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Abstract
Image‐based modeling, and more precisely, Structure from Motion (SfM) and Multi‐
View Stereo (MVS), is emerging as a flexible, self‐service, remote sensing tool for gen‐
erating fine‐grained digital surface models (DSMs) in the Earth sciences and ecology. 
However, drone‐based SfM + MVS applications have developed at a rapid pace over 
the past decade and there are now many software options available for data process‐
ing. Consequently, understanding of reproducibility issues caused by variations in 
software choice and their influence on data quality is relatively poorly understood. 
This understanding is crucial for the development of SfM + MVS if it is to fulfill a role 
as a new quantitative remote sensing tool to inform management frameworks and 
species conservation schemes. To address this knowledge gap, a lightweight mul‐
tirotor drone carrying a Ricoh GR II consumer‐grade camera was used to capture 
replicate, centimeter‐resolution image datasets of a temperate, intensively managed 
grassland ecosystem. These data allowed the exploration of method reproducibility 
and the impact of SfM + MVS software choice on derived vegetation canopy height 
measurement accuracy. The quality of DSM height measurements derived from four 
different, yet widely used SfM‐MVS software—Photoscan, Pix4D, 3DFlow Zephyr, 
and MICMAC, was compared with in situ data captured on the same day as image 
capture. We used both traditional agronomic techniques for measuring sward height, 
and a high accuracy and precision differential GPS survey to generate independent 
measurements of the underlying ground surface elevation. Using the same replicate 
image dataset (n = 3) as input, we demonstrate that there are 1.7, 2.0, and 2.5 cm 
differences in RMSE (excluding one outlier) between the outputs from different 
SfM  +  MVS software using High, Medium, and Low quality settings, respectively. 
Furthermore, we show that there can be a significant difference, although of small 
overall magnitude between replicate image datasets (n = 3) processed using the same 
SfM + MVS software, following the same workflow, with a variance in RMSE of up to 
1.3, 1.5, and 2.7 cm (excluding one outlier) for “High,” “Medium,” and “Low” quality 
settings, respectively. We conclude that SfM + MVS software choice does matter, 
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1  | INTRODUC TION

There is a pressing need within ecology for spatial data that can deliver 
information about ecosystem functional traits and their dynamics 
through time. Due to the rapid and at times complex nature of eco‐
system dynamics, it is critical to have access to agile, effective, and re‐
producible methods for capturing key habitat or species traits such as 
canopy structure. Such data can allow differentiation between early 
trends and short‐term fluctuations and can also be used for identify‐
ing and establishing conservation sites with specific protected fea‐
tures (Fourcade & Öckinger, 2017). An example habitat requiring such 
information is high‐value temperate grasslands, which are threatened 
by agricultural intensification (Fritch, Sheridan, Finn, McCormack, & 
Ó hUallacháin, 2017; Ridding, Redhead, & Pywell, 2015) and climate 
change (Ibáñez et al., 2013; McCauley, Ribic, Pomara, & Zuckerberg, 
2017). Remote sensing techniques have proven their worth in deliv‐
ering spatio‐temporal data for evaluating ecosystem dynamics across 
a range of ecosystems (Dalponte, Frizzera, & Gianelle, 2018; Lesak 
et al., 2011; Luoto, Toivonen, & Heikkinen, 2002; Mori, Tatsumi, & 
Gustafsson, 2017; Phinn, Menges, Hill, & Stanford, 2000), but in 
grassland systems there are methodological challenges. Airborne 
LiDAR‐derived data products potentially provide the best oppor‐
tunity for gathering fine‐grained measurements describing grass‐
land vegetation structure (Müller et al., 2018), but laser penetration 
through the canopy can be inconsistent and factors including vegeta‐
tion canopy density can bias results (Luscombe et al., 2015). Hence, 
it is not straight forward to determine whether the signals originate 
from the canopy and soil surface, or if the signal represents some‐
thing in between (Bretar & Chehata, 2007; Yang, Ni‐Meister, & Lee, 
2010). Consequently, new techniques are needed for delivering oper‐
ational, cost‐effective measurements describing the spatial distribu‐
tion of fine‐grained canopy structure in such ecosystems (Forsmoo, 
Anderson, Macleod, Wilkinson, & Brazier, 2018).

Structure from Motion (SfM) and Multi‐View Stereo (MVS) 
is a rapidly evolving technique for measuring surface structure in 
ecology (Dandois and Ellis, 2010; Forsmoo et al., 2018; Lucieer, 
Robinson, Turner, Harwin, & Kelcey, 2012; Remondino, Barazzetti, 
Nex, Scaioni, & Sarazzi, 2011; Tao, Lei, & Mooney, 2011; Turner, 
Lucieer, & Watson, 2012; Verhoeven & Vermeulen, 2016), and argu‐
ably, this offers the only realistic alternative to LiDAR for measuring 
the canopy structure of low‐sward systems (Forsmoo et al., 2018). 
The emergence of SfM + MVS‐based data analysis approaches has 
been complemented in recent times by an upsurge in drone‐based 
environmental monitoring (Anderson & Gaston, 2013). The two 

approaches combined offer a means of executing a workflow for 
low cost and frequent capture of fine‐grained data to generate sur‐
face structural models, including digital surface models (DSMs) from 
which vegetation height metrics may be obtained (Dandois, Olano, & 
Ellis, 2015; Forsmoo et al., 2018).

The quality of drone and SfM + MVS‐based models depends on 
a range of factors including type of camera used and flying speed 
and altitude, with work by O'Connor, Smith, and James (2017) 
showing how varying camera settings can impact SfM + MVS‐based 
data products. There are also issues of methodological‐based un‐
certainty to consider, for example the impact of lighting conditions 
and image overlap on resultant model quality (Dandois et al., 2015; 
James, Robson, & Smith, 2017). Additionally, there are now a great 
number of commercial or free and/or open‐source SfM  +  MVS 
software options that are available for researchers and stakehold‐
ers to use. Table 1 summarizes those softwares that are available, 
but restricts the list to include only those with GPS‐based capa‐
bilities, since these can be used to generate spatially meaningful 
mapping products. From a user's perspective, it is difficult to eval‐
uate which of these software options is optimal, because there is 
a lack of comparative work that evaluates the products against a 
consistent baseline. This is particularly true with respect to propri‐
etary SfM + MVS‐based software, where there is little to no infor‐
mation on the algorithms used (Smith, Carrivick, & Quincey, 2016; 
Verhoeven et al., 2015). Indeed, Fraser and Congalton (2018) call 
for more analysis on SfM + MVS‐based approaches. Hence, there 
is a need to quantify the influence of software on data quality, and 
yet to our knowledge, there have been no statistically robust in‐
vestigations of this type. This makes it challenging to attribute dif‐
ferences in results to variations in the SfM + MVS‐based method 
(e.g., software used). This problem limits the quantitative under‐
standing of change in ecosystems surveyed using an SfM + MVS‐
based workflow, which is what this paper sets out to test.

The experiment described in this manuscript sought to deter‐
mine the influence of SfM + MVS‐based software used to process 
aerial photographs captured from a low‐flying multirotor drone, 
over a low sward, intensively managed grassland system. The ex‐
periment quantifies the extent to which derived sward height mea‐
surements can be replicated and thus facilitates the adoption of 
SfM + MVS‐based workflows for land management frameworks and 
conservation schemes. We explored and evaluated this problem by 
quantifying the influence of the choice of SfM + MVS software and 
replicate image acquisition workflows. Specifically, the following hy‐
potheses were tested:

although the differences between products processed using “High” and “Medium” 
quality settings are of small overall magnitude.

K E Y W O R D S

drone, elevation model, photogrammetry, reproducibility, structure from motion and multi‐
view stereo, sward height
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1.	 Three independently captured, replicate image datasets taken 
over the same field, but from different drone flights (where 
the drone followed the same preprogrammed flightplan), and 
processed using the same SfM  +  MVS workflow can produce 
significantly different digital surface models (DSMs).

2.	 The vertical error in SfM + MVS‐derived DSMs varies significantly 
between different SfM + MVS software when the same image set 
from the same flight is processed.

3.	 The vertical error in SfM  +  MVS‐derived DSMs decreases with 
increasing computational cost.

4.	 The costs of different SfM + MVS software approaches are not 
significantly different in terms of learning, processing, and ana‐
lytical time as well as financial cost to the user.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area was a single agricultural field (8,059  m2) located 
on a grazed, organic dairy farm in Cornwall, southwest England 
(50°12′09.5″N 5°09′28.4″W, 90 m above mean sea level) with a sur‐
face cover of Lolium perenne (perennial ryegrass) and Trifolium prat‐
ense (red clover). The site included a 25 × 20 m patch of set‐aside, 
unmanaged grassland. The site was chosen because there is a need 
to understand short sward ecosystems where it is difficult to derive 
high quality DSMs (Forsmoo et al., 2018; Zahawi et al., 2015). The 
site was gently sloping with a maximum elevation of 90.8 m (HAMSL) 
and minimum elevation of 86.8 m (HAMSL).

2.2 | In situ sward height and topographic 
validation data

In situ data were collected using a centimeter precision and accuracy 
differential GPS (DGPS; a Leica GS08plus base and rover GNSS sys‐
tem). Over 2 days, and immediately following the drone flight acquisi‐
tions, 236 DGPS data points were collected inside the area covered 
by the SfM + MVS DSM (6,800 m2). The DGPS points were collected 

across the full spatial extent of the field using a systematic survey 
pattern, walking along near‐linear transects where the direction and 
sampling frequency were varied according to the perceived degree 
of topographic heterogeneity. Data points were collected more fre‐
quently where the perceived topographic heterogeneity was greater, 
that is, where breaks in slope occurred. In addition to the DGPS data 
points, sward height measurements were collected using a drop 
disk (Stewart, Bourn, & Thomas, 2001; Waring, 1992) method at the 
DGPS data point locations as outlined in Forsmoo et al. (2018).

2.3 | Drone aerial photography survey

A small multirotor drone (3D Robotics Iris) was used to obtain aerial 
photographic data of the field on 21 June, 2016 when the grass was 
in a period of active growth. The (mean) wind speed during the flight 
was 2 ms−1. The 3DR Iris was chosen due to its low cost (US$400), 
good reputation regarding flight stability and low rate of mechani‐
cal and electrical failures, lightweight construction (1,020 g take off‐
weight), and ease of use. A multirotor drone was chosen over a fixed 
wing drone due to the small area covered and to reduce photographic 
motion blur. A fixed, prime lens consumer‐grade digital camera (Ricoh 
GR II) was used to capture the images, and a Pixhawk autopilot guided 
the drone along a waypointed route (see Figure 1a–c). A more detailed 
description of the camera settings is outlined in Forsmoo et al. (2018).

Mission Planner (ver. 1.3.38) software was used to prepare 
the flight. A cross‐stitch lawnmower flight pattern was chosen 
(Figure 1c), with 70%/70% side/forward overlap in each of the two 
directions of the grid. Fourteen georeferenced high contrast mark‐
ers were dispersed throughout the study area using a cluster of ten 
in the center of the scene and four in two of the opposite edges 
of the scene, following recommendations by Cunliffe, Brazier, and 
Anderson (2016). The georeferenced markers were used to con‐
vert the SfM  +  MVS generated DSMs from a relative coordinate 
system to British National Grid (BNG36)—these markers were 
surveyed in terms of their x,y,z position using the DGPS. Flying at 
a height of 50  m, the drone produced image data with a ground 
sampling distance (GSD) of between 0.52 and 0.60 cm. The survey 
was repeated three times using exactly the same parameters and 

Software Link

Agisoft Photoscan Pro http://www.agiso​ft.com/

Pix4D https​://www.pix4d.com/

3DFlow Zephyr Pro https​://www.3dflow.net/3df-zephyr-pro-3d-models-from-photo​s/

MICMAC https​://github.com/micma​cIGN/micmac

GRAPHOS https​://github.com/itos3​d/GRAPHOS

Autodesk Recap https​://www.autod​esk.com/produ​cts/recap/​overview

ESRI Drone2Map https​://www.esri.com/en-us/arcgi​s/produ​cts/drone​2map/overview

SURE http://www.ifp.uni-stutt​gart.de/publi​catio​ns/softw​are/sure/index.
en.html

Photomodeler Premium https​://www.photo​model​er.com/index.html

RealityCapture https​://www.captu​ringr​eality.com/

TA B L E  1   Examples of SfM + MVS‐
based software options available for 
researchers (accessed December 2018)

http://www.agisoft.com/
https://www.pix4d.com/
https://www.3dflow.net/3df-zephyr-pro-3d-models-from-photos/
https://github.com/micmacIGN/micmac
https://github.com/itos3d/GRAPHOS
https://www.autodesk.com/products/recap/overview
https://www.esri.com/en-us/arcgis/products/drone2map/overview
http://www.ifp.uni-stuttgart.de/publications/software/sure/index.en.html
http://www.ifp.uni-stuttgart.de/publications/software/sure/index.en.html
https://www.photomodeler.com/index.html
https://www.capturingreality.com/
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following the same flight plan each time, to allow replication and 
therefore reproducibility of the approach to be understood (follow‐
ing recommendations of Dandois et al., 2015). The three replicate 
image datasets were captured in the time span of an hour, ensuring 
confidence that there was no measurable change in the variables 
being measured (land surface height and sward height) between 
the three flights.

2.4 | SfM + MVS workflow

An SfM  +  MVS workflow applies computer vision algorithms to 
images with a high degree of overlap to place the images taken in 
3D space (Forsmoo et al., 2018; Remondino, Nocerino, Toschi, & 
Menna, 2017; Rupnik, Daakir, & Pierrot Deseilligny, 2017; Smith et 
al., 2016; Verhoeven & Vermeulen, 2016). These computer vision 
algorithms are implemented in numerous ways depending upon 
software choice, where the SfM  +  MVS workflows range from 
semi‐automatic, where each step such as identification of key 
points and camera calibration is called separately, to a fully auto‐
mated workflow. Four state‐of‐the‐art1  examples of SfM + MVS 
software currently available were tested here, chosen because 
they represent various commercial options at different price 
points (Agisoft Photoscan, Pix4D, 3DFlow Aerial) to a free‐to‐use 
and an open‐source option (MICMAC). To reduce the influence of 
the “human factor,” the same location (pixel coordinates) of geo‐
referenced high contrast markers in the aerial 2D images was used 
across the four different software. The citations given alongside 
indicate other literature examples that have utilized these soft‐
ware in ecology research:

1.	 3DFlow Zephyr Aerial (little evidence of use in ecology, though 
widely used in urban environments, e.g., Vassena & Clerici, 2018; 

Peel, Luo, Cohn, & Fuentes, 2018; Azzola, Cardaci, Mirabella 
Roberti, & Nannei, 2019).

2.	 Agisoft Photoscan (Cunliffe et al., 2016; Dandois et al., 2015; 
Hoffmann et al., 2015; Javernick, Brasington, & Caruso, 2014; 
Lucieer, Turner, King, & Robinson, 2014; Obanawa & Hayakawa, 
2015).

3.	 Pix4D (Magtalas, Aves, & Blanco, 2016; Ouédraogo, Degré, 
Debouche, & Lisein, 2014; Raeva, Filipova, & Filipov, 2016).

4.	 MICMAC (Forsmoo et al., 2018; Lisein, Pierrot‐Deseilligny, 
Bonnet, & Lejeune, 2013; Ouédraogo et al., 2014; Tournadre, 
Pierrot‐Deseilligny, & Faure, 2014; Tournadre, Pierrot‐Deseilligny, 
& Faure, 2015).

The SfM  +  MVS software compared is presented in Table 2. 
Several criteria describing ease of use and cost are presented.

Figure 2 presents an overview of the critical methodological 
steps followed for the comparison work undertaken here, including 
data acquisition and the drone and SfM + MVS‐based workflow.

To reduce the computational cost of generating 36 SfM + MVS 
DSMs, a subset of 50 images were selected from the image data‐
sets. The subset of images (n  =  50) was used for all software 
(n = 4). The selection of a subset of images was undertaken using 
the MICMAC tool OriConvert, which used a specified image as 
the master image, and selects the specified number of neighboring 
images based on the coordinates of the geotagged images. The 
master image was selected by choosing the image covering the 
same scene from the same angle in the three replicate image data‐
sets, respectively.

Each of the proprietary software (Pix4D, 3DFlow, and 
Photoscan) methodologies was learnt in <3  days (Table 1). 
MICMAC was significantly more difficult to learn—and took the 
lead author of this paper approximately 30 days, though the exact 

F I G U R E  1   (a) Waypointed route as planned in Mission Planner (ver. 1.3.38), (b) orthomosaic depicting the field site, (c) amount of overlap 
between the images used in this study, seen over the extent of the field site, where black dots indicate camera trigger locations, and red and 
white dots indicate the location of the GNSS data points
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time required does depend on user experience and expertise. The 
three main factors contributing to MICMAC's relatively steep 
learning curve were as follows:

1.	 MICMAC is compiled from source.
2.	 The MICMAC workflow used in this study was not detailed in the 

MICMAC manual.
3.	 MICMAC consists of numerous modules that can be combined in 

several ways.

This learning curve can be compared to the three proprietary soft‐
ware (Pix4D, 3DFlow, and Photoscan)—where the SfM + MVS work‐
flow is predetermined, and most of the steps used commonly are 
automatically carried out via drop‐down menus. The greatest user‐
based learning involved with the three proprietary software was 
how to convert the SfM  +  MVS model from a relative coordinate 
system to an absolute coordinate system, a step in the process which 
differs between software. The MICMAC application took the lead 
author of this paper approximately 30 days to learn.

TA B L E  2   Overview of the software used in the study

Software Documentation Support/community Under development
CPU time 
“High”/“Medium”/“Low” (min)a

3DFlow Aerial (Ver 
3.700)

Yes, including algo‐
rithms used

Email and forum Yes, last release: April 
2019

891/170/61

MICMAC (Ver. 
1.0.beta11‐459)

Yes, including algo‐
rithms used.

Forum Yes, last update: 
February 2019

113/29/24

PhotoScan PRO (1.4.1) Yes, excluding algo‐
rithms used.

Email and forum Yes, last update: March 
2019

663/64/31

Pix4DMapper (4.1.25) Yes, excluding algo‐
rithms used.

Email and forum Yes, last update: March 
2019

60/7/2

Note: Information accessed 28 April 2019, and is subject to change.
aWorkstation: Consumer‐grade desktop (AMD Ryzen 1800x CPU, 16GB DDR4 RAM, AMD RX 570 GPU) 

F I G U R E  2   Workflow outline. A typical SfM + MVS workflow, the workflow utilized in this study, is outlined. The major steps in terms of 
computational cost or labor intensity are as follows: (I) aerial images are collected using a consumer‐grade drone along waypointed route, 
(V) generate a DSM in an absolute coordinate system (e.g., BNG36), (VI) utilize the SfM + MVS DSM and in situ collected DTM data points to 
calculate the sward canopy height
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In terms of computational cost, three different processing 
workflows (“High,” “Medium,” and “Low”) were identified for each 
software (n = 4). These settings were used for each replicate image 
dataset (n  =  3) to explore how accuracy depends on theoretical 
grade of desktop workstation or server the user has access to (see 
Table 3).

2.5 | DSM generation

Sward height validation points located in edges with poor image 
overlap (n < 3) and/or which were not covered by either of the dense 
SfM + MVS point clouds were removed. This left 228 sward height 
validation points for further analysis. The extent of the dense point 
cloud was divided into 1.2 × 1.2 cm grids. The maximum elevation of 
each 1.2 × 1.2 cm cell was used to generate a continuous DSM from 
the dense SfM + MVS point cloud. A 1.2 × 1.2 cm grid DSM was cho‐
sen to cover ca. twice the footprint as the image data. This opera‐
tion was undertaken using the free and open‐source CloudCompare 
software (ver. 2.9.1).

2.6 | Comparison of SfM photogrammetric outputs 
with ground validation data

To quantify the quality of the DSM generated using an SfM + MVS 
workflow, the SfM  +  MVS model was compared to sward height 
ground validation data. The elevation was extracted at the loca‐
tions where the DGPS (soil surface elevation and sward height) was 

measured. This was done for all the points (n = 228) using the GIS 
software, ArcMap (ver. 10.2.2).

The measures of quality included in this study were (a) Root 
Mean Square Error (RMSE) and (b) correlation coefficient (R2) be‐
tween validation sward height and the sward height measured using 
the proposed SfM + MVS workflow. These measures were computed 
in MATLAB (ver. 2016b).

To test for significant difference between results, a two‐sided, 
paired t test was used with an alpha value of 0.05. This was car‐
ried out using MATLAB 2016b. More specifically, the following were 
tested for significance:

1.	 Is there a significant difference between results from different 
software (n  =  4) when using the same image dataset and the 
same ground control points?

2.	 Is there a significant difference between replicate image datasets 
(n = 3) processed using the same software and workflow?

3.	 Is there a significant difference between the combined results 
(software n = 4) for replicate image datasets (n = 3)?

2.7 | Change detection with M3C2

The Multiscale Model to Model Cloud Comparison (M3C2) algorithm 
detailed in Lague, Brodu, and Leroux (2013) allows for robust com‐
parison of fine‐grain points clouds from complex natural environ‐
ments (James, Robson, & Smith, 2017). Specifically, M3C2 works 

TA B L E  3   The settings and version used for each of the software, respectively

Software
3DFlow Zephyr 
Aerial Photoscan PRO Pix4DMapper MICMAC

Settings (“High”)/Full 
sized images

Matching type: 
accurate

Matching stage 
depth: full

Discretization: very 
high

Discretization: very 
high

Accuracy: highest
Quality: ultra high
Depth filtering: mild

Keypoints image scale: full
Aerial grid
Geometrically verified matching

Tapioca file ‐1
Tapas Radial 

Extended + Figee
Malt Ortho SzW = 1 

ZoomF = 1

Settings (“Medium”)/
Downscaled images 
(50%)

Matching type: 
accurate

Matching stage 
depth: high

Discretization: very 
high

Resolution: ½ origi‐
nal size

Accuracy: high
Quality: high
Depth filtering: mild

Keypoints image scale: ½ original size
Aerial grid
Geometrically verified matching

Tapioca file 2464
Tapas Radial 

Extended + Figee
Malt Ortho SzW = 1 

ZoomF = 2

Settings (“Low”)/
Downscaled images 
(25%)

Matching type: 
accurate

Matching stage 
depth: high

Discretization: high
Resolution: ¼ origi‐

nal size

Accuracy: “Medium”
Quality: “Medium” filter‐

ing: mild

Keypoints image scale: ¼ original size
Aerial grid
Geometrically verified matching

Tapioca file 1232
Tapas Radial 

Extended + Figee
Malt Ortho SzW = 1 

ZoomF = 2

Version 3.700 1.4.1 4.1.25 Ver. 1.0.beta11−459
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directly with the point cloud—whereas previous methods such 
as DEM of difference (DoD) require rasterized data which do not 
allow point‐to‐point‐based properties to be taken into considera‐
tion. M3C2 therefore has the capacity to accurately capture mean 
surface change in noisy datasets/environments. Additionally, M3C2 
offers a key advantage in the ability to estimate local confidence in‐
tervals which enables calculation of significant change across space 
and time. Herein, M3C2‐based analyses were applied to pairs of 
point clouds (n = 54) to evaluate spatial differences in SfM + MVS‐
derived DSMs between (a) replicate image datasets and (b) software.

To understand the rationale for using M3C2, one must under‐
stand how it works. In short, M3C2 consists of two steps: First, 
for each point cloud a plane is fitted to the points within the radius 
D/2 of point i, which enables the calculation of a normal vector. 
Secondly, the normal vector is used to calculate the distance be‐
tween two clouds by projecting point i onto each of the clouds 
at the projection scale d. This makes it possible to estimate the 
average position of each cloud (i1 and i2) around point i. A mea‐
sure of the local distance between the two clouds is defined as 
the distance between i1 and i2. More specifically, this is achieved 
by defining a cylinder of radius d/2 with the axis through point i, 
and which is oriented along the normal vector. Where each of the 
two point clouds intercepts the cylinder, there will be two subset 
of points (one for each point cloud), n1 and n2. Projecting n1 and 
n2 onto the axis of the cylinder generates two sets of distance 
distributions. The mean of these distributions is used to approxi‐
mate the local surface roughness. The local surface roughness and 
subset of points, n1 and n2, in turn allow for the calculation of a 
local confidence interval (Barnhart & Crosby, 2013; Lague et al., 
2013). For a more detailed explanation, see Lague et al. (2013). 
The M3C2 parameters used herein are based on recommenda‐
tions by Lague et al. (2013), specifically, normal scale D ~ 20 times 
the (95th percentile) surface roughness (96 cm), projection scale 
d = 10 times the number of points per unit area in the point cloud, 
subsample  =  subsampled to 6  cm, or ~5 times the ground sam‐
pling distance, as a compromise between computational cost and 
resolution.

3  | RESULTS

3.1 | Overview of field site and drone survey

Over 90% of the field site was covered by a high degree of image 
overlap with at least three images per point, but with a central area 
of interest coinciding with the field validation points where overlap 
was consistently very high (see Figure 1). The remaining ~10% where 
image overlap was <3 images per point was excluded from the analy‐
sis. In situ measurements on the day of the drone flight showed that 
the mean canopy height was 11.5 cm (min: 4.9 cm, max: 48.4 cm; 
Figure 3). 

3.2 | Reproducibility with computational cost

To understand the robustness of the software better, the significant 
differences between the resulting dense point clouds for each of 
the three replicate image datasets were computed using the M3C2 
method (Lague et al., 2013). This was carried out for each software 
(n  =  4) using CloudCompare (ver. 2.9.1; see Figures 4, S1 and S2, 
Appendix S1).

3.2.1 | Replicate image datasets

A boxplot of the RMSE for Pix4D, Photoscan, 3DFlow, and MICMAC 
for each of the three image datasets with “High” quality settings is 
shown in Figure 5. The median RMSE of the SfM  +  MVS‐derived 
sward height is consistently reduced when using higher quality set‐
tings when compared to sward height validation data (n = 228; see 
Figures 5 and S3, Appendix S1).

To determine if there is a significant difference, overall, in derived 
height measurements between replicate image datasets, a paired 
t test was used. It was found that there was a statistically signifi‐
cant difference between the SfM + MVS‐derived DSMs produced 
between each of the three replicate image datasets (first–second, 
first–third, and second–third), for each of the three quality settings 
(“High,” “Medium,” and “Low”; see Table 4).

F I G U R E  3   Sward height distribution of 
in situ validation measurements of sward 
height
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3.3 | Reproducibility across software

To understand the robustness of SfM‐MVS‐based workflows better, 
the significant differences between the resulting dense point clouds 
were computed using the M3C2 method (Lague et al., 2013). This 
was carried out between each of the software (n = 4) and the second 
replicate image dataset using CloudCompare (ver. 2.9.1; see Figures 
6, S3 and S4, Appendix S1).

3.3.1 | Key statistics

The number of points per unit area is not necessarily a robust indica‐
tor of quality. However, it can provide a rough gauge for the quality 
of processing settings used—and conversely what one can expect 
following the workflow outlined herein. Image residual (pixels) is 
the mean local error in image alignment, as estimated by the bun‐
dle adjustment (Bogunovic et al., 2014; Forsmoo et al., 2018; James, 
Robson, & Smith, 2017). GCP residuals show the difference between 
measured coordinates and  the corresponding coordinates within the 
SfM + MVS‐derived 3D model (James, Robson, d'Oleire‐Oltmanns, 

& Niethammer, 2017). As a rough guideline, one tries to aim for an 
image residual below half a pixel, and a GCP residual below 2 cm, 
though the requirements differ between use cases.

3.3.2 | High settings

Table 5 allows comparison between software and, in particular, eluci‐
dates the identification of absolute and relative difference between 
replicate image datasets. This is for the “High” quality settings.

3.4 | Replicated independent image 
datasets and different SfM software produce 
significantly different DSMs

Sward height measurements derived from an SfM + MVS workflow 
were compared to in situ validation sward height measurements 
(see Figure 6). The SfM  +  MVS‐derived measurements are com‐
pared in terms of RMSE and R2. The RMSE ranged from 3.4  cm 
to 5.7  cm for MICMAC and 3DFlow, respectively, seen over the 
three replicate image datasets. The correlation coefficient (R2) was 

F I G U R E  4   Spatial distribution of significant changes between replicate image datasets (n = 3) for four software (Photoscan, 3DFlow, 
Pix4D, and MICMAC) at “High” quality settings, respectively. *(ns = not significant, s = significant)
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calculated as the correlation between validation sward height and 
the sward height measured using the proposed SfM + MVS work‐
flow. Using a paired t test, it was found that there was a statisti‐
cally significant difference between the model with lowest RMSE 
and the model with the highest RMSE for the first, second, and 
third replicate image datasets, respectively, using “High” quality 
settings. While improvements are significant in statistical terms, 
the differences, given the magnitude, are minimally important in 
practice. The replicate image datasets are in order—1 to 3, from 
left to right (see Figure 7).

3.5 | Is there an important difference in financial 
cost between software?

To allow users to quantify software differences in terms of financial 
cost, customizability, and ease of use, a simple matrix was developed. 
The first step (see Table 6) quantifies the different software in terms 
of (a) customizability, (b) financial cost, (c) CPU time, (d) ease of use, 
and (e) range of data products ranked between 1 and 4 (the higher 
the better. In case of tie, the same rank is given). Customizability re‐
fers to the extent a user can modify the core settings of the software 
and/or the type of analysis carried out. For example, in Photoscan 
and Pix4D a user is restricted to a limited number of key parameters 
(number of tie points, number of key points etc.), whereas in 3DFlow 
and MICMAC, a user can often adjust more than 20 different pa‐
rameters at each step in the processing pipeline. MICMAC gets 
the higher rank, though, for its flexible processing pipeline, where 

different modules can be combined in several different ways de‐
pending on the user's needs. Also, worth pointing out that MICMAC 
gets a rank of 2 in ease of use/support for the fact that since this 
study was started, articles such as Rupnik et al. (2017) have been 
published, which simplifies the learning process.

By dividing the score for each software (n = 4) for each category 
(n = 5) by the total score for each category, each score can be nor‐
malized (see Table 7).

With each score normalized, the user can rank the five differ‐
ent categories in terms of their relative importance. The normal‐
ized value is multiplied with the user‐defined rank which can be 
adjusted depending on the project (the example values chosen 
below are for the study detailed herein). The score for each soft‐
ware and category can then be added together. Table 8 outlines 
an example.

4  | DISCUSSION

4.1 | H1. (1) Replicated independent image datasets 
can produce significantly different DSMs

We tested whether replicated, proximal image datasets processed 
using the same workflow produced statistically different topo‐
graphic models. In order to test this, we collected three replicate 
image datasets and analyzed them using three different quality 
settings (“High,” “Medium,” and “Low”). As can be seen in Tables 4 
and 5 and Figures 6 and 7 (see also Tables S1 and S2 and Figures 

F I G U R E  5   Boxplot of the RMSE of 
the SfM + MVS‐derived sward heights 
generated using the three replicate image 
datasets, compared to sward height 
validation data. The data on the x‐axis 
are labeled according to replicate image 
dataset (1–3), and validation data (sward 
height). ( ) indicates the median (RMSE), 
( , lower and upper) represents the 25th 
and 75th percentiles, respectively, and 
( ) shows the minimum and maximum 
data point value (Matlab, 2017)

Paired t test: df: 911; 
alpha: 0.05 First–second First–third Second–third

“High” settings p: 3.4e−33 1.3e−69 5.4e−08

“Medium” settings 4.8–33 1.3e−71 3.3e−18

“Low” settings 1.9e−19 2.6e−17 1.9e−18

Note: DSM height measurements from each software (n = 4) were combined, which was then com‐
pared between the three replicate image datasets (first–second, first–third, and second–third).

TA B L E  4   Using a paired t test, 
differences between the SfM + MVS‐
derived DSMs produced using replicate 
image datasets were tested for 
significance
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S5–S7, Appendix S1), we demonstrated that the above hypoth‐
esis has been statistically proven. That is, there is a statistically 
significant (p  <  0.05) difference between each of the three rep‐
licate image datasets processed using the same workflow, in‐
cluding SfM  +  MVS software, with “High,” “Medium,” and “Low” 

settings, respectively (see Table 4). This result is something that 
all researchers should consider for their particular application, as 
the true difference could be larger in more heterogeneous sys‐
tems, with a greater range of vegetation cover and more variable 
canopy height, for example. Reproducibility of a method is key to 
be able to attribute detected changes to actual changes within the 
system of concern, and not artificial differences over time intro‐
duced by the methodological approach. To address the variance 
between replicate image datasets processed using an SfM + MVS 
workflow, we suggest to incorporate replicate image datasets in 
an SfM + MVS workflow. This is something that has already been 
outlined as an important consideration by Dandois et al. (2015) 
who collected five replicate image datasets and used the average 
of the replicate image datasets for further analysis. However, most 
studies to date ignore and do not acknowledge reproducibility 
limitations of an SfM + MVS workflow. As such, the implications 
of findings of many studies (Hugenholtz et al., 2013; Mancini et 
al., 2013; Obanawa & Hayakawa, 2015; Ouédraogo et al., 2014; 
Tonkin, Midgley, Graham, & Labadz, 2014; Wang et al., 2014) are 
limited as the conclusions are based on a single SfM + MVS model. 
Further work needs to be carried out to find the optimal number of 
replicate image datasets to describe potential variance and to find 
a compromise between reproducibility and computational cost.

4.1.1 | M3C2 analysis

The M3C2 analysis suggests two things: (a) that there are (systematic) 
patterns in the data and (b) that there are relatively few points/areas 
that are statistically similar across replicate image datasets. While part 
of this probably can be attributed to vegetation—as the algorithm was 
developed for scenes with bare soil, it is important to point out that 
potentially adverse effects associated with vegetation can be mini‐
mized with the appropriate choice of constants (Lague et al., 2013). 

F I G U R E  6   Spatial distribution of significant changes between 
software (n = 4) for one replicate image dataset (#2) and “High” 
quality settings, respectively

TA B L E  5   Overview of three variables of interest: (i) point cloud # points, (ii) image residual, and (iii) GCP residual for each software (n = 4) 
and replicate image dataset (n = 3) using “High” quality settings
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Additionally, this is a cloud‐to‐cloud comparison in an environment 
that is known to have undergone no physical change in between 
data collections. Hence, even though the vegetation complicates the 
analysis, it can in this case be treated as a fixed, albeit complex sur‐
face, with fine‐grain topographic patterns. Therefore, we would argue 
there is still validity to the patterns apparent in the M3C2 analysis.

Systematic patterns in the accuracy analysis of a SfM‐MVS‐derived 
DSM can be due to vegetation patterns, ground control point distri‐
bution, and/or the camera lens calibration model. The predominantly 
circular patterns present in the data presented in this study do not con‐
form with either the vegetation pattern or the location and distribution 
of ground control points. Hence, it is likely that the patterns highlighted 
in Figure 4 (see also Figures S1 and S2, Appendix S1) are due to insuffi‐
ciencies in the (internal) camera lens calibration model (James & Robson, 
2014). This hypothesis is further supported by the fact that systematic 
patterns are largely software dependent. Hence, as each software uses 
a different lens calibration model, it may depict the influence of the 
camera calibration process. A “poor” camera lens calibration model can 
be improved by including oblique image data as a complement to the 

nadir image data (James & Robson, 2014) and/or by calibrating the cam‐
era lens distortion model using a separate (high quality) image dataset 
with convergent viewing angles of a textured 3D object.

In order to address the above issue, a fixed camera mount was 
used in this study, and this provides a greater range of camera view‐
ing angles than the word nadir suggests. Different viewing angles are 
present because of platform tilt variations present in a regular mul‐
tirotor drone flight mission. The amount of tilt will vary with, for ex‐
ample, flight speed, wind speed, platform attitude, position of camera 
mount, etc. Forsmoo et al. (2018) clearly show that these variations 
in tilt are enough to achieve centimeter accuracy. Having said that, 
the data do suggest that the results could (likely) consistently be im‐
proved by having included additional oblique image data. Hence, it is 
important to keep in mind that the results presented herein are repre‐
sentative for a vegetated scene with a limited range of viewing angles, 
and not necessarily for other scenes and methodological approaches.

Why are replicates not (statistically valid) replicates? Differences 
in quality between replicate image datasets could be due to a 
range of factors including wind speed, light conditions (Dandois 

F I G U R E  7   “High” settings. The Root 
Mean Square Error (m, RMSE) (bar) and 
R2 (axis reversed) (dot) for each of the 
SfM + MVS‐derived DSMs, for each of the 
three replicate image datasets. The black 
line indicates the mean RMSE for each of 
the SfM + MVS software, respectively. 
The replicate image datasets are in 
order—1 to 3, from left to right, for each of 
the SfM + MVS software tested

Customizability/
flexibility

Financial 
cost

CPU time/com-
putational cost

Ease of use/
support

Range 
of data 
products

3DFlow 3 2 1 4 4

MICMAC 4 4 3 2 2

Photoscan 1 3 2 4 4

Pix4D 1 1 4 4 4

9 10 10 14 14

Note: The value given is, where possible, based on actual data such as CPU time in minutes and 
acquisition cost of software (as of 08/2018).

TA B L E  6   Each software has been 
given a value between 1 and 4 for each 
of the five categories deemed to be of 
importance

TA B L E  7   The score for each software (n = 4) for each category (n = 5) is divided by the total score for each category

Customizability/
flexibility Financial cost

CPU time/computational 
cost Ease of use/support

Range of data 
products

3DFlow 3/9 = 0.3333 2/10 = 0.2 1/10 = 0.1 4/14 = 0.2857 4/14 = 0.2857

MICMAC 4/9 = 0.4444 4/10 = 0.4 3/10 = 0.3 2/14 = 0.1429 2/14 = 0.1429

Photoscan 1/9 = 0.1111 3/10 = 0.3 2/10 = 0.2 4/14 = 0.2857 4/14 = 0.2857

Pix4D 1/9 = 0.1111 1/10 = 0.1 4/10 = 0.4 4/14 = 0.2857 4/14 = 0.2857

Note: This yields a normalized score for each category and software.
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et al., 2015), variations in the location (pixel coordinates) of geo‐
referenced high contrast markers in the aerial 2D images—which 
influence the x,y bias of the SfM  +  MVS‐derived DSM, and ro‐
bustness of the SfM + MVS software (Dandois et al., 2015; James, 
Robson, d'Oleire‐Oltmanns, et al., 2017). The influence of wind 
speed and light conditions was studied in Dandois et al. (2015), 
and both were found not to exert an important influence on the 
quality of the SfM  +  MVS‐derived DSM. Having said that, light 
conditions influence the image contrast (increased contrast with 
direct lighting) and shadows—which influence the identification 
of keypoints in images (Lowe, 2004). However, in this study the 
replicate image datasets were collected within the time span of an 
hour, with very similar weather conditions (2–3 m/s mean south‐
erly wind speed, 16.8–17.9°C, cloud cover ~ 30%), so we are confi‐
dent that the light, temperature, and wind conditions were similar 
and are thus assumed to have an insignificant effect on the results. 
Yet it is possible that the light wind blowing at the time of the flight 
would have caused movement in the blades of grass but this is the 
only expected change between the three flights. Flying height has 
been discussed and our choice to fly at 50 m was determined to be 
the optimal compromise between area coverage and data quality 
(Dandois et al., 2015; Mesas‐Carrascosa et al., 2016).

The robustness of the software is another potential explanation 
for the observed variance between the replicate image datasets. Given 
the difference in variance in RMSE for the replicate image datasets be‐
tween the software (see Figures 7, S6 and S7, Appendix S1), we argue 
that it is likely that an important part of the variance is due to the ro‐
bustness2  of the SfM + MVS software. This warrants further studies 
exploring the aspect of robustness—or sensitivity, of the SfM + MVS 
software, including how the quality of information derived from the 
software depends on a combination of methodological workflow 
(Dandois et al., 2015; Verhoeven, 2017) and the attributes (e.g., veg‐
etation, buildings, homogeneity of textures) in and of the surveyed 
scene (Furukawa & Hernández, 2015; Mancini et al., 2013; Remondino, 
Pizzo, Kersten, & Troisi, 2012; Ryan et al., 2015; Turner et al., 2012).

4.2 | H2. (2) Vertical and horizontal error varies 
significantly between different SfM + MVS software

We accept this hypothesis demonstrating that the choice of soft‐
ware is an important consideration which may determine the quality 

of the DSM (see Figures 5, 7, S3, S4, S6 and S7, and Appendix S1). 
There is a statistically significant (p < 0.05) difference between the 
software with the lowest and highest RMSE compared to in situ vali‐
dation data, respectively, for each of the replicate image datasets 
(n = 3) and choice of quality settings (n = 3).

However, the differences might not be of practical significance. 
While centimeter differences are often important for change moni‐
toring (Forsmoo et al., 2018; Lucieer et al., 2012) and when model‐
ing processes such as surface runoff based on topographic variability 
(Mügler et al., 2011; Thompson, Katul, & Porporato, 2010), where 
small differences can lead to important cumulative biases (Liu et al., 
2019; Lucieer et al., 2014), it is important to acknowledge that for 
some, if not many, purposes measurement uncertainties at the centi‐
meter magnitude are neglectable. In fact, we would argue that these 
fine‐grain uncertainties highlight exactly why a user would choose 
drones over aerial or satellite imagery for change detection. However, 
drone and SfM + MVS‐based data can give a false sense of security 
due to its ease of application and visual appeal, and software factors 
may become more important than RMSE differences at the centimeter 
magnitude. It is indeed also important to acknowledge that the anal‐
ysis presented herein is from a relatively small and homogenous field 
site, and a larger and more complex image dataset would likely influ‐
ence the findings (Colomina & Molina, 2014; Remondino et al., 2012).

4.3 | H3. (3) The vertical error in SfM + MVS‐
derived DSMs decrease with computational cost

We demonstrate (Figures 7, S6 and S7, Appendix S1) that the 
vertical error, on average, decreases with computational cost. 
The RMSE of the SfM  +  MVS‐derived DSM for the three repli‐
cate image datasets processed using “High” settings is, on aver‐
age—seen across the software, lower when compared to when 
processed with “Medium” and “Low” settings, respectively (see 
Figures 7, S6 and S7, Appendix S1). Therefore, we can confirm that 
this (3) hypothesis is true. Figure 4 and Table 5 (and Figures S1, 
S2 and Tables S1, S2, Appendix S1) suggest that changes to the 
settings affect software differently. While there is a trend toward 
increasing image residuals (pixels) with decreasing computational 
cost, Pix4D rather shows dataset‐specific effects that are exacer‐
bated with decreased computational cost (see Table 5 and Tables 
S1, S2, Appendix S1).

TA B L E  8   The normalized score for each category is multiplied by a user‐defined rank which is based on the five different categories 
relative importance

User‐defined rank 
of importance

5 4 3 2 1

Customizability/
flexibility Financial cost

CPU time/computa-
tional cost Ease of use/support

Range of data 
products

3DFlow 0.3333 × 5 = 1.6667 0.2 × 4 = 0.8 0.1 × 3 = 0.3 0.2857 × 2 = 0.5714 0.2857 × 1 = 0.2857 3.6

MICMAC 0.4444 × 5 = 2.222 0.4 × 4 = 1.6 0.3 × 3 = 0.9 0.1429 × 2 = 0.2857 0.1429 × 1 = 0.1429 5.2

Photoscan 0.1111 × 5 = 0.5556 0.3 × 4 = 1.2 0.2 × 3 = 0.6 0.2857 × 2 = 0.5714 0.2857 × 1 = 0.2857 3.2

Pix4D 0.1111 × 5 = 0.5556 0.1 × 4 = 0.4 0.4 × 3 = 1.2 0.2857 × 2 = 0.5714 0.2857 × 1 = 0.2857 3.0

Note: The score for each software and category can then be added together.
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This result might be expected as the computational cost of the 
SfM + MVS workflow increases the higher the settings used. Though 
in three instances (see Figures 7, S6 and S7, Appendix S1), the RMSE 
did increase with computational cost. There are two hypotheses 
why this could be the case (3DFlow, 2018):

1.	 Higher number of keypoints results in a higher chance for false 
matches in homogeneous areas or in scenes with repeated 
patterns.

2.	 Downscaled images can reduce the influence of potential pixel‐
level camera and/or image compression distortions.

This finding warrants further exploration as few previous studies have 
investigated the influence of software settings in general, not to men‐
tion in low‐height ecosystems where centimeter differences are im‐
portant from a relative perspective. Centimeter changes can be on the 
same order of magnitude as that of low‐height vegetation.

4.4 | H4. (4) The costs of different SfM+MVS 
software approaches are not significantly different in 
terms of learning, processing, and analytical time as 
well as financial cost to the user

When discussing the cost of a method or software of choice, it is im‐
portant to consider costs versus benefits, including acquisition cost, 
the processing time, and hours invested in learning the software. 
While there were important differences between the software, 
both in terms of processing time and ease of learning (see Tables 
2, 6‒8)—each software has its own advantages and disadvantages. 
Hence, the recommended software depends on the type and re‐
quirements of the application/project in question and the relevant 
expertise of the user. For example, while a Pix4D license comes at a 
relatively high financial cost it offers straightforward and seamless 
integration with a range of camera types, such as the multispectral 
camera Sequoia and the thermal cameras Zenmuse XT and Flir VUE 
Pro. MICMAC on the other hand lacks the support framework of 
proprietary solutions, but is open source and handles large data‐
sets well. This allows data the size of which users would normally 
encounter (500–2,000 images) to be processed using the highest 
settings on an average‐specification (“consumer‐grade”) desktop/
workstation. Though, whether there is a significant difference in 
terms of cost between SfM + MVS software solutions largely de‐
pends on the project. Having said that, we show that the difference 
in quantified financial value between software (the higher the bet‐
ter) can differ by a factor close to two (see Table 8). Hence, it is clear 
that there can be significant differences between software, though 
in many use cases the difference will be neglectable.

4.5 | Implications of findings

We argue that confidence in the fine‐grained resolution of drone and 
SfM + MVS‐based outputs in vegetated areas has been undermined 
both by lack of ground validation data captured at similar grain size, 

and diversity in workflows. Indeed, this study builds on the work 
of Fraser and Congalton (2018) and highlights the need to develop 
standardized workflows within drone and SfM  +  MVS‐based re‐
search and development. The results detailed herein represent an 
important step toward enabling the establishment of widespread 
confidence in the longevity of drone and SfM + MVS‐based work‐
flows for biotic resource management. Standardized workflows 
should make it possible to attribute and report differences in results 
between studies to variations in the methodological approach or the 
system studied and therefore should include factors such as num‐
ber of replicate image datasets, weather conditions, camera type 
and settings, flying altitude, and software and settings used. This 
is necessary as we demonstrate that there are statistically signifi‐
cant differences between replicate image datasets, an effect previ‐
ously largely overlooked. Centimeter‐level variance in RMSE using 
replicate image datasets captured within the time span of one hour, 
under very similar conditions, processed using the same workflow 
limits the confidence of drone‐based SfM  +  MVS as a simple tool 
to measure ultra‐fine‐grained changes over time when relying on a 
single image dataset.

5  | CONCLUSION

The findings presented in this study have important implications 
for the application of SfM  +  MVS in ecology as well as in other 
fields of Earth and environmental science. We demonstrate that 
there is a need to rethink the importance of the choice of soft‐
ware, and how SfM  +  MVS studies are carried out as, up until 
now, most studies employing an SfM  +  MVS workflow are not 
necessarily statistically reproducible. When designing a drone and 
SfM + MVS‐based study, it is crucial to consider differences be‐
tween software and how robust the workflow, including software, 
are by considering the variation in the SfM + MVS‐derived vegeta‐
tion canopy height measurements between replicate image data‐
sets. To address the latter point, we propose that an SfM + MVS 
workflow should capture at least one replicate image dataset. This 
would, at a small cost, improve the reproducibility of the results, 
which is crucial when monitoring fine‐grained indicators of envi‐
ronmental change over time.
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