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syntaxin is required for endocytosis and localization
of cycling proteins to the late Golgi compartment in
yeast. We show here that Tlg2p assembles with two light
chains, Tlg1p and Vti1p, to form a functional t-SNARE that
mediates fusion, specifically with the v-SNAREs Sncl1p
and Snc2p. In vitro, this t-SNARE is inert, locked in a non-

The t-SNARE in a late Golgi compartment (Tlg2p)

functional state, unless it is activated for fusion. Activation
can be mediated by a peptide derived from the v-SNARE,
which likely bypasses additional regulatory proteins in the
cell. Locking t-SNAREs creates the potential for spatial and
temporal regulation of fusion by signaling processes that
unleash their fusion capacity.

Introduction

Eukaryotic cells use endocytosis to recycle or degrade plasma
membrane proteins and lipids, internalize nutrients, and
control the transport and receptor activities in the plasma
membrane (for review see Mellman, 1996). The early en-
dosome, the first compartment in this pathway, receives
proteins from both the plasma membrane and the Golgi
compartment. From the early endosomes, proteins can be
transported to the Golgi compartment, returned to the
plasma membrane, or dispatched to late endosomes (termed
prevacuolar compartments in yeast) for subsequent degradation
in lysosomes (vacuoles in yeast) (for review see Geli and
Riezman, 1998). A complex matrix of trafficking pathways
links these compartments (Pelham, 1999).

Members of the SNARE family of proteins (S6llner et al.,
1993) are required for most fusion events in vivo. These
proteins are ubiquitously expressed in eukaryotic species and
distinct members are localized on the surface of the various
intracellular organelles (Bock et al., 2001). Most of the
SNARE: are integral membrane proteins and all possess a
cytoplasmic heptad-repeat region (“SNARE motif”) that is
likely able to assemble and form a parallel rod-like four-helix
bundle (Canaves and Montal, 1998; Poirier et al., 1998;
Sutton et al., 1998). Three of these four helices are contributed
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by the -SNARE, generally a preassembled complex consisting
of one heavy chain (a syntaxin family member) and two
distinct light chains that mark the target membrane for
vesicle fusion. The fourth helix is derived from a v-SNARE
localized on the other membrane partner (Fukuda et al.,
2000; Parlati et al., 2000). As the bundle assembles between
two membranes to form a SNAREpin, the membranes are
forced into close apposition and fusion results (Weber et al.,
1998; Nickel et al., 1999; Parlati et al., 1999). Specificity in
membrane fusion results from the precise pairing of cognate
v-SNARE and t-SNAREs (McNew et al., 2000a).

Of the seven syntaxins in the yeast genome, three are
directly involved in endocytosis (for review see Pelham,
1999). Pep12p is concentrated in the prevacuolar compart-
ment and is required for fusion at this compartment
(Becherer et al., 1996; Gerrard et al., 2000). Vam3p is
the heavy chain of the t-SNARE that marks vacuoles for
homotypic fusion (Wada et al., 1997); its light chains are
Vam7p and Viilp. This t-SNARE enables fusion by pair-
ing with its cognate v-SNARE, Nyvlp (Nichols et al.,
1997, Fukuda et al., 2000). The precise roles played in
trafficking by the third syntaxin, Tlg2p, are less clear. It
is localized to both early endosomes and late Golgi com-
partment (Abeliovich et al., 1998; Holthuis et al., 1998a).
It is not required for the secretory pathway, but it is needed
for efficient endocytosis and for retrieval of late Golgi
complex—resident proteins lost to the endocytic pathway
(Abeliovich et al., 1998; Holthuis et al., 1998a; Seron et
al., 1998; Lewis et al., 2000).
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Here, we investigate the fusion potential of the endocytic
syntaxin, Tlg2p. Coimmunoprecipitation revealed that this
syntaxin is associated with several other SNARE proteins in-
volved in endocytosis in binary and ternary complexes con-
taining various combinations of Tlglp, Vtilp, and Snc2p
(Abeliovich et al., 1998; Holthuis et al., 1998a; Coe et al.,
1999). However, it is not known whether these four pro-
teins constitute a single stable quaternary complex, or
whether multiple complexes may exist, including other as
yet unidentified SNAREs.

Vtilp is a light chain of the vacuolar -SNARE (Fukuda et
al., 2000), but it is also found in endosomes and Golgi
(Fisher von Mollard et al., 1997; Lupashin et al., 1997).
Snc2p, the v-SNARE used in Golgi complex to plasma
membrane fusion (Brennwald et al., 1994; Gerst, 1997; Mc-
New et al., 2000a) is also required for endocytosis (Guru-
nathan et al., 2000). Tlglp was first identified as an endoso-
mal protein (Holthuis et al., 1998a). Although it was
originally classified as a syntaxin, its homology is actually
closer to that of a light chain or a v-SNARE (Weimbs et al.,
1997). Thus, all of these SNARE proteins are known to be
involved in endocytosis, and many participate in other traf-
ficking steps as well.

Results

Tlg2p, Tlg1p, Vti1p, and Snc2p form a functional
SNARE complex

We began by testing the simplest possibility, that Tlg2p,
Tlglp, Vtilp, and Snc2p form a single quaternary SNARE
complex in which Tlg2p is the heavy chain, Tlglp and
Vitilp are the light chains of the t-SNARE and Snc2p is the
cognate v-SNARE. To test this, we expressed recombinant
Tlg2p, Tlglp, Vtilp and Snc2p as hisg- or glutathione
S-transferase (GST)*-tagged proteins in Escherichia coli.
Tlg2p expression was improved by the truncation of the lu-
minal domain that was previously demonstrated to be non-
essential for its function (Abeliovich et al., 1998) and by a
small additional NH,-terminal truncation (amino acids 1-35).
Different combinations of these purified SNARE proteins
were tested in binding studies to identify the binary and ter-
nary SNARE complexes as well as the quaternary SNARE
complex. All binding experiments were performed in high
salt (400 mM KCI) using transmembrane proteins in the
presence of detergent.

As shown in Fig. 1, the proposed light chains Viilp and
Tlglp interact (lane 3), but Viilp is not sufficient to pull
down either the syntaxin Tlg2p or the v-SNARE Snc2p
(lanes 2 and 4, respectively). In fact, binding of either
SNARE also requires Tlglp (lanes 5 and 6, respectively). No
interaction is observed among Tlg2p, Vtilp and Snc2p (lane
7). Finally, all four proteins bind together, suggesting that
these four proteins likely represent a complete SNARE com-
plex (lane 8). These interactions are specific as no binding of
any SNARE to GST beads was observed (unpublished data).

Two ternary complexes can be formed among the set of four

*Abbreviations used in this paper: GST, glutathione S-transferase; Tlg,
t-SNARE in a late Golgi compartment; VAMP, vesicle-associated mem-
brane protein.

GST-Vtilp + + + + + + + +
Tlg2p - + - = + - + +
Tiglp - - 4+ - + 4+ -+ 800
Snc2p - - -+ - 4+ + &\q’lfi\?’-‘o& Mr (kD)
| [l | [l 1 1 1
—66.2
GST-Vtilp —- | W0 0 S O W —45.0
TigZp —» - - - )
Tlg]p > - e - - —31.0
Snc2p —» - |21S
—144
12 3 456178 9 10 1

Figure 1. Tlg2p, Tg1p, Vti1lp and Snc2p form a quaternary complex.
GST-Vti1p was immobilized on glutathione-agarose and incubated
with hise-Tlg2p, hise-Tlg1p, and hisg-Snc2p as indicated. Bound
proteins were then analyzed by SDS-PAGE and Coomassie staining
(lanes 1-8). For comparison, purified hise-Tlg1p, hise-Tlg2p, and
hise-Snc2p were loaded on lanes 9, 10, and 11, respectively. Note
that the weak band for Snc2p is due to its poor Coomassie staining
(McNew et al., 2000a).

SNAREs, (a) Tlg2p/Tlglp/Viilp and (b) Tlglp/Viilp/
Sne2p. Tlg2p is a syntaxin homologue and by definition
should be a constituent of the -SNARE, whereas Snc2p is a
v-SNARE and should be on the vesicle membrane (Fukuda
et al., 2000). Tlg2p/Tlglp,Viilp therefore likely represents
the physiological t-SNARE complex.

This deduction was confirmed by testing the function of
this complex in the liposome fusion assay (Weber et al.,
1998). We reconstituted the proposed t-SNARE (Tlg2p/
Tlglp,Vtilp) into “acceptor” liposomes and the proposed
v-SNARE Snc2p into fluorescent “donor” liposomes (Fig. 2
A). Donor liposomes contain NBD-PE and rhodamine-PE
derivatives at trace levels. The fluorescence of NBD is
quenched by the close proximity of rhodamine in the same
bilayer. Fusion with the bilayer of nonfluorescent acceptor
liposomes separates the two fluorophores, resulting in an in-
crease of NBD fluorescence, which can be converted accord-
ing to a calibration curve to measure the efficiency of fusion
(Parlati et al., 1999).

When the acceptor t-SNARE liposomes (containing Tlg2p,
Tlglp, and Vtilp) were simply incubated with the donor
v-SNARE liposomes (containing Snc2p), no fusion was ob-
served (Fig. 2 C). One possible explanation for this surprising
result could be that this t-SNARE is intrinsically unreactive,
and relies on additional proteins in the cell to activate it for fu-
sion. Indeed, some t--SNAREs are known to be subject to reg-
ulation in vivo (for review see Gonzalez and Scheller, 1999).
In particular, the mammalian plasma membrane syntaxin 1 is
kept in a closed conformation when its NH,-terminal regula-
tory domain folds back on its coil region, stabilized by the reg-
ulatory protein n-Secl (Misura et al., 2000; Yang et al.,
2000). The exocytic t-SNARE syntaxin 1/SNAP-25 fuses
slowly because it pairs slowly with the cognate v-SNARE vesi-
cle-associated membrane protein (VAMP)2. SNAREpin as-
sembly is accelerated when the NH,-terminal domain is re-
moved, increasing the rate of fusion (Parlati et al., 1999). This
exocytic t-SNARE can also be activated by binding a peptide
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Figure 2. Tlg2p, Tlg1p, Vti1p, and Snc2p form a functional fusogenic
complex. (A) Reconstitution of acceptor and donor liposomes. 10%
(4.5 wl) of acceptor liposomes (lane 1) and 100% (5 wl) of donor
liposomes (lane 2) used in a typical fusion reaction were analyzed
by SDS-PAGE and Coomassie blue staining. (B) Snc2-C peptide
corresponds to amino acids 53-88 of the Snc2p v-SNARE. The
cytosolic domain of Snc2p corresponds to amino-acids 1 to 96 of
the Snc2p v-SNARE (TMD: trans-membrane domain). (C) Membrane
fusion. Donor liposomes and acceptor liposomes were mixed (5:45
wl) in a microtitre plate with either 10 pl buffer or 5 pl snc2-C-pept
(3.5 nmol) plus 5 wl buffer, or with 5 wl snc2-C-pept (3.5 nmol) plus
5 ul snc2p cytosolic domain (6 nmol) as indicated. The plate was
transferred to a 37°C fluorescent plate reader and NBD fluorescence
was monitored. The results were converted to rounds of fusion as
described (Parlati et al., 1999).

corresponding to the membrane-proximal COOH-terminal
half of its cognate v-SNARE, VAMP2. The v-SNARE then
displaces the peptide and fusion occurs. Peptide binding
changes the conformation of the t-SNARE, switching the
cognate membrane—proximal region of the COOH terminus
of SNAP-25 from a protease-sensitive to a protease-resistant
and presumably helical state (unpublished data).
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Figure 3. The Snc2-C peptide binds and activates the t-SNARE

complex. Acceptor and donor liposomes were incubated with Snc2-C
peptide (called t* and v*, respectively) or buffer (called t and v, re-
spectively) overnight at 4°C and then refloated to remove the free
peptide. Fusion reactions were performed with these liposomes: 45
wl of t* plus 5 wl of v* (t*+v*); 45 ul of t* plus 5 wl of v (t*+v); 45 pl
of t plus 5 wl of v¥ (t+v¥), 45 wl of t plus 5 pl of v (t+v); or 45 wl of t
plus 5 pl of v plus 3.5 nmol of Snc2-C-pept (t+v+Snc2-C-pept). The
plate was then transferred to a 37°C fluorescent plate reader and NBD
fluorescence was monitored and converted to rounds of fusion. Note
that the maximum signal is lower than usual (compare Fig. 2 C) likely
due to some snc2-C-pept dissociation from t* during the refloatation.

Therefore, we tested whether the analogous peptide from
Snc2p could similarly activate the proposed endosomal
t-SNARE, Tlg2p/Tlglp,Vtilp. When this peptide (Fig. 2 B;
named snc2-C-pept) is added, the donor and acceptor lipo-
somes now fuse efficiently, reaching 1.6 rounds of fusion in 2 h
(Fig. 2 C). As expected, the addition of the entire Snc2p-cyto-
solic domain (outlined in Fig. 2 B) completely inhibits this fu-
sion. This implies that peptide bound to -SNAREs is dis-
placed by v-SNAREs, and confirms that free t-SNAREs on
the acceptor liposomes must be available to interact with
v-SNAREs of donor liposomes for fusion to occur. This also
shows that snc2-C peptide is not intrinsically fusogenic. Under
no conditions did the v-SNARE or t-SNARE liposomes fuse
with protein-free liposomes (unpublished data). In addition,
the snc2-C-pept is not able to activate another functional com-
plex, the Golgi compartment t-SNARE Sed5p/Sec22p, Boslp
(unpublished data).

These results show that Snc2p and Tlg2p/Tlglp,Viilp can
form a functional SNAREpin. A formal possibility is that one
or more of the SNAREs expressed in and purified from E. coli
may not be correctly folded. However, when Tlg2p, Tlglp,
and Vtilp are coexpressed in bacteria, fusion still requires
snc2-C peptide (unpublished data). Furthermore, Vtilp and
Snc2p are functional in other contexts (Fukuda et al., 2000;
McNew et al., 2000a) and are evidently capable of forming the
ternary t-SNARE and the quaternary v/t-SNARE complex in
solution (Fig. 1).

The snc2-C peptide directly activates

the t-SNARE complex

Since the activating peptide corresponds to the COOH-
terminal part of the v-SNARE core, it is expected to act by
binding to the corresponding portion of the t-SNARE. If
this were the case, preincubation with peptide should pre-
activate the t-SNARE liposomes but not the v-SNARE
liposomes, and the t-SNARE liposomes should remain
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Figure 4. The effect of the Snc2-C peptide is concentration
dependent and saturable. Donor (5 pl) and acceptor liposomes

(45 pl) were mixed in a microtitre plate in the presence of increasing
amounts of peptide (from 0 to 2.6 nmol). The plate was then trans-
ferred to a 37°C fluorescent plate reader and NBD fluorescence was
monitored and converted to rounds of fusion. Peptide/t-SNARE
molar ratio was calculated and plotted as well as the fusion rate
obtained after 2 h.

activated subsequently, even in the absence of further
peptide. To test this, t-SNARE or v-SNARE liposomes
were separately incubated either with Snc2-C peptide
(termed t* and v* liposomes, respectively), or with buffer
as control. Then, the donor or acceptor liposomes were
reisolated by flotation to remove free peptide and tested in
the fusion assay. Indeed, the preincubated t* liposomes
are activated and remain so after reisolation (Fig. 3) but v*
liposomes are not fusion competent (assayed with t-lipo-
somes). This result directly established that the peptide
targets the t-SNARE and not the v-SNARE. The slightly
reduced fusion efficiency of t* liposomes compared with
standard fusion reactions containing excess free Snc2-C
peptide (Fig. 3; t+v+snc2-C-pept) is likely due to some

dissociation of the snc2-C-pept from the ¢* liposomes
during their reisolation.

As expected for a stoichiometric binding reaction, the acti-
vation of fusion is saturable with respect to peptide concen-
tration, and approximately one peptide per t-SNARE is
needed for maximal activation of fusion (Fig. 4).

Topological restriction of fusion based on an
endosomal SNARE complex

All three members of this endosomal t-SNARE contain
transmembrane domains. To test whether in this case, as in
others (Parlati et al., 2000), there is topological restriction of
fusion, we tested all possible combinations in which any
three SNAREs are reconstituted in acceptor vesicles while
the fourth, remaining SNARE, is reconstituted in the donor
population. Additionally, we prepared all combinations in
which Tlg2p and any one other SNARE reside in the accep-
tor liposomes with the other two in the donor liposomes
(Fig. 5). Fusion was tested both in the presence and in the
absence of the snc2-C peptide.

Fusion was only observed when Tlg2p, Tlglp, and Vilp
were reconstituted in the same bilayer with Snc2p in the op-
posing bilayer, and further only when the C-peptide was added
(Fig. 5). This confirms the uniqueness of Tlg2p/Tlglp,Viilp
as the functonal -SNARE and specifically assigns to Snc2p
the role of v-SNARE in this quaternary complex. This was of
special interest because the binding assay revealed that two ter-
nary complexes can be formed in detergent micellar solution
(Viilp/Tlglp/Tlg2p and Vtilp/Tlglp/Snc2p; see Fig. 1), but
topological restriction shows that the latter complex cannot

function as a -SNARE with Tlg2p as a v-SNARE.

Specificity of fusion with the t-SNARE
Tlg2p/TIg1p,Vti1p for the cognate v-SNARE

The fusion activity of all of the potential v-SNAREs en-
coded in the yeast genome was tested by independently re-

Figure 5. Topological restriction of

the endocytic SNARE complex. Different
combinations of proteins were reconsti-

tuted in acceptor liposomes (A) and in 2

donor liposomes (D) as indicated.
Reconstitution efficiency was analyzed
by SDS-PAGE followed by Coomassie
staining (right, —10% of acceptor
liposomes and 100% of donor liposomes).
Three to one combinations are
represented on the top, whereas two
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Figure 6. Specificity of fusion between the endocytic t-SNARE

and all potential v-SNAREs. (A) Fusion between reconstituted
t-SNARE liposomes and reconstituted potential v-SNARE liposomes
in the presence of Snc2-C peptide. Snc2-C-pept (3.5 nmol per reaction)
was added to all reactions. (B) Fusion between reconstituted
t-SNARE liposomes and reconstituted potential v-SNARE liposomes
in the presence of each corresponding peptide. Peptides
corresponding to the potential v-SNARE (Table I; 3.5 nmol per
reaction) were added to all reactions. The extent of fusion at 120
min was normalized to the amount of cognate v-SNARE fusion
(Snc2p; black bars). Fusion with protein free liposomes (0.0434
rounds) was subtracted from all the fusion results. The maximal
extent of fusion (100%) with Snc2p donor liposomes and
snc2-C-pept was 0.977 rounds (A), and 0.934 rounds (B). Ykt6p
was anchored to the membrane by the attachment of a synthetic
geranylgeranyl lipid anchor as described (McNew et al., 2000b).

constituting each SNARE into donor liposomes and incu-
bating them with Tlg2p/Tlglp,Viilp t-SNARE acceptor
liposomes. Fusion was tested both in the presence or ab-
sence of the snc2-C peptide. No fusion activity was ob-
served without the snc2-C peptide with any potential
v-SNARE (unpublished data). In the presence of snc2-C
peptide, significant fusion was seen with both Snclp and
Snc2p as v-SNAREs, but not with any other potential
v-SNARE (Fig. 6 A). Snc2p is very similar to Snclp and
they are largely interchangeable functionally, since only
when both genes are deleted is viability compromised (Pro-
topopov et al.,, 1993). Each potential v-SNARE was also
tested for fusion in the presence of a C-peptide based upon
its own sequence (Table I). Even so, only the Snc2p and
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Snclp liposomes were able to fuse with Tlg2p/Tlglp,Vtilp
acceptor liposomes (Fig. 6 B).

Discussion

It has been shown previously that functional yeast
t-SNAREs marking the Golgi compartment, the plasma
membrane, and the vacuole are each composed of a distinct
heavy chain from the syntaxin family and, depending on the
particular membrane, one or two nonsyntaxin light chains
(Fukuda et al., 2000; McNew et al., 2000a; Parlati et al.,
2000). The architecture of the endosomal t-SNARE further
establishes the generality of this concept with Tlg2p as
the heavy chain and Tlglp and Vtilp as its two light chains,
respectively, functioning exclusively with Snc2p as its
v-SNARE. Moreover, only one topological arrangement of
these four proteins between two membranes results in a
fusogenic complex, establishing their roles as t-SNARE and
v-SNARE, and extending the concept of topological restric-
tion (Parlati et al., 2000).

In yeast, the 21 SNARE proteins have been grouped into
four different categories defined by the sequence homology
in the SNARE motif: the syntaxins (Ufelp, Ssolp, Sso2p,
Sed5p, Pepl2p, Tlg2p, and Vam3p), the Betlp group
(Sec9p-C, Spo20p-C, Vam7p, Betlp, Sftlp, and Tlglp),
the Boslp group (Sec9p-N, Spo20p-N, Viilp, Boslp,
Goslp, and Sec20p), and a fourth group termed R-SNAREs
(Snclp, Snc2p, Nyvlp, Sec22p, and Yke6p) (Pelham, 2001;
note Sec9p and Spo20p, like their animal homologue
SNAP-25, have two SNARE motifs, C and N). All results to
date indicate that fusogenic SNARE pins must contain one
subunit from each group: t-Ssolp/Sec9p and v-Snclp or
v-Snc2p at the plasma membrane (McNew et al., 2000a);
t-Sed5p/Sec22p,Boslp and v-Betlp at the Golgi compart-
ment (Parlati et al., 2000); and t-Vam3p/Vam7p,Vtilp and
v-Nyv1p at the vacuole (Fukuda et al., 2000). The endoso-
mal --SNARE also fits this rule, suggesting that it has a con-
crete structural basis which can be used to predict additional
fusogenic SNARE complexes. However, the unique v-SNARE
within a particular complex (i.e., based on topological re-
striction) can be drawn either from the R-SNARE group
(Snclp or Snc2p, Nyvlp) or from the Betlp group (Betlp,
Sftlp) and potentially (given the limited number of results
to date) from the Bos1p group.

Certainly, Tlg2p, Tlglp, and Snc2p function in endocy-
tosis, but there is also some evidence showing that they are
involved in the retrieval of proteins to the TGN from the
cell surface or endosomes (Abeliovich et al., 1998; Holthuis
et al., 1998b; Seron et al., 1998; Gurunathan et al., 2000;
Lewis et al., 2000). These functions are of course related in
that endosomes play an important role in maintaining the
steady-state distribution of late Golgi membrane proteins
(Conibear and Stevens, 1998). Therefore, it is possible that
the fusogenic SNARE complex we have identified here,
t-Tlg2p/Tlglp,Viilp and v-Snclp or Snc2p, is involved in
more than just one trafficking step. Indeed, this complex is
also required in TGN homotypic fusion (Brickner et al.,
2001, this issue).

Our results imply that the fusion activity of this endomal
t-SNARE is intrinsically switched “off” due to auto-inhibi-
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Table I. C-peptide alignment

Name Sequence Identity
Snc2-C-pept °’GERLTSIEDKA DNLAISAQGFKRGAN RVRKQMWWKD®® 100.0
Snc1-C-pept °“GERLTSIEDKA DNLAVSAQGFKRGAN RVRKAMWYKD®’ 91.6
Nyv1-C-pept ""IQERVSLLVDKT SQLNSSSNKFRRKAV NIKEIMWWQK®®® 30.5
Ykt6-C-pept '°*GEKLDNLVDKS ESLTASSKMFYKQAK KSNSCC"’ 28.1
Vam7-C-pept *NELLTALEDDV DNTGRRLQIANKKAR HFNNSA®'® 28.1
Tlg1-C-pept 1*’GQLLDNMDEGM DGVVNKLARGRRQLE WVYEKNKEKY”?? 16.6
Sec22-C-pept *’GDSLDKMSDMS SSLKETSKRYRKSAQ KINFDLLISQ™? 13.8
Bos1-C-pept 'Y/ NKILSKVQDRM SNGLRTLGVSEQTIT SINKRVFK?**° 1.7
Gos1-C-pept 7OSNVLNTANNKV LQTLQRIPGVNQLIM KINTRR”*! 9.3
Sft1-C-pept “SSVINQMTDSL GSMETDIKNSSSRLT RSLKAGNSIW'’ 8.3
Vti1-C-pept '"’RETLENARQTL FQADSYVDKSIKTLK TMTRRLVA1®? 5.8
Bet1-C-pept *’NQTIDQLGDTF HNTSVKLKRTFGNMM EMARRSGIS'! 5.7

The sequence of each peptide corresponds to the COOH-terminal half of the core domain. In bold are the amino acids that are identical to snc2-C-pept. The

percentage of identity with snc2-C-pept is indicated on the right.

tion. Its fusion activity can be unleashed by binding a pep-
tide corresponding to the COOH-terminal part of the cog-
nate v-SNARE. The capacity to switch the endosomal
t-SNARE “on” is specific for peptide derived from its cognate
v-SNARE, and when activated the endosomal t-SNARE will
only fuse with its cognate v-SNARE Snc1/2p and no other
potential v-SNARE encoded in the genome of yeast. Most
likely peptide binding conformationally switches the endo-
somal t-SNARE from “off” to “on” states when it binds, as it
does for the neuronal exocytic t-SNARE (unpublished data).

The intrinsic inactivity of the endosomal t-SNARE is a
significant finding because it implies that cells must possess
mechanisms to activate it for fusion. Presumably, peptide
binding throws the switch by tapping into a mechanism that
is physiologically reserved for certain regulatory proteins. In-
deed, a very recent study showed that Tlg2p is locked in an
inactive state, unable to bind its light chains Tlglp and
Viilp, unless Vps45p is present (Bryant and James, 2001).
Interestingly, none of the other t-SNAREs tested to date
show a strict requirement for peptides to be functional in the
in vitro fusion assay (Fukuda et al., 2000; McNew et al.,
2000a; Parlati et al., 2000), suggesting that the endosomal
t-SNARE might be auto-inhibited to a greater extent.

Of course, regulatory proteins in the cell could tip the bal-
ance further toward (or against) the “off” state. Sncl/2p is
the sole example to date of a multifunctional v-SNARE.
Snc2p is required in the endocytic pathway (in association
with tTlg2p/Tlglp,Vtilp) as well as for fusion of secretory
vesicles with the plasma membrane (in association with
t-Ssolp/Sec9p [McNew et al., 2000a]). Thus, a single
v-SNARE suffices for fusion with the plasma membrane and
with the two compartments with which the cell surface in-
terfaces for endocytosis and secretion, early endosomes and
late Golgi compartment. This neatly solves the problem of
how the v-SNAREs are recycled among these compart-
ments. If the only source of specificity for vesicle targeting in
these pathways were SNARE pairings, this would imply that
the pattern of transport among these compartments could
be relatively random. Interestingly, this pattern is extremely
complex (Pelham, 1999) and since, in contrast to the genes
and organelles in the secretory pathway which are essential,
the entire pathway is not essential in yeast (Holthuis et al.,

1998b), it is not inconceivable that even a random pattern
in these pathways might suffice and would certainly cause
no harm. Therefore, it is unclear whether the large number
of transport links among endocytic compartments (Pelham,
1999) is due to an equal number of uniquely specific fusion
steps, or whether movement could be more random than
that. The latter would require a smaller genetic load, but
would also result in less overall efficiency in endocytosis.

If the transport pattern were precise, how could the cell direct
Snc2p-containing v-SNARE vesicles to one versus another of its
potential target membranes? The tight autoregulation of the en-
dosomal t-SNARE, so that its fusion activity is intrinsically
locked-up, would be important in this connection. If there is a
lock then there is presumably a key, and a simple possibility is
that Snc2p-containing vesicles in the cell have additional pro-
teins encoding their origin that act as keys to preferendally un-
lock one or another different t-SNARE at one or another differ-
ent target membrane, adding a further level of specificity. Such
a “key—lock” system could certainly include such Secl family
proteins as Vps45p, but also rab GTPase switch proteins or
cognate tether proteins (Mellman and Warren, 2000; Zerial
and McBride, 2001). Each of the two different t-SNAREs so
far known to be fusogenic with v-Snc2p (or Snclp) has a dis-
tinct Secl family member: t-Sso1p/Sec9p functions with Seclp
(Carr et al,, 1999) and ¢Tlg2p/Tlglp,Vilp with Vpsd5p
(Nichols et al., 1998). Additional elements, such as cytoskeletal
structures, may also play a less direct role in directing Snc2p-
containing v-SNARE vesicles to different target membranes.
Further studies are needed to establish the extent to which the
plasma membrane—endosomal compartments—TGN network
operates according to stochastic or deterministic principles.

Materials and methods

Peptides

Peptides presented on Table | were synthesized by the Microchemistry
Core Facility of Memorial Sloan Kettering Cancer Institute. All peptides
were dissolved in 10 mM HCI and then diluted in reconstitution buffer (25
mM Hepes-KOH, pH 7.4, 100 mM KCl, 10% glycerol) to a concentration
of ~3 mg/ml.

Plasmid constructs
The coding sequence of truncated TIg2p (amino acids 36-335) was ampli-
fied by PCR from Saccharomyces cerevisiae genomic DNA (Novagen) with



primers  FO34 (GGGCATATCATATGTTTAGAGATAGAACTAAT) and
FO11 (CGGGATCCTCATTTCAACATAACAAAGAA). The PCR product
was digested with Ndel and BamH1 and ligated either in pET28a vector
(Novagen) resulting in FD7, or in pGEX-2T (Amersham Pharmacia Biotech)
resulting in FD13. The coding sequence of full-length Tlg1p was amplified
with primers FO7 (GGGAATTCCATATGAACAACAGTGAAGATCCG) and
FO8 (CGCGGATCCTCAAGCAATGAATGCCAAAAC), digested by Ndel/
BamH1 and ligated either in pET28a or in pGEX-2T resulting in FD1 and
FD10, respectively. The coding sequences of Vtilp, Yktép, and Nyvip
were obtained as described (Fukuda et al., 2000). The coding sequences of
Snclp, Snc2p, and the cytosolic domain of Snc2p were obtained as de-
scribed (McNew et al., 2000a). The coding sequences of Bos1p, Gos1p,
Sft1p, Bet1p, and Sec22p were obtained as described (Parlati et al., 2000).
All plasmids are propagated in DH5a strain (GIBCO BRL).

Protein expression and purification

Plasmids used for protein expression were transformed into the E. coli strain
BL21 (DE3) (Invitrogen). Transformed cells were grown at 37°C to an absor-
bance at 600 nm of 0.7. Protein expression was induced with T mM IPTG
(Boehringer) for 4 h at 37°C for hiss-Tlg2p and hise-Tlg1p or with 0.2 mM
IPTG for 2 h at 37°C for GST-TIg2p. Then the cells were collected by cen-
trifugation and lysed by several passages through an Avestin cell disrupter
at >10,000 psi in buffer A (25 mM Hepes-KOH, pH 7.4, 400 mM KCl,
10% glycerol, 4% Triton X-100, 5 mM B-mercaptoethanol, T mM PMSF).
Lysates were clarified by centrifugation at 35,000 rpm (Ti45; Beckman
Coulter) for 45 min. Lysates containing his-tagged proteins were bound to
Ni-NTA agarose and then washed with buffer B (25 mM Hepes-KOH, pH
7.4, 400 mM KCl, 10% glycerol, 1% n-Octyl-B-D-glucopyranoside, 5 mM
B-mercaptoethanol, T mM PMSF) containing 50 mM imidazole. Proteins
were eluted with a 50 mM to 1 M imidazole gradient (in buffer B). Lysates
containing GST-tagged protein were bound to glutathione agarose beads
and then washed with buffer B. TIg2p was cleaved from GST with 0.05 U/pl
thrombin in buffer B. We produced Snc2p-hise, Snc1p-hiss, and GST-Snc2p
cytosolic domain as described (McNew et al., 2000a). GST-Gos1p, GST-
Ykt6p, and GST-Sft1p were produced as described (McNew et al., 1998),
except that GST-Sft1p was reconstituted as a GST fusion protein and throm-
bin cleaved on liposomes. We produced hise-Vti1lp, GST-Vtilp, and GST-
Nyvip as described (Fukuda et al., 2000). hiss-Bos1p, hise-Sec22p, and
hiss-Bet1p were also produced as described (Parlati et al., 2000). To isolate
the assembled t-SNARE complex, we cotransformed the E. coli strain BL21
(DE3) with plasmids expressing GST-Tlg2p, hise-Tlg1p, and Vti1p. After in-
duction, we first purified the complex via the his-tag (purification of hiss-
Tlg1p, hiss-TlgTp/Vtip, and hise-Tlg1p/Vtip/GST-TIg2p). Then we repurified
this product via the GST tag (purification of hise-Tlg1p/Vtip/GST-Tlg2p),
thereby isolating only the ternary complex.

Protein binding assay

For preparation of GST-Vti1p or GST affinity matrices, we proceeded as
described (Fukuda et al., 2000). Briefly, lysates prepared from cells con-
taining pGEX-Vti1 or pGEX-4T3 were incubated at 4°C for 2 h with glu-
tathione agarose equilibrated in binding buffer C (25 mM Hepes-KOH, pH
7.4, 400 mM KCl, 10% glycerol, 1T mM DTT, and 1% Triton X-100). After
several washes, beads (0.2 wmol of protein) were incubated with a 15-fold
excess of SNARE proteins in the presence of bovine serum albumin (500
pg/ml) at 4°C overnight. The beads were then washed three times with
buffer C and 30 pl of binding buffer D (25 mM Hepes-KOH, pH 7.4, 100
mM KCl, 10% glycerol, T mM DTT, and 1% Triton X-100) was added. One
eighth of each sample was mixed with Novex SDS-PAGE buffer, boiled for
5 min and resolved by SDS-PAGE.

Reconstitution

For acceptor liposomes containing t-SNARE, ~13 nmol of Tlg2p, 13 nmol
of Tlg1p, and 13 nmol of Vtilp were preincubated 20 h at 4°C. 500 ! of
the reaction were used for the reconstitution. For donor liposomes contain-
ing v-SNARE, 7.5 nmol of proteins in 100 wl were used. SNAREs were re-
constituted as described, except that all the buffers used for reconstitution
contained 400 mM KCI (Weber et al., 1998). The lipid components in
the acceptor liposomes were 85% palmitoyl-oleoyl-phosphatidylcholine
(POPC) and 15% 1,2-dioleoyl-phosphatidylserine (DOPS), corresponding
to 15 mM total lipids in CHCl;. The donor liposomes contained 82%
POPC, 15% DOPS, 1.5% 7-nitrobenz-2-oxa-1,3-diazole-dipalmitoyl phos-
phatidyl ethanolamine (NBD-DPPE), 1.5% Rhodamine-DPPE, correspond-
ing to 3 mM total lipids in CHCl,. All lipids were obtained from Avanti Po-
lar Lipids, Inc. The typical lipid recovery efficiency in the recovered
Nycodenz fraction was ~50% for acceptor liposomes containing Tlg2p,
Tlg1p, Vtilp, and ~30% for donor liposomes containing Snc2p.
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Peptide binding assay

Donor and acceptor liposomes were preincubated for 16 h at 4°C in the
presence of peptide (10 times in excess). Then these liposomes were re-
floated and harvested as described previously (Weber et al., 1998). Bound
peptide was then analyzed by fusion assay.

Fusion assay

The lipids mixing assay was conducted as described (Weber et al., 1998;
Parlati et al., 1999). Briefly, 45 ul of acceptor liposomes were mixed with
5 pl of donor liposomes in a 96-well FluoroNunc microtitre plate (Nunc).
For some experiments, 3.5 nmol of peptide, or buffer, or 6 nmol of cytoso-
lic domain of Snc2p were added as indicated in figure legends. Microtitre
plates were then placed in a Fluoroscan Il Platereader (Labsystems) equili-
brated at 37°C and NBD fluorescence was measured over 2 h at 2-min in-
tervals (excitation 460 nm, emission 538 nm). After 2 h, 10 pl of 2.5% wt/
vol n-dodecyl-maltoside (Boehringer) was added to dissolve the lipids and
measure the maximum NBD fluorescence. The data were converted to
rounds of fusion as described (Parlati et al., 1999). Note that the small de-
crease observed during the first 10 min of each fusion reaction is due to
the temperature equilibration of the plate reader.
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