied fewer of the other types of ORFs (uORFs, overlapping
ORFs, and dORFs) than some other methods did (Figure
4D–F), which is expected given the same total number of
ORFs identified by each method. Nevertheless, among the
four methods (ORF-RATER excluded due to the small size
of its result), RiboCode had the highest validation rates of
the predicted uORFs and overlapping ORFs, by QTI-seq
(Figure 4D and E).

The translatomes assembled by RiboCode and supports from
MS data

Collectively, the results above illustrate the sensitivity and
accuracy of RiboCode for comprehensive de novo annota-
tion of the translatome with ribosome profiling data. We
then summarized the different types of ORFs recovered by
RiboCode and the other existing methods, with two pub-
lished ribosome profiling datasets in the HEK293 cell (26)
and Zebrafish (11) (Figure 5). The detailed results are pro-
vided in Supplementary Table S3 (HEK293) and 4 (Ze-
brafish). The protein or peptide products from these ORFs
were further validated, in a cell type-specific manner, with
published Mass Spectrometry (MS) data of the HEK293
cell and Zebrafish (Figure 5, Supplementary Table S5). With
both the HEK293 and Zebrafish data, the total sets of
ORFs identified by RiboCode had the highest validation
rates, among all the methods, with ORF-RATER excluded
for comparison (Figure 5). Furthermore, for various sub-
categories of the ORFs, while RP-BP or RiboTaper in some
cases delivered slightly higher validation rates, RiboCode in
general performs well and balanced in recovering the un-
canonical ORFs that are supported by the MS data (Figure
5). These validated ORFs include many previously unanno-



PAGE 9 OF 15 Nucleic Acids Research, 2018, Vol. 46, No. 10 e61

Figure 4. Validations of the ORFs with QTI-seq data. (A, B) Accumulation curves showing proportions of the initiation sites (A) and the annotated ORFs
(B) identified by QTI-seq that were recovered by RiboCode or other existing methods. (C–F) The cutoffs of all the methods (except ORF-RATER) were
set so that they yielded the same total number of predicted ORFs, as marked on the accumulation curve in panel (B). The bar plots show the numbers of
the previously annotated ORFs (C) and the uncanonical ORFs (D–F) identified by the different methods with ribosome profiling data. The proportions
of the annotated ORFs (C), uORFs (D) and overlapping ORFs (E) that are supported by the QTI-seq data were provided next to the bar plots and also
marked on the bar plots with darker colors. Under different categories of the ORFs, the highest proportions of validation were highlighted with dark red
color.

tated uORFs, dORFs, overlapping ORFs, and ORFs from
non-coding genes. Some examples were given in Supple-
mentary Figure S6A-D.

Comparisons of the uncanonical ORFs identified by Ri-
boCode and other existing methods

As discussed above, the systematic comparisons among the
different methods with simulated and real datasets have
illustrated the outstanding performance of RiboCode for
de novo annotation of the translatomes. Discovery and
functional analyses of the uncanonical ORFs, for example
uORFs, are of particular interest in the field of translation.
Therefore, we used the HEK293 dataset (Gao et al.) again as
an example and summarized the uncanonical ORFs identi-
fied by RiboCode and other existing methods (Figure 6A).
Compared to each of the existing methods, RiboCode an-
notated significantly different sets of uORFs, dORFs, and
overlapping ORFs (Figure 6A). Next, taking the uORFs as

examples, for the ones annotated by both RiboCode and
each of the existing methods (numbers in the parentheses
in Figure 6A), we found that the ranks of these ORFs by
RiboCode and the other methods were largely inconsistent
(Supplementary Figure S7A–D). Taken together, these data
indicated that RiboCode and the other existing methods be-
have differently when identifying and prioritizing the high-
confidence uncanonical ORFs.

Therefore, we looked into the top 10 uORFs with the
highest confidences inferred by different methods (indicated
by P-values for RiboCode and RiboTaper, Bayes factor
for RP-BP, ‘pvalue’ for RibORF, and ‘orfrating’ for ORF-
RATER), which are listed in Supplementary Figures S8–
S12. As shown by these case examples, all the 10 uORFs
with the top confidence levels predicted by RiboCode have
high in-frame reads, strong 3-nt periodicity, and are rel-
atively long (Supplementary Figure S8), which are all in-
dicative of active translation. For example, the first uORF
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Figure 5. De novo annotations of the translatomes and validations with MS data. Bar plots showing the proportions of the ORFs that are supported by
the MS data of HEK293 cells or Zebrafish. Provided on each of the bar plot are the number of predicted ORFs (top), by a particular method, and the
number of ORFs validated with the specific MS data (bottom). The validation results of all the ORFs (total) and the different sub-categories of the ORFs
are provided. Under each category of the ORFs (four bars in each column, except ORF-RATER), the one with the highest validation rate was outlined by
green color.

(ENSG00000183479 152713336) was recovered as the top
one by three methods including RiboCode, RiboTaper, and
RP-BP (Figure 6B, G, Supplementary Figure S8), whereas
RibORF did not render a top rank to this uORF and ORF-
RATER completely missed it (Figure 6G, Supplementary
Figure S8). In addition, another of these top 10 uORFs (the
ninth) was missed by both RP-BP and ORF-RATER, and it
was lowly ranked by RiboTaper (305th/491) and RibORF
(199th/316) (Figure 6C, G, Supplementary Figure S8).

Most of the top 10 uORFs annotated by RiboTaper were
also highly ranked by RiboCode (Figure 6G, Supplemen-
tary Figure S9), and they indeed showed strong spectrum
patterns of translation, except the sixth uORF, which had
a small read count and did not show a 3-nt periodicity as
strong as the other 9 (Figure 6D, Supplementary Figure S9).
Therefore, this indicates a potential misjudgement by Rib-
oTaper, whereas by contrast, RiboCode deprioritized this
uORF among the full list of uORFs (304th/414, Figure
6G), which we believe is appropriate.

Most of the top 10 uORFs identified by RP-BP have
relatively low in-frame read counts (Supplementary Figure
S10). It appears that these uORFs were highly ranked be-
cause their off-frame read counts were mostly 0, which gave
rise to seemingly high ‘in-frame to off-frame’ ratios. How-
ever, given the imperfect features of ribosome profiling data,
including the high sequencing noises, errors in P-site loca-

tions, and RNA contaminations, some of these top-ranked
uORFs are likely to be false positives, or at least should not
be granted such high priorities.

Similar to the results of RP-BP, many of the top uORFs
predicted by RibORF also have low in-frame read counts,
and their 3-nt periodicities are weak (Supplementary Figure
S11, and an example given in Figure 6E). By contrast, these
uORFs with little support from the read spectrums were left
out or deprioritized by RiboCode (Figure 6G, Supplemen-
tary Figure S11).

For ORF-RATER, the top 11 uORFs all have the same
highest score (Supplementary Figure S12). However, seven
of them are extremely short (15–21 nt). This makes it ques-
tionable whether these small uORFs were actually trans-
lated, even though some of them have high in-frame read
counts (an example given in Figure 6F). Most of these
uORFs were indeed lowly ranked or disregarded by other
methods (Figure 6G, Supplementary Figure S12).

In summary, the detailed comparisons between the
uORFs annotated by different methods, especially for the
top ranked ones, again showed the sensitivity and accu-
racy of RiboCode for discovery of the uncanonical small
ORFs with reliable evidence of translation. Importantly, Ri-
boCode outperformed the other existing methods in prior-
itizing the most likely translated ORFs, tolerating the dis-
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Figure 6. Uncanonical ORFs identified by RiboCode and other existing methods. (A) Total counts of the uORFs, dORFs, and overlapping ORFs that
were identified by five different methods. The numbers of ORFs identified by both RiboCode and each of the other four methods were provided in the
parentheses. (B, C) Two representative examples from the top 10 uORFs (Supplementary Figure S8) identified by RiboCode. (D) A representative example
from the top 10 uORFs (Supplementary Figure S9) identified by RiboTaper. (E) A representative example from the top 10 uORFs (Supplementary Figure
S11) identified by RibORF. (F) A representative example from the top 10 uORFs (Supplementary Figure S12) identified by ORF-RATER. (G) Ranks of
the five uORF examples above in the panels b-f by the 5 methods.

tractive noise, and in excluding the misleading data patterns
which resulted in false discoveries by other methods.

Application of RiboCode for annotating the context-specific
translatomes of yeast

We used the ribosome profiling data in yeast under three
conditions: normal, heat shock, and oxidative stress (25),
to showcase the application of RiboCode for de novo as-
sembly of the context-specific translatomes. Figure 7A and
B summarized the yeast translatomes under the three con-
ditions (details of the annotated ORFs are provided in Sup-
plementary Table S6). In general, RiboCode identified more
uORFs and dORFs being translated in the heat shock and

oxidative stress conditions, compared to the normal condi-
tion. Next, we compared the RPF read counts of the dif-
ferent ORF types in the translatomes between the stress
and normal conditions. The raw and normalized RPF read
counts of all the ORFs annotated by RiboCode are pro-
vided in Supplementary Table S7. While the previously an-
notated protein coding genes have similar overall distri-
butions of the RPF read counts, the uORFs and dORFs
showed markedly higher RPF read counts under the stress
conditions (Figure 7C, Supplementary Figure S13). This
is well in line with previous reports about translation of
uORFs in multiple organisms in response to various stress
signals (7,38–41).
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ORF categories Normal Oxidative Heatshock
annotated 4939 5086 4900
uORF 63 106 59
dORF 14 47 62
overlapping 310 492 331
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Figure 7. Application of RiboCode for assembly of the yeast translatomes under normal and stress conditions. (A, B) The composition of the translatomes
assembled by RiboCode, with the ribosome profiling data of yeast, under normal condition, oxidative stress and heat shock. (C) Distributions of the
normalized RPF read counts (log2) of the uORFs, dORFs and annotated CDS, under the three conditions: normal, oxidative stress and heat shock.
Mann–Whitney U tests were performed to assess the statistical significance of the difference between the distributions of uORF or dORF under heat
shock versus normal or oxidative stress versus normal condition. The P-values were provided in the figure.

Next, we looked into the RPF read counts of the uORFs
and the dORFs, together with their downstream or up-
stream main protein-coding ORFs. In Figure 8A–D, the
vertical bars, representing each of these uORFs (Figure 8A
and B) or dORFs (Figure 8C and D), were positioned ac-
cording to the fold-change of the downstream or upstream
main protein-coding ORFs, on the background of all the
annotated protein-coding genes (Figure 8E and F). These
bars were then color-coded based on the fold change of the
uORF (Figure 8A and B) or dORF (Figure 8C and D) un-
der the heat shock (Figure 8A and C) or oxidative stress
(Figure 8B and D) condition, compared to the normal con-
dition. It appears that the translational up-regulation of
some uORFs or dORFs were associated with stress-induced
translational repression of the annotated main coding ORF
of the same transcripts (the red vertical bars to the left
side of the spectrums in Figure 8A–D, and some examples
shown in Figure 8G–J). Indeed, many previous studies have
reported that activations of some uORFs result in transla-
tional inhibition of the downstream main protein-coding
ORF (7,9,35,41). On the other hand, many of the uORFs
or dORFs were positively associated with the translation of
the main coding ORF (the red vertical bars to the right side
and the blue bars to the left side of the spectrums in Fig-
ure 8A-D). This could be attributed to the general trans-
lational or transcriptional regulation of the mRNA tran-
scripts that harbor the main protein-coding ORF and the
uORF or the dORF. More data and further analysis would
be needed to fully elucidate the potential involvements of

the uORFs and dORFs in regulating the translation of the
main protein coding ORFs.

DISCUSSION

The collection of ribosome profiling data has been quickly
expanding, thus shaping the landscapes of translation in
various systems with increasing details. There is a clear
need for de novo annotations of the species- and cellular
context-dependent translatomes, which have largely lagged
behind the genome and transcriptome annotations (42). Re-
cently, multiple bioinformatics methods for such purpose
have been developed, and they have been nicely reviewed in
(24). The de novo methods including ORFscore (11), Rib-
oTaper (18), RP-BP (22), and our method RiboCode, were
all designed to assess the active translation mainly based on
the 3-nt periodicity. This feature was also the core of the
other machine-learning based methods (12,21). This is be-
cause under the current experimental settings of ribosome
profiling, 3-nt periodicity is the strongest and most efficient
feature for calling of the translation from the ribosome-
protected RNA fragments.

However, in practice, even if the RPF purification and li-
brary preparation procedures were properly performed, the
ribosome profiling data has, but not limited to, the follow-
ing features that complicate the data-mining procedure: (i)
discrete and sparse RPF reads along the ORF; (ii) uneven
distributions of the RPF reads; (iii) contaminations from
the untranslated RNA; (iv) errors of P-site allocation; (v)
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Figure 8. Associations of the uORFs and dORFs with the main protein coding ORF. (A–F) All the annotated canonical protein coding ORFs were sorted
based on the fold change of their normalized RPF read counts upon heat shock (E) or oxidative stress (F) versus the normal condition. On this background,
the ORFs with upstream uORFs (A, B) or downstream dORFs (C, D) in the same mRNA transcripts were marked as vertical bars. The color of these bars
represents the fold change of the RPF read counts on the uORF (A, B) or dORF (C, D). (G–J) Four examples of the uORF (G, I) or dORF (H, J) that
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read duplicates; (vi) limited coverage that varies across dif-
ferent datasets; (vii) highly variable lengths of the candidate
ORFs; (viii) various noise levels among the ORFs in the
same dataset. Therefore, it is critical to have an approach
that can robustly and precisely assess the 3-nt periodicity
due to active translation from such data that is far from
ideal.

The existing methods used completely different strate-
gies and statistical models for evaluating the spectrum
of ribosome profiling data. RiboTaper used the multita-
per strategy, a method previously developed for evaluating
the harmonic spectrums (18). RP-BP is an unsupervised
Bayesian approach that models the periodicity and eval-
uate the ORF by comparing with a uniform model (22).

ORFscore counts the total in- and out-of-frame reads (11).
It ignores the periodicity spectrum, and is not a statisti-
cally vigorous method. The other two methods (RibORF
and ORF-RATER) (12,21) rely on machine-learning of pre-
defined ORFs and thereby are not strictly de novo methods.
RiboCode was designed for de novo annotation of the trans-
latome, and was based on a modified Wilcoxon signed-rank
test to assess the oddness of consistently higher in-frame
reads along the whole ORF.

RiboCode takes advantage of the Wilcoxon signed-rank
test because of the following reasons. First, it is insensitive
to the potentially strong artificial in- or off-frame RPF sig-
nals at small fractions of the codons in the whole ORF. Such
artifacts are not rare in ribosome profiling data, due to the
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occasional RPF read duplicates potentially resulted from
the PCR amplification bias. The Wilcoxon signed-rank test
evaluates the whole spectrum and tolerates some outliers.
Second, the Wilcoxon signed-rank test is not distracted by
the codons with no RPF read, i.e. no evidence for either
active translation or the opposite. Third, this test is insen-
sitive to the background noise due to contamination of the
untranslated RNA or errors of P-site allocation. Last but
not the least, this statistical test is computationally cost-
effective, thereby rendering high computation efficiency of
RiboCode.

Designed for the comprehensive de novo annotation of
the translatome with ribosome profiling data, RiboCode
presents remarkable advantages. It has higher efficiency and
accuracy in calling the actively translated ORFs. Its capabil-
ity of recovering recoding events such as overlapping ORFs
and its consistent performance, which is largely indepen-
dent of the length, read count and coverage, assure the com-
prehensiveness of the translatome annotation. In addition,
RiboCode’s relatively consistent performance with different
noise levels and sequencing depths is another valuable fea-
ture for processing the various published ribosome profil-
ing data. Last but not the least, RiboCode requires very lit-
tle computational resource, thereby enabling routine large-
scale annotations of the context-dependent translatomes
with ribosome profiling datasets. In addition, the RiboCode
package provides other handy supporting functions, includ-
ing automatic selection of the reliable read lengths and
the P-site locations, counting of the reads of each ORF,
and convenient plot functions. We highly recommend Ri-
boCode to the community for the processing of published
and future ribosome profiling data to obtain more compre-
hensive understanding of the context-specific translatomes.

DATA AVAILABILITY

The RiboCode package is available at https://pypi.python.
org/pypi/RiboCode, https://anaconda.org/bioconda/
ribocode or https://github.com/xryanglab/RiboCode. A
detailed step-by-step instruction of the data pre-processing
and usage of RiboCode is also provided. The method
requires a genome FASTA file, a GTF file for transcrip-
tome annotation, and the alignment result file of the
ribosome profiling data. All our scripts used for running
RiboCode and the other existing algorithms have been
provided in Supplementary File 1 and also available at
https://github.com/xryanglab/ORFcalling.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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