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Amputation of the upper limb brings heavy burden to amputees, reduces their quality

of life, and limits their performance in activities of daily life. The realization of natural

control for prosthetic hands is crucial to improving the quality of life of amputees. Surface

electromyography (sEMG) signal is one of the most widely used biological signals for the

prediction of upper limb motor intention, which is an essential element of the control

systems of prosthetic hands. The conversion of sEMG signals into effective control

signals often requires a lot of computational power and complex process. Existing

commercial prosthetic hands can only provide natural control for very few active degrees

of freedom. Deep learning (DL) has performed surprisingly well in the development of

intelligent systems in recent years. The significant improvement of hardware equipment

and the continuous emergence of large data sets of sEMG have also boosted the DL

research in sEMG signal processing. DL can effectively improve the accuracy of sEMG

pattern recognition and reduce the influence of interference factors. This paper analyzes

the applicability and efficiency of DL in sEMG-based gesture recognition and reviews the

key techniques of DL-based sEMG pattern recognition for the prosthetic hand, including

signal acquisition, signal preprocessing, feature extraction, classification of patterns,

post-processing, and performance evaluation. Finally, the current challenges and future

prospects in clinical application of these techniques are outlined and discussed.

Keywords: hand gesture recognition, prosthesis hand, deep learning, pattern recognition, convolutional neural

network, recurrent neural network, surface electromyography

1. INTRODUCTION

For human, the worth of hand is indisputable. The hand is the most diverse and dexterous part
of the human body, which can execute various activities to interact with the environment by
adopting a variety of different motion strategies (Feix et al., 2016; Sartori et al., 2016). With the
rapid development of physiology, anatomy, mechatronics, and software, various types of prosthetic
hands have appeared in the market (Jiang et al., 2014a; Amsuess et al., 2016; Nissler et al., 2016),
such as i-Limb hand (van der Niet et al., 2013), SmartHand (Cipriani et al., 2011a), Michelangelo
hand (Luchetti et al., 2015), iCub hand (Schmitz et al., 2010), and HIT/DLR prosthetic hand
(Butterfass et al., 2001). These prosthetic hands have been developed withmore andmore degrees of
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freedom (DOFs) to achieve the goal of completing the amputees’
activities of daily living. However, because of the restriction
of human–computer interaction (HCI), the existing prosthetic
hands has great difficulty in reproducing the flexibility and
function of biological hands and the life of hand amputees is still
very difficult (Farina and Aszmann, 2014; Ortiz-Catalan et al.,
2015; Chadwell et al., 2016). Recently, biological signals, which
contain abundant information about the human body’s motion
intention, have shown broad prospects in HCI field. Specifically,
surface electromyography (sEMG) signals reflects information of
upper limb neuromuscular system, which has great potential for
controlling prosthetic hand (Saponas et al., 2008; Khushaba et al.,
2012; Farina et al., 2014a).

When skeletal muscles are activated by physiological neural
activity, sEMG records internal muscle’s electrical activity from
the surface of the skin and thus reflects the generation
and propagation of composite action potentials, which is the
collective action of motor units (Scheme et al., 2011; Farina and
Aszmann, 2014; Geng et al., 2016; Athavale and Krishnan, 2017).
sEMG control of prosthetic hands refers to a set of techniques
of extracting the available information from sEMG signal of the
upper limb and applying it to drive external device. The process
of hand movement is not instantaneous. With regard to hand
movements, skeletal muscle contraction can be mainly defined as
two types: dynamic and static. The former involves the change of
muscle fiber shape and the motions of upper limb joint, while the
latter involves the invariance of muscle fiber and upper limb joint
(Englehart et al., 2001; McGill, 2004; Gusman et al., 2017) (see
Figure 1). Corresponding, the sEMG signals can be regarded as
a random process and can be termed as two states: transient and
steady state, which can be used for detecting the motion classes
(Hudgins et al., 1993; Atzori et al., 2014).

The prosthetic hand is a product of human centered design.
Since sEMG signal is bioelectrical signal generated by the
interaction between human body and nervous system, the mode
of sEMG signal depends on both the user’s subjective intention
and the interaction environment. Understanding how humans
use their hands and how prosthetic hands are used in daily
life is the key to designing prosthetic hands. The upper limbs
of the human body, including the upper arm, elbow, forearm,
wrist, and hand, have 20+ DOFs. The muscle mass of the upper
limb is usually small and slender, and the muscle strength is
relatively weak, so the sEMG signal amplitude of the upper limb
is small, which increases the difficulty of sEMG analysis. It is
still unrealistic to recognize flexible upper limb motion based on
sEMG signal of several muscles, so it is necessary to simplify and
reconfigure the upper limb movement during activities of daily
living (Yang et al., 2014). At present, the focus of recognition is
the hand movement. Among the taxonomies proposed so far, the
GRASP taxonomy is a widely recognized classification method,
which is directly for the study of hand movement (Feix et al.,
2009, 2016). The hand grasping is divided into 33 categories
according to four parameters, including thumb position, power
type, opposition type, and virtual finger assignments. On the
basis of activities of daily living, work operation needs, kinematic
state, and force distribution (Bullock et al., 2013; Vergara et al.,
2014; Abbasi et al., 2016; Llop-Harillo et al., 2019) proposed

several similar dominant gesture categories, such as cylindrical
grasp, oblique palmar grasp, hook grasp, lumbrical grasp, power-
precision grasp, precision grasp, pinch grasp, tripod, pulp pinch,
lateral pinch, and non-prehensile grasp. According to the way
of interaction with external objects, Averta et al. (2020) divided
upper limb movements into three categories: intransitive, i.e.,
gestures, transitive, i.e., motion interacting with an object, tool-
mediated, i.e., motion of interaction between objects.

Generally, prosthetic hand has made significant progress,
which can meet the basic needs of amputees. However, most
control strategies follow the same operating principle: non-
pattern recognition and pattern recognition. The traditional
non-pattern recognition methods are usually used and limited
to on/off control, threshold control, and proportional control
(Belter et al., 2013; Hong Liu et al., 2016). sEMG pattern
recognition techniques have broken through the limitation of
non-pattern recognition and increased the dexterity of prosthetic
hand. sEMG pattern recognition is to extract multi-dimension
features from sEMG signals, rather than relying entirely on EMG
amplitude, which is usually used in non-pattern recognition. A
mature prosthetic hand design includes motion patterns and
related motion trajectories. Thus, the control algorithm needs
parameters, such as motion mode, motion orientation, and
kinematics. The pattern in sEMG contains abundant information
about the motion intention. Once the sEMG signals of the
expected motion intention are classified by pattern recognition,
the prosthetic hand would receive the command to perform the
corresponding action. Therefore, pattern recognition techniques
can make it easier for amputees to control their prosthetic hands.

To transform the complex and highly variable information
of sEMG signal into useful control signal of prosthetic hands,
advanced data analysis and pattern recognition techniques that
can describe and analyze big data are needed. The sEMG
pattern recognition techniques can be achieved with two primary
processing methods: machine learning (ML) and deep learning
(DL). ML, which is the method based on feature engineering,
could learn and perform tasks from the data input of automatic
modeling. For conventional machine learning algorithms, there
are limitations in processing raw data, because they could
not effectively train on inconsistent, noisy, abstract, and high-
dimensional data (Wang et al., 2019). Meanwhile, a large
number of studies show that the performance of sEMG pattern
recognition relies heavily on heuristic hand-crafted feature. DL,
which is the method based on feature learning, is a branch of
machine learning. The feature of DL lies in its hierarchical model
architecture. The model architecture with deep layers could
extract high-level feature information in multiple representative
layers and hidden layers (Côté-Allard et al., 2020). These
computational models allow feature extraction and model
building procedures to proceed simultaneously, so that features
can be learned automatically without hand-crafted, which is
more suitable for complex gesture recognition (LeCun et al.,
2015; Naik et al., 2016). It has performed excellently well in the
development of intelligent systems, including image recognition,
machine translation, speech recognition, and automatic driving.
In recent years, more and more physiological signal analysis and
processing have begun to take advantage of DL, which motivated
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FIGURE 1 | The surface electromyography (sEMG) data of a gesture.

the study of DL in pattern recognition of sEMG (Atzori et al.,
2016; Du et al., 2017; Zhai et al., 2017). Parajuli et al. (2019)
reviewed the application of machine learning in sEMG pattern
recognition of prosthetic hand. It found that almost all the
data used by traditional ML methods come from steady-state
signals, but the sEMG signals generated by gestures in daily life
are transient. Transient-state analysis is a very challenging task
suitable for DL processing.

Although pattern recognition techniques have been applied to
sEMG research for decades, DL has only been applied in recent
years. With the emergence of large sEMG data sets and the latest
development of optimization algorithm, DL has shown brilliant
prospects in the field of sEMG pattern recognition for prosthetic
hand. At present, there are many basic researches on gesture
recognition based on sEMG and DL. However, as far as we know,
there is no literature review on these gesture recognition models.
Based on the investigation of related papers in recent years,
this review makes a comprehensive analysis of the application
of DL techniques in the field of prosthetic hand based on
sEMG, including the commonly used DL model for upper limb
motion intention prediction, the advantages of DL model, and
the performance level for system verification. The contribution
of this review is mainly in three aspects: (1) we comprehensively
analyze the overall structure of DL in sEMG-based gesture
recognition; (2) we comprehensively review the latest methods
and technologies of sEMG based gesture recognition; (3) we
raise the existing challenges and promising research prospects
of sEMG based on motion intention recognition in prosthetic
hand field.

2. PATTERN RECOGNITION-BASED SEMG

The approaches of gesture recognition model are very similar,
but the method of each stage is different; in addition, not
all studies use all stages of standard structure. Considering
this, we propose a standard approach composed of six parts,
which are data acquisition, data preprocessing, feature extraction,
classification of patterns, post-processing, and performance
evaluation. Figure 2 shows the six stages of the standard
approach of sEMG signal pattern recognition based on DL.

2.1. Data Acquisition
The sEMG signals are collected from sEMG sensors, which could
adopt two different acquisition criteria, sparse multi-channel
sEMG and high-density sEMG (HD-sEMG), in the density of the
employed electrodes of view (Costanza et al., 2007; Saponas et al.,
2010; Patricia et al., 2014).

The sparse multi-channel sEMG generally takes an accurate
anatomic localization strategy over the muscle (Castellini et al.,
2009). In this configuration, only several paired sensors are
placed over the muscles, so gesture labels are usually assigned to
sEMG. NinaPro is a typical public database for this configuration,
which contains most gestures needed in daily life (Atzori et al.,
2014). And there are two modeling methods: extracting feature
combination in the light of time window or temporal modeling
based on sequence information. HD-sEMG is a dense sampling
approach, which is the recording of a high channel count of
spatially and densely distributed sEMG electrodes and allows
measurement of the spatial distribution of motor unit action
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FIGURE 2 | The six stages of the standard structure of the model.

potentials. Using this technique on, and around, the forearm
allows the detection and classification of multiple muscles
interaction as present in gesture recognition problems with a
single easy-to-install array of electrodes (Fukuda et al., 2003;
Tenore et al., 2009; Li et al., 2010b). CapgMyo and csl-hdemg
are two typical open databases of HD-sEMG (Amma et al., 2015;
Geng et al., 2016). In this category, the instantaneous value
can represent the measured value of a specific muscle activity
during the transformation process, so the sEMG signal window
can be converted into feature vector or HD-sEMG map. The
spatiotemporal distribution of sEMG activity can be gotten.

Both categories have advantages and disadvantages. Sparse
multi-channel sEMG have less data to transfer and low cost of
hardware resources; however, it is very sensitive to the domain
change of sEMG signal, which is the inherent characteristic of
sEMG signal. In contrast, HD-sEMG captures the spatial and
temporal distribution of motor unit action potentials in muscles
through a two-dimensional array of electrodes. This technique
increases the amount of data collected and has high recognition
efficiency and control quality. For DL, the final prediction
results are immediately affected by the quality and quantity of
inputs, so the application of HD-sEMG seems to be an effective
method to solve myoelectric control problems (Donovan et al.,
2018; Nougarou et al., 2018; Tam et al., 2020). However, the
increase in the number of electrodes means more complex analog
front-end and processing facilities, and additional computing
requirements brought by processing algorithms, which depend
on the development of hardware devices.

2.2. Pre-processing
The sEMG signal is a multi-channel biomedical signal, its data
recording is easily affected by the external environment,
biological tissue interference, muscle fatigue, electrode
displacement, so there is a lot of noise and non-stationarity,
which may obscure important information about muscle
electrical activity. When the sEMG signals need to be processed

by pattern recognition technique, sEMG signals needs to be
converted into input signals suitable for feature extraction
or DL. Reliable preprocessing techniques are essential for
extracting serviceable information in the next step of the
analysis. Before motion recognition, the following three steps
of preprocessing are usually used: smoothing, normalization,
segmentation (Farina et al., 2004, 2014b; Ma et al., 2020).

2.2.1. Smoothing
sEMG is a noisy signal. This means that the probability
distribution of the sEMG changes with time. And we can reduce
the non-stationarity of sEMG by smoothing, which generally uses
the following two steps: rectification and filtering.

Rectification: In this, there is a positive and negative voltage in
the sEMG signal, due to the repolarization and depolarization of
muscle fibers.

Filtering: It is used to discard noise and extract essential
information. Based on the Nyquist–Shannon sampling theorem,
since about 95% of the sEMG signal power is concentrated at
400–500 Hz (Clancy et al., 2002; Li et al., 2010a), the lowest
sampling frequency of the sensor must be more than twice the
highest frequency of the sEMG (Ajiboye and Weir, 2005; Chu
et al., 2006). Meanwhile, the filter also uses low-pass filtering
method, or moving average method is used, which could be
regarded as a special low-pass filter. For moving average method,
some features (such as MAV, ARV, or RMS) are computed by
windowing the signals, and then to average the features of all
channels, or compute directly the features of the average of all
channels (Benalcázar et al., 2017).

2.2.2. Normalization
The sEMG signals from different subjects, even different sessions,
have enormous differences. In order to compensate for these
differences, it is necessary to normalize the data (Ma et al., 2020).
Normalization refers to the current amplitude was converted
to a percentage of the original or smoothed sEMG amplitude
(Clingman and Pidcoe, 2014). The advantage of normalization
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is that it is simple and accurate, the result has nothing to do
with repeatability, and it can improve the accuracy of the model.
The disadvantage is that all components analyzed must be fully
peaked and separated in the same session (Farina et al., 2010).

2.2.3. Segmentation
The segmentation stage consists of two sections: gesture
detection and sliding windowing.

In order to speed up training and improve the accuracy of
prediction, it is usually necessary to detect the region of the sEMG
corresponding to gesture, in other word, muscle activity, and
removing signals where the muscles are rest. A threshold should
be determined, and then all the instants greater than or equal to
the threshold are extracted from the smoothed signal. The first
of these instants is the beginning of the muscle activity region,
and the last instant is the end of the activity region (Zhang et al.,
2011, 2020; Benalcázar et al., 2017; Qi et al., 2020). As depicted
in Figure 3, CH1-8 are eight channel sEMG signals, and S2 is the
standard deviation of eight channel sEMG signals calculated by
moving average method.

In the field of prosthetic hand sEMG control, the optimal
sliding window length can guarantee the minimum classification
error with suitable controller delay (Hudgins et al., 1993). Too
long sequence may cause system long processing delay, while
too short window may not contain enough useful information.
For a reliable prosthetic hand control system, the maximum
allowable delay between signal generation and drive command
generation should not exceed 300ms (Hudgins et al., 1993). Study
in Englehart and Hudgins (2003) show that 150–250ms windows
for sEMG are the best for mechanical sensors. Nielsen et al.
(2011) proved that the performance of the system will decline
when the sliding window length is <100 ms. Windows may be
either disjoint or overlapped. Real-time continuous classification
not only needs high classification accuracy but also requires rapid
response (Huang et al., 2009). The overlapping analysis window
method can accelerate the decision (Englehart and Hudgins,
2003). The key to the scheme is to set the window increments
carefully. In terms of hardware processing power, overlapping
analysis windows that generate fast and dense decision flows are
usually preferred.

2.3. Feature Extraction
In order to achieve better accuracy and robustness, DL
techniques needs not only a good algorithm but also a good input.
There are two input methods: (1) traditional manual feature
extraction method is used to increase the data density of sparse
multi-channel sEMG; (2) the raw sEMG signal is directly input
into the network to realize end-to-end learning.

2.3.1. Traditional Feature Extraction Method
For the traditional feature extraction methods, many researchers
are devoted to propose new features based on professional
knowledge (Khushaba et al., 2017), or to present new feature
sets by analyzing existing features (Phinyomark et al., 2009,
2012a; Bi et al., 2019). The goal of feature extraction is to
increase the information density implicit in sEMG signals, and
improve the difference between gestures (Oskoei and Hu, 2007).

The classical features contain considerable heuristic knowledge;
thus, integrating these classical features with DL approaches
could improve the gesture recognition performance on sparse
multichannel sEMG. The existing sEMG features can be divided
into four types: time domain features (TD), frequency domain
features (FD), time-frequency domain features (TFD), and
parameter model (Oskoei and Hu, 2008; Phinyomark et al., 2013;
Jali et al., 2015; Nazmi et al., 2016).

Time domain features: The TD values are calculated directly
from the raw sEMG, which are functions of time. Compared with
other features of sEMG, they have low computational complexity
and have been widely used. There are no <27 time domain
features of sEMG, but most of them are redundant. Time domain
features constantly used consist of waveform length (WL), mean
absolute values (MAV), integrated EMG (iEMG), histogram
(HIST), root mean square (RMS), zero crossings (ZC), standard
deviation (SD), slope sign change (SSC), Willison amplitude
(WAMP), variance (VAR), V-order (V), simple square integral
(SSI), and so on, which are often used in combination. The
detailed information is shown in Table 1.

Frequency domain features: The FD features are calculated
by Fourier transform of the autocorrelation function of sEMG
signal and estimated by periodogram or parameter method.
The common frequency domain characteristic of sEMG signal
is frequency ratio (FR), total power (TP), mean power (MP),
median frequency (MDF), mean frequency (MNF), power
spectrum (PS), and so on. The detailed information is shown in
Table 1.

Time-frequency domain features: The TFD features are
expressed as locating the energy of sEMG signal both in time
and frequency, which is usually an important approach in
feature extraction. The typical representative of time-frequency
analysis is wavelet transform (Joshi et al., 2015). Different wavelet
coefficients constitute different frequency bands and statistical
index are extracted as TFD features. When db4 is used as the
wavelet basic function, the raw sEMG signal is decomposed with
the level of 3 and the wavelet transform equation is defined as:

WT = 1√
a

∫ +∞

−∞
f (t)ψ∗

(

t − τ
a

)

dt

where a is the scale parameter, ψ (t) is the mother wavelet, and
τ is the translation parameter. ni is the length of the ith level
decomposition coefficient ci (ci = one of [cD1, cD2, cD3, cA3]);µ
is the mean of ci (Liang et al., 2019). In this case, the typical TFD
features include mean of the absolute coefficient ci (MOACi),
average power of the coefficient ci (APOCi), standard deviation
of the coefficient ci (STDOCi), ratio between MOACi+1 and
MOACi.

Parameter model: The basic principle of the parameter model
is to regard it as a time series based on sequence information in
the raw sEMG. Because sEMG signal is steady on short notice,
the coefficients and intercept of the fourth-order autoregressive
model are often selected as the characteristic values (Phinyomark
et al., 2012b).
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FIGURE 3 | The curves of surface electromyography (sEMG) and the motion detection result (Zhang et al., 2020).

2.3.2. sEMG Image
Inspired by the spatiotemporal characteristics implied in the
HD-sEMG and the end-to-end learning characteristics of DL,
the method of hand gesture recognition using the sEMG image
formed from the raw sEMG was proposed. The two-dimensional
array distribution of electrodes in HD-sEMG allows us to analyze
sEMG information in spatial domain, which makes it possible to
analyze sEMG signals using image processing techniques. The
pixels of sEMG image can be defined by the distribution of
electrode array, that is, the row and column of electrode. This
creates an image with size L×W × H, where L is the number of
frames and the number of color channels of the sEMG image,W
is rows of the array electrode and the width of sEMG image, and
H is columns of the array electrode and the height of sEMG image
(Geng et al., 2016). There are four kinds of image representation
methods of raw sEMG signal, which are composed of raw-image,
signal-image, activity-image, and feature-signal-image (Hu et al.,
2018). The input of these method is a time-window sEMG signal
whose size is L × C, where L is the length of the time window
or the number of color channels of sEMG image, and Cis the
number of signal channels or the height of sEMG image. The
raw-image method is gained by transforming the input signals
into images with size L×W×C orW×L×C, whereW is the width
of sEMG image andwidth×height = signalchannels (Atzori et al.,
2016; Zia ur Rehman et al., 2018b). The signal-image is obtained
by realigning the information of each channel with size L×W×C
or W × L × C. The activity-image is formed by fast Fourier
transformation of signal-image with size L×W×C orW×L×C.
The feature-signal-image is based on the signal image to process
the traditional feature extraction method for each channel signal,

whose size is F × L × C, where F is feature set selected and
featuredimension = signalchannels × featurevectordimension.
Figure 4 is a representation of the first three sEMG images. An
instantaneous sEMG image is a single sample of a motor unit
action potential distribution under an electrode grid at a specific
time, which could reduce the time required to process the signal.
The number of instantaneous sEMG images captured per second
is the sampling frequency in time.

2.4. Classification
2.4.1. Convolutional Neural Network
Convolutional neural network (CNN) is the most extensive
applications for DL architecture based on sEMG gesture
recognition. Park and Lee (2016) proposed a user-adaptive
CNN model, which is the first DL-based architecture applied
to sEMG signals, to classify data from the Ninapro database
resulting in a better classification accuracy and robustness of
variability compared to support vector machine. Atzori et al.
(2016) introduced a modified version of the well-known CNN
architecture, called LeNet, to classify an average of 50 hand
movements in NinaPro database. The results show that CNN
could produce more accurate classification accuracy compared
to traditional techniques (Linear Discriminant Analysis, Support
Vector Machine, and k-Nearest Neighbor). Consider the
correlation between specific muscles and gestures, Wei et al.
(2019) adopted a “decomposition-and-fusion” approach for
gesture recognition based on sEMG, which was called two-stage
multi-stream CNN strategy and proved that the performance of
multi-streamCNN is better than random forest and simple CNN.
Chen J. et al. (2020) took advantage of 3D CNN in processing the
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TABLE 1 | Features according to the domain.

Category Feature Formula Explanation

Time domain WL WL =
N−1
∑

i=1

|xi+1 − xi | Comprehensive information about frequency, duration and amplitude of signal

MAV MAV = 1
N

N
∑

i=1

|xi | Indication of muscle contraction levels

iEMG iEMG =
N
∑

i=1

|xi | An onset detection index

RMS RMS =
√

1
N

N
∑

i=1

x2i A feature modeled as amplitude modulated Gaussian random process

ZC

ZC =
N−1
∑

i=1

f (∆i) ,∆i = |xi+1 − xi |

f (∆i) =







1, xixi+1 < 0 and ∆i > th

0, ot

A feature that provides an approximate estimation of frequency domain properties

V V =
(

1
N

N
∑

i=1

xvi

)

1
v

A non-linear detector for implicit estimation of muscle contraction force

SSC

SSC =
N−1
∑

i=2

f (∆i) ,

f (∆i) =







1, ∆i ≥ th

0, ot
,

∆i = (xi − xi+1)× (xi − xi−1)

A method that represent the frequency information of signal

VAR VAR = 1
N−1

N
∑

i=1

x2i A power index of the sEMG signal

WAMP

WAMP =
N−1
∑

i=1

f (∆i) ,

f (∆i) =







1, ∆i > th

0, ot
,

∆i = |xi+1 − xi |

Indicator of the level of muscle contraction

SSI SSI =
N
∑

i=1

x2i An energy index of the sEMG signal

Frequency domain TP TP =
M
∑

j=1

pj An aggregate of the sEMG power spectrum

MP MP = 1
M

M
∑

j=1

pi An average power of the EMG power spectrum

MNF MNF =

M
∑

j=1
fjpj

M
∑

j=1
pj

Average frequency

MDF
MDF
∑

j=1

pj =
N
∑

j=MDF
pj = 1

2

M
∑

j=1

pj A frequency that divides the sEMG power spectrum into two equal amplitude regions

Notations: N is the length of sampling points, xi is the sEMG signal of the ith sampling point, M is total number of the frequency bin, pj is the sEMG power spectrum of jth frequency

bin, fj is frequency of the spectrum of jth frequency bin, th is threshold, and ot is otherwise.

FIGURE 4 | Three surface electromyography (sEMG) image representation methods based on raw signal (Hu et al., 2018).
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data that was implanted in the finger movement to process HD-
sEMG. Due to toomany parameters of CNNmodel, Chen L. et al.
(2020) designed a compact network structure, which cannot only
effectively reduce the complexity of the model but also improve
the accuracy of prediction. Based on several fundamental factors,
such as pre-processing, hyperparameters, and network structure,
Park and Lee (2016), Tsinganos et al. (2018), Asif et al. (2020),
Chen L. et al. (2020), and Triwiyanto et al. (2020) studied the
techniques of optimizing the performance of CNN model. There
are other CNN-based researches for sEMG center at improving
the scalability of themodel through domain adaptation (Du et al.,
2017) or self-recalibrating classification (Kyranou et al., 2018).
CNN also performs well in synchronous sEMG recognition
(Ameri et al., 2018). There are also many papers that apply CNN
architecture to embedded systems (Côté Allard et al., 2016; Tam
et al., 2020).

2.4.2. Recurrent Neural Network
One of the most important advantages of CNN is that it can
automatically learn spatial features from input data or extract
unlabeled features. However, the sEMG is the form of time
series signal essentially, which is more suitable for recurrent
neural network (RNN) that has dominant position in processing
temporal or otherwise sequential information (Hu et al., 2018).
Simao et al. (2019) compared the performance of RNN and
feed-forward neural network (FFNN) on the recognition of
hand gestures. It is proved that the dynamic models (RNN)
with fewer parameters can achieve similar accuracy to the static
model (FFNN), and the training and inference time is shorter.
He et al. (2018) propose a model combining long short-term
memory (LSTM) network and multiplayer perceptron (MLP)
for feature learning and classification of sEMG signals. The
former captures the temporal dependence of sEMG signals,
while the latter focuses on static characteristics. The accuracy of
motion classification is improved by constructing a feature space
containing dynamic and static information of sEMG signals.
Nasri et al. (2019) studied the performance of gated recurrent
unit (GRU) in hand gesture recognition approaches for first time.
Zhang et al. (2020) proposed a novel RNNmodel with short delay
for gesture recognition, which could generate an instantaneous
prediction after the start of gesture motion at each sampling
time step. RNN is also widely used for continuous limb motion
estimation (Bengoetxea et al., 2014; Xia et al., 2018; Wang et al.,
2020).

2.4.3. Combination of CNN and RNN
The hybrid CNN–RNN architecture can obtain excellent
performance in spatial and temporal features, while CNN or
RNN can extract only one kind of feature of sEMG. Hu
et al. (2018) directly connected LSTM and CNN into a unified
structure, and utilized the raw sEMG as input signal for dynamic
recognition of gestures. Wu et al. (2018) proposed LCNNmodel,
which first leveraged LSTM to preserve the temporal information
of sEMG to reduce the loss of temporal information, and follow
CNN was used to extract spatial feature information. Tong et al.
(2019) introduced a dual-flow network structure. The upper
layer was a multi-layer CNN structure, and the lower layer was

composed of multiple LSTMs. By learning the fusion information
of the two layers, the model can extract the spatiotemporal
features efficiently.

2.4.4. Temporal Convolutional Network
In order to obtain higher classification accuracy and lower
performance degradation in multi-day sessions, DL models
often have many layers and neurons, and are based on
complex architecture (Bahador et al., 2020). Recently, temporal
convolutional network (TCN) has been gradually applied to the
research work for sEMG-based gesture recognition, which takes
advantage of a one-dimensional convolution layer running along
the time dimension to learn the time dependence of a given input
signal. Betthauser et al. (2019, 2020) utilized the history of sEMG
signals to discover the temporal features, which improves the
accuracy and stability of motion intention prediction, especially
during the transitions between classes. Tsinganos et al. (2019)
achieved high accuracy that surpasses the result obtained with
CNN on the 53 classes tasks. Zanghieri et al. (2020a,b) apply TCN
to embedded devices and prove that the performance of TCN is
better than the classical MLmethod in terms of the limited power
budget and computing resources.

2.4.5. Unsupervised Learning
The methods mentioned above, including CNN, RNN, and TCN,
are all supervised learning approaches. In the pattern recognition
techniques based on sEMG, these approaches are dominant;
however, unsupervised learning methods have been gradually
applied to this field in recent years. The application of supervised
learning involves a labeled training dataset, while unsupervised
learning approach has minimal or no requirement for data
labeling, potentially reducing human errors in annotation. At
present, unsupervised learning approaches in DL techniques are
mainly divided into two categories: one is autoencoders (AE),
whose goal is to recover the original data as lossless as possible
from the abstract data; the other is probabilistic restricted
Boltzmann machine (RBM) and its improved algorithm deep
belief network (DBN), whose goal is to maximize the probability
of the original data appearing when the RBM reaches a stable
state. AE are data compression algorithm, which use efficient
data encodings to map noisy input data into clean output
(Le, 2015). Vujaklija et al. (2018) used AE and advanced
industrial control algorithm to realize the sEMG control task
of upper limb with 2 DOFs, which effectively proved that the
performance of AE slightly outperformed the state-of-the-art
factorization algorithms, i.e., non-negative matrix factorization.
Zia ur Rehman et al. (2018a) evaluated the performance of AE
and LDA using multi-session sEMG data from the healthy and
amputees, and proved that AE could significantly improve the
performance of the pattern recognition techniques based on
sEMG. Zia ur Rehman et al. (2018b) compared CNN and AE on a
multi-session dataset. The results showed that AE outperformed
CNN in intra-session analysis, but CNN had stronger robustness
and higher computational efficiency. DBN is a generation model
composed of explicit neurons and implicit neurons, in which
the former are used to receive signal input and the latter are
used to extract features. By training the weights of each neuron,
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it can automatically learn features to realize signal recognition
and classification. Shim and Lee (2015) proposed using DBN
to recognize multi-channel EMG signals, and found that the
classification performance of DBN was better than LDA, SVM,
and BP. Zhang J. et al. (2019) developed DBN to deal with
the non-linear and time-varying properties of sEMG signal,
and proved the potential of DBN through the measured data.
Although one of the advantages of unsupervised learning is that
it eliminates the need for manual tagging, self-training strategy
is likely to increase classification errors, especially with data
distribution mutation (Huang et al., 2017; Côté-Allard et al.,
2020).

2.4.6. Other DL Methods
Apart from the abovemethods, there aremany other DLmethods
applied to sEMG pattern recognition. Because of the simplicity
of the structure, fully connected neural networks (Neacsu et al.,
2019), BP neural network, and artificial neural network (ANN)
(Mane et al., 2015; Liu et al., 2017; Yang and Zhang, 2019;
Zhang Z. et al., 2019) are also commonly used for offline and
real-time identification of sEMG. Time delay neural network
(TDNN) is an established neural network architecture for time
series processing. TDNN uses tapped-delay lines to process the
temporal range of key features in the input signal to provide
a short-term memory that can be fed into the traditional feed-
forward network architecture (Waibel et al., 1989). TDNN has
two advantages. First, it does not rely on repeated isometric
contractions and can be used to identify instantaneous muscle
contractions based on natural motion. Second, it can recognize
the motion of 2 DOFs at the same time (Smith et al., 2009).
TDNN processing of combined with sEMG and kinematics
data could show excellent performance in the prediction of
simultaneous motion of shoulder joint and elbow joint (Kwon
and Kim, 2011; Blana et al., 2016; Day et al., 2020). Since the
quantity of training datasets in DL affects the performance of
the model, the limited datasets collected from multiple topics
should be first extend by certain data-augmentation approaches
that can also enhance the robustness of the model (Tsinganos
et al., 2018; Yang et al., 2018; Côté-Allard et al., 2020). Moreover,
due to the nature of the training in a neural network, the process
of transfer learning is very straightforward (Yosinski et al., 2014;
Côté-Allard et al., 2019). Table 2 presents a summary about the
structure of some models in this review.

2.5. Post-processing
In recent years, a massive amount of research on the robustness
and usability of sEMG control system. The post-processing
techniques play a very important role in this condition (Yu et al.,
2020). When the classifier is used to decode sEMG signals from
different finger movements, the post-processing techniques are
usually used to prevent the prosthesis controller from being
overloaded due to a host of classification instructions, and to
gain better performance of the classifier by eliminating the
wrong classification caused by unexpected actions (Englehart and
Hudgins, 2003; Zhang et al., 2017; Samuel et al., 2019). The
commonly used post-processing techniques could be roughly
divided into three categories. The first strategy is to use
multiwindow joint decision-making, which is based on the

consistent decision of continuousmulti-windows to correct some
window errors. This method includes majority vote (Tam et al.,
2020), elimination of consecutive repetitions (Benalcázar et al.,
2018; Simao et al., 2019), threshold (Chung and Benalcázar, 2019;
Yang and Zhang, 2019), and Bayesian Fusion (Khushaba et al.,
2012). The second strategy is to use the confidence score to
determine the decision, i.e., to improve the classification accuracy
by rejecting unreliable decisions (Scheme et al., 2013). The third
is to tolerate some error classification directly and adopt special
control strategy to reduce the influence of error decision (Simon
et al., 2011).

2.6. Performance Evaluation
2.6.1. The Metrics Used to Evaluate Models
The accuracy of prediction generally is one of the leading
criterion that is employed to evaluate the functionality of
a pattern recognition model. However, when evaluating the
performance of the whole pattern recognition techniques based
on sEMG, more factors should be considered. In offline testing,
the performance of the model is generally evaluated by accuracy,
recall, precision, standard deviation, etc. (Mane et al., 2015;
Benalcázar et al., 2018; Chung and Benalcázar, 2019; Yang and
Zhang, 2019; Zhang Z. et al., 2019). And these measures usually
are classified as errormeasures, such asmean square error (MSE),
root mean square error (RMSE), normalized root mean square
error (NRMSE), and correlation coefficient (R) (Wang et al.,
2020). The mathematical equations of these measures and their
significance in the model are listed in Table 3. According to
these metrics, the results may be biased for two reasons: when
the prediction results of the model determine what gesture was
carried out and when was executed and by whom, the prediction
is regarded as true affirmation, but in the actual system, only
what gesture when was executed is considered. In addition, the
data of each category and each generator in the test set of the
model should be balanced, otherwise the accuracy of the model
will tend to be the same as that of the subjects with more data.
When building the real-time model, the system performance
measurement can measure the accuracy of the complete system
in real time. These measures are based on Fitts’ law (Fitts, 1954),
which is used to measure the prediction model of the target
performance of the designed system (Kamavuako et al., 2014;
Wurth and Hargrove, 2014; Ameri et al., 2019; Waris et al.,
2019; Xiao et al., 2020). These performance indicators include
six metrics, such as overshoot, throughout, path efficiency,
completion rate, average speed, and stopping distance (Table 4).

2.6.2. Multi-Session Evaluation
The traditional experiment design often uses the ideal data-
acquisition protocol, that is, in a conversation experiment, the
subjects are asked to repeat the same gesture many times in the
same session. In this case, the electrodes of sEMG sensor are kept
in the same position, but the differences of time, environment
and subjects in clinical and practical application are seldom
considered, especially the influence of electrode insertion and
removal (Yang et al., 2019). These factors would lead to different
distribution characteristics of sEMG sensors data in different
sessions, resulting in performance deterioration significantly
with the change of sessions, and limiting the long-term use and
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TABLE 2 | Standard structure used by the selected models.

Paper Dataset Subjects/sessions Classes/channels Time window Feature Classification Accuracy (%) Intra/Inter Real-time

Park and Lee (2016) NinaPro DB1 27/1 6/10 2,000 ms RMS time× ch. CNN N.A./94 No

Atzori et al. (2016) NinaPro DB1, DB2, DB3 78/1 52/10 150 ms mDWT, HIST, WL, RMS CNN N.A./66.59, 60.27, 38.09 No

Tsinganos et al. (2018) NinaPro DB1 27/1 53/8 200 ms RMS time× ch. CNN 70.5/N.A. No

Chen L. et al. (2020) Private 17/1 5/8 260 ms CWT CNN 98.81/N.A. No

Asif et al. (2020) Private 18/1 10/6 150 ms Raw sEMG CNN 92/N.A. No

Triwiyanto et al. (2020) Private 10/1 10/2 200 ms Raw sEMG CNN 93/N.A. No

Du et al. (2017) CapgMyo DBb 8/2 8/128 1 sample Instantaneous sEMG CNN 98.6/63.3 Yes

Chen J. et al. (2020) CapgMyo DBa 23/1 8/128 1 sample Instantaneous sEMG CNN 98.9/N.A. No

Wei et al. (2019) CapgMyo DBa 23/1 8/128 1 sample Instantaneous sEMG CNN 99.8/N.A. No

He et al. (2018) NinaPro DB1 27/1 52/10 400 ms Raw sEMG LSTM 75.45/N.A. No

Simao et al. (2019) NinaPro DB5 8/16 500 ms Standard deviation RNN 92.07 Yes

Nasri et al. (2019) Private 35/1 6/8 37.6 ms (4 ms) Raw sEMG GRU 80/N.A. No

Hu et al. (2018) NinaPro DB1 27/1 53/8 200 ms RMS CNN + RNN 87.0/N.A No

Wu et al. (2018) Private 4/1 5/8 260 ms (25 ms) Raw sEMG LSTM + CNN 98.14/N.A. No

Tong et al. (2019) Private 8/1 5/18 SampEn, ZC, MAV Dual-Flow Network 78.31/N.A. No

Betthauser et al. (2019) Private 9/1 27/8 1675 ms 20 ms-MAV TCN 69.5/N.A. No

Tsinganos et al. (2019) NinaPro DB1 27/1 52/10 300 ms, 2,500 ms RMS TCN 89.76/N.A. No

Zanghieri et al. (2020a) Private 3/20 9/8 150 ms Raw sEMG TCN 97.1/93.7 Yes

Betthauser et al. (2020) Private 15/1 3/8 200 ms (25 ms) MAV, WL, VA, SSC, ZC ED-TCN 72.1/N.A. No

Zanghieri et al. (2020b) NinaPro DB6 10/10 7/14 150 ms RMS TCN 71.3/65.0 No
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TABLE 3 | The commonly used offline performance metrics.

Evaluation metric Mathematical definition Explanation

Accuracy Accuracy = TP+TN
TP+FP+TN+FN It is the proportion of the corresponding gesture recognized by the

model in all the data.

Recall Recallk = TPi
TPi+FNi It is the proportion of correctly recognized data in a gesture class.

Precision Precisionk = TPi
TPi+FPi It is the proportion of a class of gestures correctly recognized

among the gestures recognized by the model.

F1scorek F1scorek = 2× Precisioni × Recalli

Precisioni + Recalli

Standard deviation of the accuracy per user (SDusers) SDusers =
√

∑n
i=1(Accuracyuser(i)−Accuracy)

2

n−1 It is the dispersion of each subject’s recognition accuracy.

Standard deviation of the accuracy per class (SDclasses ) SDclasses =
√

∑g
k=1(Recallclass(k)−Accuracy)

2

g−1 It is the amount of dispersion of the recalls of a particular model.

Mean square error (MSE) MSE =
∑n

i=1

(

ŷi − yi
)2

n

Root mean square error (RMSE) RMSE =

√

∑n
i=1

(

ŷi − yi
)2

n
It can be used to evaluate the numerical error of amplitude.

Normalized root mean square error (NRMSE) NRMSE = RMSE

ymax − ymin
It is the standardization of RMSE.

Correlation coefficient (R) R =
∑n

i=1

(

xi − x̄
)

*
(

yi − ȳ
)

√

∑n
i=1

(

xi − x̄
)2

*
∑n

i=1

(

yi − ȳ
)2

It can measure the similarity between signal shapes.

TP, true positive; FP, false positive; TN, true negative; FN, false negative. k represents the index of different classes. i represents the set of subjects. n represents the total number of

subjects. k represents the set of actual classes. g represents the total number of actual classes. y represents the actual value. ŷ represents the estimated value. ȳ represents the mean

of the actual value. x estimated value. x̄ is the mean of the actual value.

TABLE 4 | The commonly used real-time performance metrics.

Evaluation metric Mathematical definition Explanation

Throughput (TP) TP = TD

Tc
Quantify availability by the ratio of speed to accuracy, and defined the ratio of difficulty index of each

target task to completion time.

Completion rate (CR) CR = NCT

NAT
Describes overall success; a ratio of the completed targets to the total number of tasks attempted.

Path efficiency (PE) PE = SPD

DT
*100% Describes the control quality; the ratio between the shortest distance and the actual distance.

Overshoot (O) O = number_of_times_leaving_target

number_of_targets
Describes the ability to stop on a target; the average number of times data appears on the target

domain and then disappears in each test.

Stopping distance (SD) Describes the ability to hold no motion the total distance traveled during the 1-s dwell time.

Average speed (AS) v = TL

Tc
Illustrates the subject’s gross ability to control the target; a ratio of time spent successfully completing

a task to the total completion time.

Tc represents the time to complete the target task. TD represents the difficulty of a task. NCT is the total number of completed tasks. NAT is the total number of attempted tasks. SPD

represents the shortest possible distance. DT represents the distance traveled. TL represents the trajectory length.

reliability of sEMG pattern recognition techniques (He et al.,
2015). The evaluation of pattern recognition techniques should
not only be based on performance and computational load but
also consider robustness and adaptability. From the point of view
of DL, the variability in inter-session and inter-subject would lead
to domain shift of the data collected by sEMG sensor, i.e., the

training data and test data used by the algorithm have different
distributions. The solution to this problem is to develop a new
learning algorithm that can realize domain adaptation (Du et al.,
2017). Domain adaptation has attracted more and more people’s
interest and showed a broad application prospect. In the training,
when there is plenty of unlabeled data in the target domain, the
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existing methods generally adopt the strategy of fine tuning the
pre-training model. There is also another unsupervised adaptive
learning approach, which could use unlabeled target data for
learning. In terms of the variability of data, the robustness and
adaptability of sEMG pattern recognition techniques could be
improved by multi-session evaluation, which have been usually
divided into three situations (see Figure 5):

• Intra-session: Here, the model is evaluated and trained using
the data from different trials in the same session of the same
subject, with the electrodes not removed (Palermo et al., 2017).

• Inter-session: Here, the model is evaluated on the data from
the same subject but different sessions used in the training,
with the electrodes reattached (Zia ur Rehman et al., 2018b;
Waris et al., 2019).

• Intra-subject: Here, the model is evaluated and trained using
the data from different subjects (Ketyko et al., 2019).

3. HAND GESTURE RECOGNITION
CHALLENGES

In recent years, sEMG signal recognition based on DL has
developed rapidly, but most of these applications are confined
to improve the accuracy of offline classification and laboratory
online testing, which have not been implemented in commercial
systems, and even far from the real-life scenario of users. The
huge gap between academia and business in this state-of-the-art
technique field stems from the fact that the business community
puts the actual needs of users in the dominant position of
research, with clinical needs as the main purpose (Powell and
Thakor, 2013; Vujaklija et al., 2017). This review has investigated
the research trends in the application of DL to gesture recognition
based on sEMG. We can discover that the achievements are
outstanding, but there are also many challenges, which could be
summed up in four categories.

3.1. Signal Acquisition and Processing
Devices
The real-time and compactness of the prosthetic hand are
the key factors affecting the user’s satisfaction with the device
and the use time (Biddiss and Chau, 2007), which improve
demand of the requirements of sEMG data acquisition, storage,
and processing. In the sEMG pattern recognition techniques of
prosthetic hand, the traditional sEMG sensors can be divided into
wet and dry electrodes.Wet electrode is the most commonly used
electrode in clinical application. The electrode uses electrode gel
for motor fixing and high-quality signal acquisition, and has
good skin electrode coupling property. But there are also some
shortcomings in practical application. The electrode gel may
dry with time, thus changing the contact resistance between the
electrode surface and skin interface. The electrode adheres to
the skin and may cause skin irritation, allergy, and abrasion of
the outer skin layer (Merritt et al., 2009; Pylatiuk et al., 2009).
The electrode is also inconvenient to be placed in the socket of
prosthetic hand (Vasluian et al., 2013). These limitations would
make the currently available prostheses uncomfortable to wear
and inconvenient to use. Relatively, the dry electrode is fixed on

the skin by external force, which can ensure the comfort of long-
term detection and high-quality signal for subsequent analysis.
However, the poor contact between the dry electrode and the
skin will lead to lower amplitude, higher impedance, higher
randomness, and noise of the received signal (Sun and Yu, 2016;
Fu et al., 2020). Recently, textile electrode has attracted more and
more attention of researchers. Compared with the former two
kinds of electrode, the electrode has better ventilation, flexibility,
foldability, reusability, and long-term use. However, the motion
artifact and noise caused by the electrode are more (Acar et al.,
2019; Lee et al., 2020).

Based on the consideration of task type, control accuracy,
production cost, and calculation load, the number of electrodes
needed for prosthetic hand control based on pattern recognition
is 8 or more (Fang et al., 2015; Rodríguez-Tapia et al.,
2020). However, sEMG only contains the signal of muscle
activity directly related to gesture, not enough to reflect all the
information of the gesture. In order to solve these dilemmas,
some research workers have come up with many ideas, such
as HD-sEMG system or multi-mode sensor system including
accelerometer (Jiang et al., 2018; Rizzoglio et al., 2020), near-
infrared spectroscopy (Nissler et al., 2016; Scano et al., 2019),
and electroencephalogram (Li et al., 2017). Accelerometer
can reflect the dynamic characteristics of muscle rotation
and translation. Near-infrared spectroscopy can be used to
monitor muscle condition during activity. Electroencephalogram
measures information related to the activity of brain nerves.
However, the signal processing in existing papers relies on
additional data processing hardware, such as GPU or cloud
devices, which will lead to changes in the structure and energy
consumption of prosthetic hand design (Nef and Riener, 2005;
Kyranou et al., 2018; Sawant et al., 2020). 5G and the IoT seems to
be a viable solution (Zanghieri et al., 2020a). 5G can accelerate the
speed of information transfer among devices. IoT can improve
the ability of collecting and sharing data.

3.2. Offline vs. Online Processing and
Performance Evaluation
A good deal of upper limb movement pattern recognition
techniques based on sEMG have been carried out in offline
environment with satisfactory results. However, the system
with good offline training performance does not always have
excellent real-time performance (Ortiz-Catalan et al., 2015;
Vujaklija et al., 2017; Gigli et al., 2020). This is because offline
performance is obtained by processing offline data of sEMG.
Compared with the simple offline performance indicators,
the real-time performance indicators consider the amputees’
reaction to the output of the algorithm and adapt to its
muscle contraction to improve the application effect, which can
evaluate the controllability and reliability more comprehensively
(Vujaklija et al., 2017). This emphasizes the necessity of real-time
assessment of pattern recognition techniques, rather than offline
algorithmic performance. Most of the existing literatures focus
on the pattern recognition system for upper limb amputees use
of the data of intact subjects. This is because limb deficiency are
unlikely to affect the amputee’s motor learning ability (Tenore
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FIGURE 5 | Causes of variability of data distribution (Ketyko et al., 2019).

et al., 2009; Jiang et al., 2014b; Jarrassé et al., 2017). The
study of different algorithms for intact subjects can provide a
lot of valuable information to help achieve better prosthetic
performance (Merad et al., 2018). Even so, it is essential to
utilize the data collected from amputees (Gregori et al., 2019).
Intact subjects performed real movements of the hand, while
amputees could only attempt imaginary movements without
visual and sensory feedback, so that when they perform the same
movements at a specific arm position, the residual muscles of
amputated arm might produce sEMG patterns different from
those of intact arm (Geng et al., 2012; Vidovic et al., 2016). When
wearing a prosthesis, the amputee’s elbow, shoulder, and other
parts of the body would appear different degrees of compensation
movement, which could affect the sEMG signal of the hand (Geng
et al., 2012; Hussaini et al., 2017; Beringer et al., 2020).

3.3. Individual-Specific and Variability of
sEMG Signals
sEMG, as a physiological signal of muscle activation, is
non-stationary in nature. Its statistical characteristics vary
with time and are affected by individual differences, external
factors, and many other parameters. There are many elements
that could bring about the variability of sEMG signal,
including physiological reasons, such as muscle condition
(atrophy, hypertrophy, or fatigue), skin conditions (perspiration,
humidity) (Jiang et al., 2012); user variations due to adaptation
or learning (Amsüss et al., 2013); and physical reasons, such
as electrode shift (Young et al., 2011), contraction intensity
changes between trials, external load caused by prosthesis weight
(Cipriani et al., 2011b), and arm position change (Fougner et al.,
2011). This variability makes it difficult to adapt to the robustness

problem in daily life, and causes the biggest dilemma in the
process of long-term use for the pattern recognition techniques
(Scheme et al., 2011; Park et al., 2016; Kyranou et al., 2018). From
the point of view of DL, the variability in sessions and subjects
would lead to different distribution of the data collected by sEMG
sensor. To address these issues, new research fields have begun
to analyze the real environment and focus on the validation
of clinical usability (Hargrove et al., 2017; Vujaklija et al.,
2017). In the experimental design, multi-user and multi-session
training protocol has been adopted. In the data processing,
data augmentation schemes (Boschmann and Platzner, 2012),
adaptive learning (Zhai et al., 2017; Ketyko et al., 2019), transfer
learning (Côté-Allard et al., 2019), and unsupervised learning
(Du et al., 2017; Huang et al., 2017; Zia ur Rehman et al., 2018b)
have been widely used. While these ideas are promising and
encouraging, the robustness with daily variation and potential
user adaptability in a new recording session over time remains
unexplored.

3.4. Simultaneous and Proportional
Information
The natural motion of the hand is continuous variation in
kinematics and dynamics, which requires multiple joints or
multiple DOFs to move proportionally at the same time (Muceli
and Farina, 2012; Bengoetxea et al., 2015). The classification
generated in sEMG-based pattern recognition is discrete and
limited, which cannot produce reliable proportion information.
In fact, the features of a specific pattern will migrate to another
mode with the change of exercise intensity, which would lead to
wrong classification, so that the accuracy of classification would
be affected by the proportion information (Fougner et al., 2012).
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At present, proportional control is mainly realized by calculating
the average power of all channels after the classification decision
is made, but the training process will be more complex and
longer (Muceli et al., 2014; Ameri et al., 2019). Regression
methods could be used to create continuous mapping from
muscle to spatial kinematics instead of classifying into discrete
class labels. But the method of obtaining training data, such
as mirror movements, is easy for the intact subjects, while
difficult for the amputees (Nielsen et al., 2011; Hahne et al.,
2014). The pattern recognition techniques do not utilize the
neurophysiological knowledge of natural movements acquired
in the recent decades, such as muscle synergy theory, which
are promising for the development of a more natural prosthesis
hand (Jiang et al., 2009). According to the muscle synergy theory,
the extracted time-varying activation signals would be related to
the motor commands descending to the spinal cord modulating
spinal interneuron modules, which are represented by the time-
invariant synergy weights (Bizzi and Cheung, 2013). Through
these insights, sEMG signals can be expressed as a matrix
embedded with multi-dimensional neural control information.
Continuous mapping can also be realized by signal factorization,
the principle of which is to extract the so-called collaborative
weight and activation signal from the sEMG records (Jiang et al.,
2009, 2012). There is a special factorization called non-negative
matrix factorization (NMF). So far, the factorization method
has been able to identify an enormous variety of motor neuron
activities in voluntary upper limb movement, but it performs
well in isometric contraction at constant or slowly changing
forces, and its performance is limited under non-stationary
conditions (Kapelner et al., 2018). Blind source separation is a
factorization method different from NMF, which decomposes
the recorded sEMG signal into the individual spike trains of
motor neurons (Negro et al., 2016; Farina et al., 2017). The blind
source separation based on convolution kernel compensation has
been broadly tested (Glaser et al., 2007; Holobar and Zazula,
2007), and implemented online recently (Glaser et al., 2013).
Another potential method is to decode motor neuron spike
trains directly from sEMG signals and transform them into
simultaneous and proportional information (Farina et al., 2014b;
Levi et al., 2018). In this method, the sEMG signal is first encoded
as spikes, and processed to recognize the gesture. After that, the
activation signal is used to trigger the oscillator to generate motor
commands for motion. Therefore, the muscle activity is directly
mapped to the prosthetic hand kinematics (Pani et al., 2017;
Vasquez Tieck et al., 2019).

4. FUTURE DEVELOPMENT OF GESTURE
RECOGNITION

The natural communication between human body and artificial
hand is established from the perspective of human physiology,
which is the development direction of intelligent prosthesis hand
(Castellini et al., 2016). sEMG signal is a reliable method to
predict human motion intention in prosthetic hand control
system, because it does not require the special attention and
professional skills of amputees, and the external environment

interference factors will not affect its production. The prediction
of upper limb motion intention based on sEMG and DL have
broad application prospects. We believe, for the foreseeable
future, that pattern recognition based on DL has high possibility
to develop in these directions.

First of all, with the emergence of new sEMG sensors, we
would use low-power analog front-end and microprocessor to
develop high-precision wearable sEMG signal acquisition system,
even HD-sEMG acquisition system. This would combine the
flexibility of the system with good signal quality and keep a good
balance between power consumption and computing power. So
that the spatial resolution of sEMG signal is improved under
the condition of limited resources, and fine motion recognition
is realized.

Second, more open source databases would be established.
These databases would include amputee data, high-quality data,
musculoskeletal data, complete muscle measurement point data,
upper limb kinematics data, and various application scenarios,
which would promote the algorithm research of sEMG signal
and attract more people to join the field of human–computer
interface of prosthetic hand. Standardized sEMG acquisition
protocol should be set up to further reduce the difficulty of
independent experiments. Simultaneously, it is necessary to
evaluate the feasibility of sEMG signal recognition and sEMG
control strategy from the clinical point of view.

Third, with the further research of human joint motion and
other physiological signals and the continuous development of
multi-sensor fusion technique, gesture recognition based on
sEMG will be paid more and more attention. Other sensors
that could obtain the information of external environment or
other physiological information and sEMG can complement
and adjust each other to reduce the signal processing time
(Fang et al., 2020). At the same time, through the appropriate
mapping strategy, the calibration and refinement between
different signals can be realized, which can directly reflect
the process of hand movement. The multi-sensor fusion
technique and the pattern recognition techniques based
on DL are combined to provide the key information of
continuous control for HCI interface, improve the accuracy
of pattern recognition, and meet the requirements of robust
recognition performance.

Fourth, the biggest problem of using DL techniques to
process sEMG signal might be the absence of large-scale, labeled
training data sets and resource constrained hardware platform.
It is not easy to simply focus on collecting large data sets
and expanding hardware resources. Instead, researchers should
focus on developing techniques that make more efficient use of
existing data sets. These techniques have two main directions.
On the one hand, transfer learning techniques are used, so that
models trained for specific scenarios can benefit from other
essentially similar fields. On the other hand, different classifiers
are integrated to realize the integration of different training
models. When these models are combined together, more data
variability would be captured in the training process, resulting in
enhanced modeling ability.

Fifth, a novel functional evaluation protocol should be
established. The sEMG pattern recognition model applied
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to prosthetic hand is used by amputee. Therefore, the
evaluation of the model should consider the purpose of
the use more, that is, what amputee can do now (which
can be measured directly in the laboratory), what amputee
can do after training (which is a reflection of behavior in
life and working environment) (de Vet et al., 2011). At
the level of body function, besides recording sEMG, the
body kinematics should be recorded to record compensatory
movement, body and cognitive fatigue, and implementation
mode (Castellini et al., 2016). In the development stage
of the model, the performance should be measured in the
daily life of amputees before the trial stage or the system
reaches its final stage based on the participation of the
target population and the pilot test. The problem can be
solved by using the simulation scale developed by experts.
Amputees, medical staff, and researchers should be involved in
evaluating the advantages and disadvantages of different pattern
recognition systems and the impact of the system on different
amputation levels.

5. CONCLUSIONS

This review paper briefly introduces the advances of DL-based
sEMG pattern recognition techniques for the prosthetic hand in
recent years. Through the literature survey of DL application in
sEMG recognition, some of the core techniques are highlighted,
some of the most common challenges to be solved are analyzed,
and some of the most possible development prospects are

discussed. It could be found that gesture recognition techniques
based on DL has great potential in using sEMG signal to
accurately interpret amputee’s motion intention, which is of great
significance to the development of intelligent prosthetic hand.
However, their individual difference, real-time usability, and
long-term stability are still being highly limited by many complex
factors in these approaches. The high variability of sEMG, the
lack of existing data, the limitation of hardware resources, and the
lack of clinical evaluation conditions seriously affect the progress
of pattern recognition techniques based on DL. In addition,
the natural movements of the upper limbs are independent,
continuous, and proportional activations ofmultiple DOFs, while
the existing techniques can only use a limited number of patterns
for discrete classification. These should be well-improved in the
future real-time application of prosthetic hands.
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