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Abstract: Background: Bladder cancer (BC) is a common malignancy in the urinary
system, with an increasing incidence rate. Immune cell infiltration within the tumor
microenvironment (TME) plays a crucial role in BC progression and treatment response.
However, the immune cell composition of the TME presents a significant challenge to
the effectiveness of current therapeutic strategies. Methods: We performed bidirectional
Mendelian randomization (MR) analysis to investigate the impact of immune cells on BC
risk. Single nucleotide polymorphisms (SNPs) related to immune cells were annotated, and
candidate genes associated with BC risk were identified. Differential expression analysis
identified immune-related differentially expressed genes (iDEGs), and a protein–protein
interaction (PPI) network along with functional enrichment analysis were conducted to
explore their roles in tumor development. Machine learning-based feature selection was
applied to identify potential biomarkers and therapeutic targets. Results: MR analysis
revealed eight immune cell subtypes significantly associated with BC. Using SNPs linked
to these immune cells, 129 candidate genes were identified through the SNPense tool and
cross-referenced with differentially expressed genes in BC, resulting in identification of
28 iDEGs. Machine learning identified five potential diagnostic biomarkers (COLEC12,
TMCC1, CEP55, KLK3, COL4A1) with an AUC of 0.903, which are implicated in immune
modulation and cancer progression. Conclusions: This study provides new insights into
immune mechanisms in BC and identifies promising biomarkers for early diagnosis and
therapeutic intervention.

Keywords: bladder cancer; immune microenvironment; mendelian randomization;
machine learning; diagnostic biomarkers

1. Introduction
Bladder cancer (BC) ranks as one of the most common malignancies in the urinary

system, second only to prostate cancer. In recent years, there has been a noticeable up-
ward trend in its age-standardized incidence rate [1,2]. BC is clinically classified into two
categories: non-muscle-invasive (NMIBC) and muscle-invasive (MIBC). While NMIBC
represents about 75–85% of all BC cases, it is notably associated with a high recurrence
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rate [3]. Following transurethral resection of bladder tumors (TURBT), the routine use of
intravesical chemotherapy and Bacillus Calmette–Guérin (BCG) instillation plays a critical
role in minimizing the likelihood of tumor recurrence [4,5].

BC is widely recognized as an immunogenic tumor, with studies demonstrating
the abundant expression of tumor-associated antigens and tumor-specific antigens by
BC cells [6–8]. Immune cell infiltration in the tumor microenvironment (TME) of BC
plays a critical role in the progression of the disease. This infiltration has been shown
to not only influence BC progression but also serves as an important predictor for the
effectiveness of perioperative chemotherapy and immunotherapy [9–11]. Moreover, the
immune cell composition of the TME reflects a major challenge to the effectiveness of
current therapeutic strategies, as immune checkpoint inhibitors (ICIs) show efficacy only
in a limited patient population, primarily due to the immunosuppressive nature of the
TME [12–14]. The TME in BC contains various immune cells, including T cells, B cells,
NK cells, and regulatory T cells (Tregs), each playing distinct roles in tumor progression
and immune evasion [15–20]. CD8+ and CD4+ T cells are crucial for tumor elimination,
but their function is often suppressed within the TME [16,17]. B cells influence immunity
through antigen presentation and cytokine secretion [21]. NK cells are vital for early
tumor defense, directly killing tumor cells without prior sensitization [19]. Tregs, which
maintain immune tolerance, often inhibit anti-tumor responses, allowing tumor cells
to evade immune surveillance [20]. The balance and function of these immune cells
significantly affect tumor progression and response to immunotherapy, highlighting the
complexity of the TME and the need for targeted strategies. Therefore, identifying immune
cells involved in the development of BC, along with their associated genes, may offer novel
therapeutic avenues for improving BC treatment strategies.

Mendelian randomization (MR) is a powerful epidemiological tool that utilizes genetic
variants as instrumental variables (IVs) [22–24]. MR allows researchers to establish causal
links between risk factors and disease progression by simulating randomized controlled
trials, thereby providing essential insights into the underlying factors that contribute to
disease progression. By utilizing IVs that are randomly distributed at conception, MR
minimizes confounding and mitigates reverse causation, providing reliable insights into
causal pathways. Data from transcriptomic analyses, obtained through The Cancer Genome
Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, provide comprehensive
gene expression profiles. These resources are crucial in advancing our comprehension of
the mechanisms that drive BC and in the formulation of targeted therapeutic strategies.

For this investigation, we systematically evaluated the potential causal links between
immune cell populations and BC using bidirectional MR analysis. Additionally, by anno-
tating SNPs related to immune cell genetics, we uncovered a set of candidate genes with
potential causal relevance to BC susceptibility. Transcriptomic data were integrated to
pinpoint immune-related differentially expressed genes (iDEGs), further enhancing the un-
derstanding of immune mechanisms. These genes were analyzed through the construction
of a protein–protein interaction (PPI) network and functional enrichment approaches to
investigate their potential biological roles in tumor development. Subsequently, five hub
genes were identified through machine learning-based feature selection. In conclusion,
our study offers valuable insights into the development of treatment strategies for BC
and identifies more effective diagnostic biomarkers for the disease. These findings lay the
foundation for enhanced diagnosis and treatment of BC.
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2. Materials and Methods
2.1. Data Sources

Data summary for immune-related traits, used as exposure information, were retrieved
from the GWAS Catalog (GCST90001391 to GCST90002121), with data available as of 1
July 2024 [25]. This study examined 731 immune phenotypes through flow cytometry on
peripheral blood samples obtained from 3757 Sardinian individuals. The analysis included
118 absolute cell counts (AC), 389 median fluorescence intensities (MFI) of surface antigens,
32 morphological parameters (MP), and 192 relative cell counts (RC). These four categories
of metrics were used to characterize and assess immune cell populations quantitatively.
Furthermore, approximately 22 million SNPs were identified in the analysis.

To conduct the analysis, outcome data were retrieved from the FinnGen R11 release, a
comprehensive biobank-driven genomic resource https://www.finngen.fi/en (accessed on
1 July 2024) [26]. The diagnostic criteria for BC were established based on ICD codes: ICD-10
(C67), ICD-9 (188), and ICD-8 (188). This dataset included 2574 cases and 345,118 controls,
with all controls confirmed to have no history of any cancer diagnosis.

For the transcriptomic data, we applied rigorous inclusion criteria to ensure both
its quality and relevance. The criteria included the following: (1) data type: expression
profiling using arrays, real-time polymerase chain reaction (RT-PCR), and next-generation
sequencing; (2) species: Homo sapiens; (3) disease: confirmed bladder cancer in the original
study; (4) sample source: bladder tissue; (5) sample content: RNA expression data from
both control and BC groups, without any intervention. As of 1 July 2024, we retrieved
several BC-related datasets (TCGA-BLCA [27], GSE3167 [28], and GSE13507 [29]) from
publicly available databases. These datasets include samples from both control and BC
groups. Due to the limited availability of control samples, additional normal bladder tissue
data were sourced from the GTEx database [30] also on 1 July 2024. The TPM obtained
from TCGA were transformed using log2 (TPM + 1) to normalize the data and mitigate the
right-skewed distribution commonly observed in RNA sequencing datasets.

2.2. Batch Effect Removal

To mitigate batch effects across the four datasets (TCGA-BLCA, GSE3167, GSE13507,
and GTEx-Bladder), the “ComBat” function provided by the “sva” package (v3.5.0) [31].
The effectiveness of correction was evaluated via principal component analysis (PCA),
allowing comparison of data structure before and after batch adjustment.

2.3. Mendelian Randomization Analysis

To explore the potential causal effects of immune system variation on BC susceptibility,
we implemented two-sample MR analyses involving 731 immune cell phenotypes, utilizing
the TwoSampleMR package (v0.5.11) [32]. The main analysis utilized the random effects
inverse variance-weighted (IVW) approach. To evaluate the robustness of the MR results,
multiple statistical tests were applied. Heterogeneity was assessed using a combination
of Cochran’s Q test and MR-PRESSO global test, with a significance threshold set at
p < 0.05. MR-PRESSO not only accounts for horizontal pleiotropy but also identifies and
removes outlier SNPs, whereas MR-Egger focuses on detecting pleiotropy through intercept
testing [33]. Horizontal pleiotropy was examined through the MR-Egger intercept, with
statistical significance defined as a p-value below 0.05 indicating its presence. Additionally,
any analyses involving fewer than three SNPs were excluded from consideration.

For MR to yield valid causal inferences, three essential assumptions must be met:
(1) genetic variants must have a strong relevance to the exposure, (2) they should not be
associated with confounders, and (3) their effect on the outcome must occur exclusively
through the exposure pathway [34].

https://www.finngen.fi/en
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2.4. Reverse Mendelian Randomization Analysis

A reverse MR analysis was performed to assess whether BC exerts a causal effect
on immune cells, treating BC as the exposure and immune cells as the outcome. The
methodology for this analysis was consistent with that used in the forward MR analysis to
maintain consistency between both approaches. By comparing the results of both analyses,
we aimed to gain a more nuanced understanding of the causal associations between BC
and immune cell profiles.

2.5. Profiling of Differentially Expressed Genes

We began by mapping the corresponding SNPs to genes using the SNPense tool
https://biit.cs.ut.ee/gprofiler/snpense (accessed on 2 November 2024), which links human
SNP rsIDs to gene names [35]. SNPense is designed to prioritize genetic variants mapped
to one or more protein-coding genes annotated in the Ensembl database, with all relevant
data retrieved extracted from the Ensembl Variation resource. Following this, we extracted
immune-related gene expression data from both the control and BC groups within the
merged datasets to conduct differential expression analysis. Genes with a significant
positive association in MR analysis (p < 0.05) and differential expression in BC were
classified as immune-related differentially expressed genes (iDEGs). The results were
visualized in a box plot. Using the “circlize” package (v0.4.15), we mapped the positions of
iDEGs across chromosomes, with their distribution displayed in a circos plot.

2.6. Immune Cells Infiltration

Immune cell infiltration in BC was assessed using the CIBERSORT algorithm, with
1000 permutations applied to estimate the relative proportions of 22 distinct immune cell
populations [36]. The association between iDEGs and immune infiltration levels was
subsequently examined, and the findings were presented using bar charts. Simultane-
ously, single-sample gene set enrichment analysis (ssGSEA) was used to quantify and
contrast immune landscape profiles between tumor and control tissues. Box plots were
constructed to visualize the results, highlighting the differences in immune cell composi-
tion. To further investigate the interplay between gene expression and immune infiltration,
correlation analyses were performed by aligning iDEG expression levels with ssGSEA-
derived scores, and the computed correlation coefficients were displayed in a heatmap for
comprehensive visualization.

2.7. GO/KEGG Enrichment Analysis

Functional annotation and pathway enrichment of iDEGs were conducted with the
clusterProfiler R package (v4.8.3) [37], aiming to uncover relevant biological processes and
underlying mechanisms of disease. The Gene Ontology (GO) framework was employed
to organize gene annotations into the three principal GO domains: biological process
(BP), molecular function (MF), and cellular component (CC), each providing insights into
different aspects of gene function. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis complemented the GO results by identifying enriched metabolic and
signaling pathways associated with iDEGs. A significance level of p < 0.05 was set to assess
the relevance of enrichment in all analyses.

2.8. Construction of the Protein–Protein Interaction Network

To investigate the protein–protein interactions related to disease mechanisms, we
constructed an interaction network with the STRING database https://cn.string-db.org/
(accessed on 2 April 2025), setting a minimum confidence score threshold of 0.15 to filter out
weak associations [38]. The network was then imported into Cytoscape (version 3.9.1) [39]

https://biit.cs.ut.ee/gprofiler/snpense
https://cn.string-db.org/
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for visualization and further topological exploration. Default settings were retained for
all other parameters to maintain consistency across analyses. By examining the resulting
network structure, we gained valuable insight into the functional relationships among
proteins and their potential roles in the cellular environment.

2.9. Machine Learning Algorithms

Using the expression profiles of iDEGs, nine machine learning models were established.
Prediction functions were computed for each model, and the most effective algorithm was
identified based on predictive performance. Residual box plots and receiver operating char-
acteristic (ROC) curve analyses were performed to identify key features, which facilitated
the selection of representative genes. These genes were subsequently used to construct a
nomogram that integrated their expression levels in both BC and control tissue samples. To
comprehensively assess the nomogram’s effectiveness, its predictive accuracy and capacity
for generalization were examined through calibration curves and decision curve analysis.
Validation was performed with an independent dataset to replicate the model and evaluate
its stability, with the ROC curve illustrating classification performance.

2.10. Statistical Analysis

All statistical analyses were performed in R (version 4.2.1). For comparisons between
two independent groups, Student’s t-test was employed, whereas the Wilcoxon signed-rank
test was used for analyzing paired data. For comparisons involving three or more groups,
one-way ANOVA and the Kruskal–Wallis test were performed. To evaluate correlations
between variables, the Spearman rank correlation test was utilized.

3. Results
3.1. Study Design

This study used a three-step approach to examine the impact of immune cells on BC
risk. First, bidirectional MR analysis was conducted using SNPs associated with immune
cells. In the forward MR analysis, immune cells were considered the exposure factor, with
BC as the outcome. The data for this analysis were sourced from the GCST90001391 and
GCST90002121 datasets, which included 3757 individuals of European ancestry. In the
reverse MR analysis, BC risk was used as the exposure factor, with immune cell types
as the outcome. SNPs associated with BC risk were retrieved from the FinnGen dataset
(R11). In the second step, bulk expression data from TCGA-BLCA, GSE3167, GSE13507, and
GTEx-Bladder were combined. The SNPense tool https://biit.cs.ut.ee/gprofiler/snpense
(accessed on 2 November 2024) was used to map SNPs associated with these immune cells
to identify candidate genes. Differential expression analysis was performed to identify
iDEGs, which were cross-referenced with immune cell data and further examined for their
potential roles in tumor progression. In the third step, follow-up analysis included immune
cell infiltration analysis within the TME, functional enrichment through GO/KEGG, and
PPI network analysis to explore the biological roles of iDEGs. Finally, machine learning-
based feature selection was applied to identify potential biomarkers and therapeutic targets.
The overall workflow is illustrated in Figure 1.

https://biit.cs.ut.ee/gprofiler/snpense
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Figure 1. Overview of the analysis workflow. This flow plot summarizes the three-step process:
(1) Bidirectional Mendelian randomization (MR) analysis to assess immune cells’ impact on bladder
cancer (BC) risk. (2) Merging RNA data to identify immune-related differentially expressed genes
(iDEGs). (3) Follow-up analyses, including functional enrichment, PPI network, and machine learning
to identify biomarkers and therapeutic targets. In Step 1, red and blue arrows represent the forward
and reverse MR analyses, respectively. Symbols: A check mark (

√
) indicates a relevant association; a

cross (×) indicates no association. According to the core Mendelian randomization assumptions, the
genetic variants (SNPs) should be strongly associated with the exposure (

√
), but not associated with

the outcome or any confounders (×).

3.2. Estimating the Causal Impact of Immune Cells on Bladder Cancer

A total of 18,621 SNPs were selected as IVs based on a relaxed genome-wide signif-
icance threshold (p < 1 × 10−5) from GWAS data [40]. Linkage disequilibrium pruning
was subsequently applied with an r2 threshold of less than 0.001 across a 10 Mb window.
To verify the robustness of these instrumental variables, we calculated the F-statistic for
each SNP. All SNPs demonstrated F-statistics greater than 10, which indicates a low risk
of weak instrument bias (Table S1). Subsequent to the MR analysis (Table S2), three key
filtering criteria were applied: consistency of effect direction, horizontal pleiotropy assess-
ment, and heterogeneity evaluation. SNPs exhibiting inconsistent effect directions were
excluded. Horizontal pleiotropy was assessed by applying the MR-Egger intercept test
(Table S3) alongside MR-PRESSO analysis. Genes identified with significant pleiotropy
(p < 0.05) were removed from the analysis for further evaluation. Heterogeneity was as-
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sessed through Cochran’s Q test, with detailed results provided in Table S4. Based on
the analysis, we identified eight immune cell types potentially causally related to BC, as
illustrated in Figure 2. Specifically, higher levels of CD19 on transitional B cells, CD20 on
IgD− CD24− B cells, CD28 on CD39+ secreting Treg, HLA-DR+ CD8 bright AC, and IgD
on unswitched memory B cells were associated with a decreased risk of BC. Conversely,
increased levels of HLA-DR expression on CD14+ CD16− monocytes, HLA-DR on CD14+
CD16+ monocytes, and the percentage of Naive CD4+ T cells were found to correlate with
a higher risk of BC.
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Figure 2. Forest plot depicting the findings from MR analysis exploring the relationship between
immune cell types and BC. “Nsnp” represents the number of single nucleotide polymorphisms
(SNPs); “OR” refers to the odds ratio; and “CI” denotes the confidence interval. “Naive CD4+ %T
cell” indicates the proportion of naive CD4+ T cells among the total T cell population. “CD8 bright T
cell AC” refers to CD8+ T cells with bright (high intensity) expression of the CD8 receptor, with “AC”
representing absolute counts.

3.3. Estimating the Causal Impact of Bladder Cancer on Immune Cells

In this study, we employed genetic susceptibility to BC as the exposure to perform
reverse MR analyses on eight immune cell types identified through MR models. The
findings, presented in Figure 3 and detailed in Table S5, indicated that BC did not exert any
significant causal influence on these immune cells. Specifically, the random effects model
produced OR close to 1, with confidence intervals that included the null value, indicating
no evidence of causal association. For instance, no significant associations were observed
for Naive CD4+ %T cells (OR = 1.022, 95% CI: 0.848 to 1.231, p = 0.823) or HLA-DR+ CD8
bright T cell AC (OR = 0.973, 95% CI: 0.847 to 1.118, p = 0.701). The consistency of these
findings was confirmed by complementary MR methods, such as the weighted median
and MR-Egger approaches, which provided further evidence supporting the robustness of
the results.

Our analysis indicates no evidence of reverse causality between BC and immune cell
profiles, suggesting that BC does not affect the differentiation or activity of these immune
cells. The lack of reverse causality supports the hypothesis that immune cells function
primarily as upstream modulators, rather than serving as downstream targets of BC.
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interval. “Naive CD4+ %T cell” indicates the proportion of naive CD4+ T cells among the total T cell
population. “CD8 bright T cell AC” refers to CD8+ T cells with bright (high intensity) expression of
the CD8 receptor, with “AC” representing absolute counts.

3.4. Identification of iDEGs in Bladder Cancer

We obtained the BC transcriptome data from TCGA, GEO, and GTEx (Table S6). After
performing batch effect correction, integration, and normalization, we analyzed a total
of 646 BC samples and 110 control samples. The processing workflow is summarized in
Figure 4A,B, which illustrate a significant reduction in batch effects post-correction.

Using SNPs associated with significantly identified immune cells through SNPense
tool, we mapped these SNPs to 129 gene names (Table S7). A total of 28 genes exhibiting
significant differential expression were classified as immune-related differentially expressed
genes (iDEGs). These genes are depicted in Figure 4C and Table S8. Among these, BICD1,
CEP55, COL4A1, SCAMP4, SIPA1L3, SLC35F2, TCF20, and TMCC1 were upregulated in tumor
samples, while APBB1IP, APBB2, BANK1, CHRM3, CIITA, COLEC12, ENTPD1, FBXL7, GLI2,
HLA-DQB1, KLF12, KLK3, LYZ, MBP, NRP2, RBMS3, ROBO1, SDK2, TRAT1, and ULK2 were
downregulated. The chromosomal locations of these significantly differentially expressed
iDEGs are displayed in Figure 4D. Further, correlation analysis within the BC samples revealed
predominantly positive correlations among the iDEGs, as shown in Figure 4E.

3.5. Evaluation of Immune Infiltration Patterns

The iDEGs identified in this study may be integral in modulating immune responses
and influencing the progression of BC. To further explore the connection between these
genes and immune cells, the CIBERSORT algorithm was utilized to infer the characteristics
of immune cells and their association with iDEGs in BC. The expression levels of 22 distinct
immune cell types across the combined samples are presented in Figure 5A and detailed
in Table S9. Notable differences in the proportions of specific immune cell subtypes were
observed between BC cases and controls, as shown in Figure 5B. Particularly, a significant
downregulation of T cells CD8, resting memory T cells CD4, monocytes, M2 macrophages,
and resting mast cells was observed in BC samples. Conversely, memory B cells, plasma
cells, naive CD4+ T cells, activated memory CD4+ T cells, regulatory T cells (Tregs),
activated NK cells, M0 macrophages, activated dendritic cells, and eosinophils exhibited
significant upregulation in the tumor samples.
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Figure 4. Integration of BC datasets and identification of iDEGs in BC. (A) PCA of the four original
bladder cancer-related datasets before correcting for batch effects. (B) PCA after the integration
of bladder cancer-related datasets, following batch effect adjustment. (C) Box plot illustrating
the differential expression analysis of iDEGs across the control and BC cohorts. (D) Circular plot
highlighting the chromosomal locations of iDEGs. (E) Heatmap visualizing the correlation analysis
of iDEGs. * p < 0.05, *** p < 0.001.

Moreover, correlation analysis between iDEGs and these 22 immune cell types revealed
significant associations, as shown in Figure 5C. HLA-DQB1, for instance, was significantly
negatively correlated with activated dendritic cells, eosinophils, plasma cells, naive CD4+
T cells, and regulatory T cells (Tregs). Conversely, it was positively correlated with resting
dendritic cells, M1 macrophages, M2 macrophages, resting mast cells, monocytes, neu-
trophils, activated memory CD4+ T cells, and CD8+ T cells. These results suggest a complex
interaction between iDEGs and immune cell infiltration, which may influence the immune
microenvironment’s role in BC development.
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Figure 5. Comprehensive assessment of immune cell infiltration in BC. (A) Stacked bar chart illustrat-
ing the distribution of immune cell populations in BC and control samples. (B) Violin plot comparing
the distribution and relative abundance of 22 immune cell subsets between control and BC groups.
(C) Heatmap depicting the correlations between iDEGs and the 22 immune cell types. (D) Heatmap
showing the intercorrelations among the 22 immune cell types. * p < 0.05, ** p < 0.01, and *** p < 0.001.

In order to investigate potential interactions among immune cells within the TME,
we conducted a Spearman correlation analysis based on the relative abundances of
22 immune cell types, which were estimated using the CIBERSORT algorithm. The corre-
lation coefficients revealed distinct relationships between immune cell populations. For
example, M2 macrophages were positively correlated with Tregs, suggesting a possible
cooperative role in promoting an immunosuppressive network. Additionally, CD8+ T cells
showed a negative correlation with M1 macrophages, potentially indicating an inhibitory
effect on the anti-tumor immune response within the suppressive microenvironment.
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3.6. Gene Ontology and Pathway Enrichment Analysis

To investigate the functional characteristics and potential biological roles of the iDEGs,
enrichment analyses were performed, as detailed in Table S10. As illustrated in Figure 6A, in
the Gene Ontology (GO) Biological Process (BP) category, several immune-related processes
were significantly enriched, including an immune response-activating signaling pathway,
immune response-regulating signaling pathway, and antigen receptor-mediated signaling
pathway. In the Cellular Component (CC) category, immune-associated cellular structures
such as the MHC class II protein complex and T cell receptor complex were prominently
enriched. In terms of Molecular Function (MF), significant enrichment was observed in
MHC class II receptor activity, lysozyme activity, and signaling adaptor activity.
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Figure 6. Enrichment analysis and PPI of iDEGs. (A) GO enrichment results for three terms of
iDEGs. (B) KEGG enrichment result of iDEGs. (C) PPI network of iDEGs built with STRING.
In the PPI network, darker colors and larger spheres represent proteins with more interactions,
indicating higher connectivity. Proteins located at the center of the network are labeled with their
total connectivity values.

Furthermore, enrichment analysis of KEGG pathway reinforced the significant contri-
bution of iDEGs to immune regulation. Specifically, pathways like the “Intestinal immune
network for IgA production” were notably enriched, suggesting a potential role for these
genes in modulating IgA production and influencing mucosal immunity (Figure 6B). The
results indicate that iDEGs are primarily involved in immune-related biological processes
and pathways, aligning with the immune-driven characteristics of BC.

3.7. PPI Network Construction

To construct the PPI among the iDEGs, we queried the STRING database https://
string-db.org/ (accessed on 2 April 2025). This allowed for a comprehensive analysis of
potential interactions among the proteins encoded by the identified genes. The resulting

https://string-db.org/
https://string-db.org/
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interaction data were imported into Cytoscape for visualization. Figure 6C illustrates the
network, consisting of 26 nodes and 39 edges, depicting the predicted interactions between
the iDEGs and their associated partners (Table S11). Each node represents a protein, while
each edge denotes a functional association. Proteins such as HLA-DQB1, ROBO1, and
COL4A1 exhibited higher degrees of connectivity, suggesting their central positions within
the interaction network.

3.8. Selection of Machine Learning Models and Diagnosis Efficacy

Of the nine machine learning models developed, extreme gradient boosting (XGB)
demonstrated the highest accuracy, with the lowest residual values (Figure 7A,B) and the
greatest area under the receiver operating characteristic curve (Figure 7D). Consequently,
this model was selected for further analysis. Finally, feature importance scores were
calculated to identify the primary predictors (Figure 7C), with COLEC12, TMCC1, CEP55,
KLK3, and COL4A1 emerging as the top five most influential genes (Table S12).
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machine learning models. Red dots indicate the root mean square of residuals (RMSE), representing
the overall prediction error for each model. For the DT model, only residual points are shown due to
limited variability, which is insufficient to generate a full boxplot. (B) Reverse cumulative distribution
of residuals from these models. (C) Bar plot showing the top-ranked feature importance scores across
nine machine learning models. Each blue dot represents a gene’s permutation-based importance
in a given model, based on RMSE increase. Genes without bars were evaluated but not selected
among the top features displayed. (D) Receiver operating characteristic (ROC) curves for all nine
models. (E) Decision curve analysis for the nomogram based on feature genes. (F) Nomogram
developed using the feature genes. (G) ROC curve for the combined dataset. (H) ROC curve for the
GSE13507 validation dataset. The AUC is presented. The machine learning models used include
gradient boosting machine (GBM), generalized linear model (GLM), neural network (NNET), k-
nearest neighbors (KNN), decision tree (DT), least absolute shrinkage and selection operator (LASSO),
random forest (RF), support vector machines (SVM), and extreme gradient boosting (XGB).

Based on these genes, individual scoring scales were constructed, and the model’s
performance was evaluated using the decision curve analysis. The distance between the
red and gray lines on the curve served as an indicator of the model’s accuracy (Figure 7E).
Furthermore, we calculated the expression scores of these five genes to assess their com-
bined risk in BC (Figure 7F). The predictive power of the model, when using the combined
gene sets, resulted in an area under the curve (AUC) value of 0.903 (Figure 7G). Finally,
external validation with the GSE13507 dataset confirmed the model’s robustness, yielding
an AUC value of 0.900, further demonstrating its excellent predictive accuracy (Figure 7H).

4. Discussion
In this study, we conducted an in-depth exploration of the involvement of immune

cells in BC by combining MR analysis, differential expression analysis, and machine learn-
ing methods. We identified immune cells with potential causal relationships to BC risk,
analyzed iDEGs, and developed predictive models using machine learning to identify
diagnostic biomarkers.

We have identified eight immune cell types associated with BC risk, involving B cells,
T cells, and monocytes. Among these immune cells, the expression of CD19 on transitional
B cells, CD20 on IgD− CD24− B cells, CD28 on CD39+ secreting Tregs, HLA-DR+ CD8
bright T cell AC, and IgD on unswitched memory B cells are associated with a reduced risk
of BC. In contrast, the expression of HLA-DR on CD14+ CD16− monocytes, HLA-DR on
CD14+ CD16+ monocytes, and the percentage of Naive CD4+ T cells are associated with an
increased risk of BC.

Current research indicates that B cells play a pivotal role as effector cells within the
TME, contributing significantly to the regulation of the anti-tumor immune response [41–43].
CD19, a 95 kDa transmembrane glycoprotein, is a crucial biomarker for both normal and
tumor-associated B cells, as well as for follicular dendritic cells. It is believed to be instru-
mental in the activation of B cells [44–46]. In the context of MIBC, CD19+ tumor-infiltrating
B cells function as APCs, which are essential for activating CD4+ tumor-infiltrating T
cells (TIT) [47]. Additionally, the presence of CD19+ B cells has been associated with im-
proved survival outcomes in MIBC patients [47]. On the other hand, CD20, a glycosylated
transmembrane phosphoprotein expressed at later stages of B cell activation, serves as
a specific marker for mature B cells [48]. Similarly to CD19+ B cells, although the exact
role of CD20+ B cells remains unclear, observational studies have shown that an increased
presence of CD20+ B cells may serve as a marker for reduced recurrence in non-muscle in-
vasive bladder cancer [49]. CD39+ Tregs are typically known for their immunosuppressive
role, facilitating tumor escape from immune surveillance. However, this appears to be in
contrast with our findings, where they act as a protective factor in BC. Emerging research
indicates that Tregs are not a homogeneous population and may exhibit both pro-tumor
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and anti-tumor functions, as demonstrated by recent studies on Treg heterogeneity and
plasticity, which depend on their microenvironment and the signals they receive [50,51].
The protective effect observed in our study may be associated with the unique phenotype
of CD39+ Tregs, which could modulate extracellular adenosine levels in the tumor microen-
vironment, thereby maintaining immune homeostasis and potentially preventing tumor
progression [52,53]. Additionally, further experimental validation is needed to support and
clarify this seemingly contradictory result.

HLA-DR is a class II molecule of the major histocompatibility complex (MHC), primar-
ily expressed on antigen-presenting cells (APCs) like dendritic cells and monocytes. CD14+
CD16− monocytes, commonly referred to as classical monocytes, constitute approximately
80–90% of peripheral blood monocytes [54]. These cells predominantly differentiate into
tumor-associated macrophages (TAMs), which contribute to the suppression of T cell ac-
tivity, the recruitment of Tregs, and the promotion of tumor metastasis. These effects are
mediated through key signaling pathways, such as NF-κB and STAT3 [55]. Naive CD4+
T cells play a crucial role in shaping tumor immune responses. Upon activation in the
TME, these cells differentiate into effector T cells, such as Th1 cells, which enhance the
anti-tumor immune response [56,57]. The high proportion of naive CD4+ T cells suggests
that the immune system is not effectively activated, enabling bladder cancer cells to evade
immune surveillance and promote cancer development, consistent with HLA-DR+ CD8
bright T cells acting as a protective factor. This finding offers valuable insights into the
immune mechanisms of BC and potential immunotherapy strategies. Based on the afore-
mentioned studies, our findings are largely consistent with previous research, providing a
solid foundation for further investigation.

Using SNPense, we annotated immune cell-related SNPs and performed differential
expression analysis, which led to the identification of 28 genes, referred to as iDEGs.
Functional enrichment analysis and PPI network construction revealed that these genes
are primarily associated with immune functions and related signaling mechanisms. These
findings are consistent with the immunogenic characteristics of BC and support the validity
of our integrative MR-based differential analysis approach [6–8].

In addition, machine learning analysis of the iDEGs identified five key genes—COLEC12,
TMCC1, CEP55, KLK3, and COL4A1—as potential biomarkers for diagnosis. Although
current studies on these genes in BC are relatively limited, their reported involvement
in other cancer types supports the validity of our findings and suggests that they may
represent novel targets for future research. COLEC12 has been shown to regulate apoptosis
and inflammatory responses in osteosarcoma, and it promotes enhanced migration and
invasion in gastric cancer cells [58,59]. The TMCC family comprises three predicted pro-
teins (TMCC1–3). Although the exact functions and characteristics of these proteins are
not yet fully understood, existing studies have suggested that TMCC1 is predominantly
localized to the rough endoplasmic reticulum and is involved in critical processes related to
endoplasmic reticulum-associated budding [60,61]. CEP55 has been reported to be overex-
pressed in BC patients, and research suggests it may promote tumorigenesis by activating
the NF-κB signaling pathway [62]. Interestingly, KLK3 (prostate-specific antigen, PSA)
is a well-established biomarker in prostate cancer; however, its role in BC remains less
well-documented. In our analysis, we suggest that KLK3 may influence the progression
of BC. One potential mechanism is extracellular matrix (ECM) remodeling. KLK3, like
other kallikrein-related proteases, possesses proteolytic activity that may contribute to
ECM component degradation, a critical process for tumor cell invasion and metastasis [63].
Another potential mechanism involves androgen receptor (AR) signaling. KLK3 expression
is regulated by androgens in prostate cancer, and androgen receptor signaling is known
to be a key driver of both prostate and bladder cancer progression [64–66]. Although the
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role of KLK3 in regulating AR signaling in BC is less well understood, studies suggest that
kallikrein-related proteases influence BC progression by modulating protease activity [67].
This suggests that KLK3 deserves further exploration of its potential function [68]. Fur-
thermore, studies on COL4A1 have revealed that COL4A1 produced by BC cells promotes
tumor budding and is associated with poor prognosis. Further analysis of COL4A1 levels
in the urine of BC patients has led to the suggestion that COL4A1 may serve as a novel
diagnostic and prognostic biomarker [69,70].

5. Conclusions
This study explores potential causal links between various immune cells and BC,

offering important insights into the mechanisms driving BC and suggesting new pathways
for diagnosis and prevention. Our findings highlight the complex interplay between im-
mune cells and BC, identify key molecular markers, and provide a robust foundation for
future translational research aimed at unraveling the pathogenesis of BC. While our results
have been validated, the study does have limitations. Additional experimental studies
are necessary to further confirm the identified biomarkers and elucidate the underlying
mechanisms. In future studies, in vitro functional assays will be performed, including
knockdown or overexpression experiments of key candidate genes in bladder cancer cell
lines. This approach will enable the assessment of how these genes influence tumor cell
proliferation, apoptosis, cytokine secretion, and immune response modulation, offering
a deeper understanding of the molecular mechanisms underlying bladder cancer pro-
gression. Additionally, in vivo studies using xenograft mouse models will examine the
impact of these genes on tumor growth and immune cell infiltration. These studies will
assess how the identified genetic alterations influence tumor development and the tumor
microenvironment, with a particular focus on immune cell populations such as T cells and
macrophages. Investigating the effects of these genes in vivo will provide insights into
their potential therapeutic applications for bladder cancer. Therefore, ongoing research is
required to validate these results and explore their applicability to diverse populations.
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