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Background: Prior studies indicate that lactylation regulates various biological mechanisms within cancer. 
However, lactylation-related genes (LRGs) have been found to have limited value in predicting the prognosis 
of hepatocellular carcinoma (HCC). The aim of this study was to review HCC LRGs using data from The 
Cancer Genome Atlas (TCGA).
Methods: The RNA sequencing data and related clinical information of patients with HCC patients 
were collected from the TCGA database. A total of 20 LRGs were selected and bioinformatics analysis was 
performed. A consistency cluster analysis was conducted to classify the HCC tumors. Using a lactylation-
related model of HCC, prognosis, immune cell infiltration, and immunotherapy was evaluated.
Results: A total of 4,378 genes were associated with prognosis. Twenty LRGs (i.e., ACIN1, RAN, PPP1CB, 
ALDOB, SUMO2, THOC2, HDAC1, SF3A1, SF3B1, HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, 
H2AFV, ALYREF, H2AFZ, H2AFX, HNRNPK, and MAGOH) were identified. The 20 LRGs were used to 
divide TCGA-HCC patients into low-risk (G1) and high-risk (G2) categories. The upregulated genes in the 
G1 group primarily participate in the p53 signaling pathway, focal adhesion, extracellular matrix (ECM)-
receptor interaction, and cell cycle, while the downregulated genes primarily participate in the glycolysis/
gluconeogenesis, carbon metabolism, and biosynthesis of amino acids. The box plots showed a significant 
difference in the immune cell populations, with a higher abundance of B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and myeloid dendritic cells in the G1 than the G2 HCC samples. Further, the 
box plots showed higher expression levels of seven of the eight immune checkpoint inhibitor (ICI)-related 
genes in the G1 HCC samples than the G2 samples. There was a significant disparity in the cancer stem cell 
(CSC) scores between the G1 and G2 TCGA-HCC patients. Additionally, the G1 TCGA-HCC patients 
had higher tumor immune dysfunction and exclusion (TIDE) scores than the G2 TCGA-HCC patients. The 
prognosis of the HCC patients was also predicted using a six-LRG model, comprising HDAC2, SRRM1, 
SF3B1, HDAC1, THOC2, and PPP1CB.
Conclusions: Strong correlation between LRGs and tumor classification as well as immunity in patients 
with HCC was identified. LRG signatures serve as reliable prognostic markers for HCC.
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Introduction

Liver cancer is the sixth most common primary tumor site 
in humans globally and the fourth leading cause of cancer-
related mortality (1). Approximately 90% of liver cancers 
are attributed to hepatocellular carcinoma (HCC) (2). The 
5-year survival rate of HCC patients is low typically ranging 
from 18% to 30%, due to the high incidence of disease 
recurrence and metastasis (3). Approximately half of HCC 
patients receive systemic therapies, such as sorafenib or 
lenvatinib, as the first-line treatment (4).

The treatment of HCC has garnered significant 
attention in recent years, primarily due to the revolutionary 
impact of immune checkpoint inhibitors (ICIs) on cancer 
treatment (4,5). Despite significant progress in treatment 
of HCC, there remains a requirement for enhanced and 
efficacious novel biomarkers, given their pivotal role in the 
development and progression of HCC.

A key characteristic of cancer is the increase in 
extracellular acidity caused by the accumulation of 
lactate (6). Lactate was previously considered a mere 
metabolic waste product (6). However, emerging evidence 
indicates that lactate is a crucial metabolite in the tumor 
microenvironment (7). It serves as a fuel for mitochondrial 
metabolism, plays a vital role in modulating immune cell 
function, and thought to be carefully considered in cancer 
immunotherapy (6,7).

Lactate can regulate immune cell metabolism and 
suppress the activation and proliferation of immune 
cells (7). Lactate has been recognized as a biomarker in 
various diseases, including neoplastic, inflammatory, and 
autoimmune diseases (7). Recent evidence suggests that 
lactate, when updated, can function as an energy source, a 
signaling molecule, and an immunoregulatory molecule (7). 
Specifically, lactate plays vital roles in regulating metabolic 
pathways, tumor angiogenesis, immune response, and cell-to-
cell communication within the tumor microenvironment (7).  
Also, it has been hypothesized that lactate regulates gene 
expression through a new post-translational modification of 
protein lactylation (8). Histone lysine lactylation can induce 
the polarization of macrophages toward a M2-like phenotype, 
resulting in the suppression of immune responses in the 
tumor microenvironment (9). The lactylation of proteins has 
not only opened up new research fields in post-translational 
modification, but has also led to new directions in the study 
of immunity, cancer, and other topics related to lactate (7-9). 
However, understandings of the interactions among protein 
lactylation and immunosuppression in HCC are limited. 
Therefore, these relationships need to be examined further 
to improve the treatment of HCC.

Tumor classifications of HCC based on genomic, 
epigenomic, or proteomic alterations have identified unique 
tumor subgroups linked to clinical outcomes (10-13).  
Chen et al. categorized patients into two groups based on 
mitophagy-related genes in HCC (12). Liang et al. identified 
novel ferroptosis-related gene signature for HCC (13).  
Numerous influential studies have shown that these 
classifications can greatly enhance patient outcomes by 
allowing personalized therapy based on specific cancer cell 
alterations (10,11).

The critical role of lactic acid in tumor development 
and anti-tumor processes is widely acknowledged (7-9). 
However, its specific function in HCC remains poorly 
understood. The aim of this study was to assess lactylation-
related gene (LRG) expression levels in HCC, explore 
the correlation between lactate and the tumor immune 
microenvironment, and evaluate its prognostic significance. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://jgo.amegroups.com/
article/view/10.21037/jgo-24-405/rc).

Highlight box

Key findings 
•	 A close relationship exists between lactylation-related genes (LRGs) 

and tumor classification and immunity in hepatocellular carcinoma 
(HCC) patients. LRG signatures are good prognostic indicators 
for HCC.  

What is known and what is new? 
•	 The LRGs is essential for tumor classification and immunity  

of HCC.
•	 The LRGs-related biomarker candidates were identified.

What is the implication, and what should change now?
•	 The findings of our study may extend understandings of the 

diagnosis and treatment of HCC.
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Methods

Acquisition of HCC data from The Cancer Genome Atlas 
(TCGA)

The RNA sequencing data and relative clinical data of 371 
patients with HCC were retrieved from the TCGA database 
(https://portal.gdc.cancer.gov/projects/TCGA-LIHC). A 
total of 325 LRGs were obtained from a previous study (14). 
TCGA-HCC patients were analyzed using a Cox univariate 
analysis to identify the prognostic genes and to discover 
their functions. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013).

Identification of prognostic HCC-related genes

Using a univariate Cox analysis, the prognostic genes were 
identified. The R package venn (v. 1.11; The R Foundation 
for Statistical Computing, Vienna, Austria) was used to 
construct the Venn diagram. The “clusterProfiler” package in 
R was used to conduct the Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses to identify the signaling pathways 
related to the prognostic genes in HCC. The Search Tool 
for the Retrieval of Interacting Genes/Proteins (STRING) 
website (https://string-db.org/) and the “clusterProfiler” 
package were used to build a protein-protein interaction (PPI) 
network using the LRGs of HCC. Cytoscape was used to 
visualize the PPI network. P values of <0.05 were considered 
statistically significant throughout the study.

Consensus clustering analysis of the LRGs in HCC

The correlations between the LRGs and HCC subtypes 
were examined. The “ConsensusClusterPlus” package 
(version 1.54.0) was used to perform the consistent cluster, 
cumulative distribution function (CDF), and consensus 
matrix analyses of the TCGA-HCC cohort. The value of 
the clustering variable (k) ranged from 2 to 6. A heatmap 
was generated using the “Pheatmap” package (version 
1.0.12). The “GGalluvial” R package was used to investigate 
the correlation among types, overall survival (OS) status, 
and risk score.

Identifying lactylation-related differentially expressed 
genes (DEGs) in HCC

The “DEseq2” package in R was used to identify the DEGs 

between the HCC clusters. A P value <0.05 and |log2fold 
change| >1 indicated a statistically significant difference. A 
volcano plot was generated using the “ggplot2” R package 
to visualize the DEGs in HCC. The DEG heatmap was 
generated using the R package “pheatmap” (version 1.0.12). 
The “clusterProfiler” package in R was used to conduct the 
GO and KEGG pathway enrichment analyses.

Detection of immune activity in two lactylation-related 
clusters of HCC

“Immunoeconomics” was used to assess the immune 
function of LRGs. The immune activity of two lactylation-
related clusters was compared by analyzing the expression 
of the eight immune checkpoint genes (i.e., CD274, 
PDCD1, PDCD1LG2, CTLA4, LAG3, HAVCR2, TIGIT, 
and SIGLEC15). Heatmaps and box plots were created 
individually using R packages “pheatmap” and “ggplot2”. 
The Wilcoxon test was used to measure the infiltration of 
immune cells and activated immune pathways between the 
two groups. P values of <0.05 were considered statistically 
significant.

Development of a prognostic model based on LRGs

The “glmnet” R package was used to perform a Cox 
regression analysis to evaluate the prognostic significance 
of the LRGs in the TCGA-HCC cohort. Initially, a multi-
factor Cox regression was employed for the data analysis, 
after which iterative optimization was performed using the 
“step” function. Ultimately, the optimal model was chosen 
as the final model. The minimum criteria were used to 
determine the conditions for variables that had coefficients 
that were not zero. A risk score was calculated by adding up 
all the expression levels for each gene and multiplying them 
by the corresponding coefficients. Low-risk (G1) and high-
risk (G2) subgroups were established based on the median 
risk scores of each TCGA-HCC patient. The “GGalluvial” 
R package was used to investigate the correlation among 
types, OS status, and risk score.

Statistical analysis

Survival analysis was conducted to identify independent 
prognostic factors for HCC, with a significance level set 
at P<0.05. Adjusted for multiple testing, bilateral P values 
<0.05 were deemed statistically significant.
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Results

Identification of key prognostic LRGs for HCC

A total of 4,378 prognostic genes were identified; the top 
20 prognostic genes, as determined by their P values, 

are displayed in a forest plot (Figure 1A,1B). Prognostic 
genes may be closely related to the occurrence of cancer, 
so we identified LRGs associated with prognosis. Using 
the Venn diagram was used to identify the prognostic 
LRGs, and ultimately 148 prognostic LGRs were 
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Figure 1 Identification of key LRGs in HCC. (A) Prognostic genes were identified by a univariate Cox analysis. (B) The prognostic LRGs 
were identified using a Venn diagram. A total of 4,378 prognostic genes were identified by a univariate Cox analysis, and 325 were LRGs 
listed in this study. Additionally, 148 key LRGs were identified. (C) GO analysis of the 148 key LRGs in HCC. (D) KEGG pathway 
enrichment analysis of the 148 key LRGs in HCC. (E) PPI networks of the key LRGs in HCC. CI, confidence interval; mRNA, messenger 
RNA; LRGs, lactylation-related genes; HCC, hepatocellular carcinoma; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
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discovered (Figure 1B). The results of the GO analysis 
of the biological processes revealed that the prognostic 
LRGs were associated with gene expression, nucleic 
acid metabolism, RNA metabolism, RNA splicing, and 
cellular macromolecule metabolism based on P value <0.05  
(Figure 1C). The KEGG enrichment analysis revealed 
that the pathways of these key LRGs may significantly 
contribute to HCC through amino acid biosynthesis, carbon 
metabolism, the pentose phosphate pathway, glycolysis/
gluconeogenesis, fructose and mannose metabolism, 
spliceosome, and the messenger RNA surveillance pathway 
(Figure 1D). Further, the selection of these prognostic 
LRGs was validated by a PPI network analysis (Figure 1D). 
Ultimately, the following 20 key LRGs: ACIN1, RAN, 
PPP1CB, ALDOB, SUMO2, THOC2, HDAC1, SF3A1, 
SF3B1, HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, 
H2AFV,  ALYREF,  H2AFZ,  H2AFX,  HNRNPK,  and 
MAGOH (Figure 1E) we identified.

HCC subtypes based on the key LRGs

Lactylation is closely associated with tumor development 
(6-9); however, the specific role of LRGs in HCC has yet 
to be thoroughly investigated. Consistency clustering and a 
principal component analysis (PCA) indicated that TCGA-
HCC patients were successfully categorized into two 
clusters using a clustering variable (k) of 2 (Figure 2A,2B). 
Through a consensus clustering analysis, we categorized 
TCGA-HCC patients into distinct subtypes using the  
20 LRGs (Figure 2A). The heatmap of the LRGs in TCGA-
HCC patients demonstrated a clear separation between the 
two groups (Figure 2C). As Figure 2D shows, the OS rate of 
the G1 group was statistically significantly higher than that 
of the G2 group [hazard ratio (HR): 2.025; 95% confidence 
interval (CI): 1.418–2.891; P=0.000103].

Mechanisms underlying the differences between the two 
types of HCC

The DEGs between the two groups were identified using 
a volcano plot (P value <0.05; |log2fold change| >1). 
Compared with the G2 group, 986 genes were upregulated 
in G1 and 123 genes were downregulated. In the heatmap, 
the top 50 DEGs were differently expressed in the two 
groups.

The biological functions of the 1,109 DEGs were 
elucidated through KEGG and GO enrichment analyses. 
The KEGG analysis revealed that the upregulated genes 

primarily participate in the p53 signaling pathway, regulation 
of actin cytoskeleton, phagosome, nucleocytoplasmic 
transport, focal adhesion, extracellular matrix (ECM)-
receptor interaction, and cell cycle (Figure 3A), while the 
downregulated genes primarily participate in the PPAR 
signaling pathway, glycolysis/gluconeogenesis, carbon 
metabolism, and biosynthesis of amino acids (Figure 3B).

The GO analysis of the biological processes revealed 
that the upregulated genes primarily participate in spindle 
organization, mitotic cell cycle phase transition, nuclear 
division, and DNA replication (Figure 3C), while the 
downregulated genes primarily participate in the metabolic 
process, organic acid biosynthetic process, epoxygenase 
P450 pathway, and carboxylic acid catabolic process 
(Figure 3D). Previous research has demonstrated that the 
p53 signaling pathway, focal adhesion, ECM-receptor 
interaction, and cell cycle can serve as tumor markers (15).

Immune activity in the two lactylation-related groups in 
HCC

There is a strong correlation between lactylation and 
immune activity in many types of cancer (7-9). In this study, 
the immune response in two lactylation-related patient 
clusters with HCC was assessed. The box plots showed a 
significant difference in the immune cell populations, with 
a higher abundance of B cells, CD4+ T cells, CD8+ T cells, 
neutrophils, macrophages, and myeloid dendritic cells in the 
G1 HCC samples than the G2 HCC samples (Figure 4A).  
Further, the box plots showed higher expression levels of 
seven of the eight ICI-related genes (i.e., CD274, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCD1LG2, and TIGIT) in 
the G1 HCC samples than the G2 samples (Figure 4B). 
According to the results, there is a close relationship 
between lactylation and immune function.

The tumor stemness in the two lactylation-related groups 
in HCC

Cancer stem cells (CSCs) are crucial for tumor initiation, 
recurrence, spread, and resistance to chemotherapy. There 
was a significant disparity in the CSC scores between the 
G1 and G2 TCGA-HCC patients (Figure 5A). Based on 
these findings, LRGs-related classification could serve as 
a reliable predictor of immune checkpoint blockade (ICB) 
therapy responses.

A low survival rate was observed following ICB 
treatment in cases in which the tumor immune dysfunction 
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and exclusion (TIDE) score was elevated. The G1 TCGA-
HCC patients had a higher TIDE score than the G2 
TCGA-HCC patients (Figure 5B), indicating an insufficient 
response to ICB therapy and a bleak prognosis.

Development of a prognostic model based on LRGs

A total of 20 LRGs in HCC were identified through the 

STEP regression analyses (Figure 6A). A six-gene signature 
was developed using the optimal λ value (Figure 6A). Two 
risk groups, low and high, were identified in TCGA-HCC 
patients using this gene signature (Figure 6A). Patients 
with a G1 score exhibited significantly higher OS rates 
than those with a G2 score (HR: 2.539; 95% CI: 1.764–
3.657; P=5.45e−07; Figure 6B). The prognostic models 
were evaluated by calculating the area under the receiver 
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Figure 3 Mechanisms underlying the differences between the two types of HCC. (A) KEGG pathways of the upregulated DEGs. (B) 
KEGG pathways of the downregulated DEGs. (C) The enriched biological processes of the upregulated DEGs. (D) The enriched biological 
processes of the downregulated DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, extracellular matrix; GO, Gene 
Ontology; HCC, hepatocellular carcinoma; DEGs, differentially expressed genes.

operating characteristic curve (AUC). As Figure 6C shows, 
the AUCs at 1, 3, and 5 years were 0.723, 0.731, and 
0.750, which suggests that this model effectively predicted 
outcomes.

Discussion

In this study, 4,378 genes associated with prognosis were 
identified, and 20 LRGs (i.e., ACIN1, RAN, PPP1CB, 
ALDOB, SUMO2, THOC2, HDAC1, SF3A1, SF3B1, 
HNRNPM, PPP1CC, SRRM1, PRPF6, HDAC2, H2AFV, 
ALYREF, H2AFZ, H2AFX, HNRNPK, and MAGOH) 
were identified in HCC. The 20 LRGs were used to 

divide TCGA-HCC patients into G1 and G2 groups. The 
KEGG analysis revealed that the upregulated genes in 
the G1 patients primarily participate in the p53 signaling 
pathway, regulation of actin cytoskeleton, phagosome, 
nucleocytoplasmic transport, focal adhesion, ECM-receptor 
interaction, and cell cycle, while the downregulated genes 
primarily participate in the PPAR signaling pathway, 
glycolysis/gluconeogenesis, carbon metabolism, and 
biosynthesis of amino acids. A significant difference in 
the immune cell populations, with a higher abundance 
of B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and myeloid dendritic cells, was observed 
between the G1 and G2 HCC samples. Further, seven of 
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the eight ICI-related genes were more highly expressed in 
the G1 HCC samples than the G2 HCC samples. There 
was a significant difference in the CSCs scores between the 
G1 and G2 TCGA-HCC patients. The G1 TCGA-HCC 
patients had higher TIDE scores than the G2 TCGA-HCC 
patients. The prognosis of the HCC patients was predicted 
using a seven-LRG model, comprising CXCR4, AADAC, 
SLC2A3, CMTM3, RGS2, CD59, and ZEB2.

Researchers have identified lactylatean important 
contributor to inflammation, fibrosis, and oncogenic 
processes (7-9). For instance, lactylate accumulates in the 
outer regions of tumor tissues, leading to the release of 
vascular endothelial growth factor, which in turn promotes 
angiogenesis and enhances the motility of cancer cells (16).  
Further, T-cell-mediated immunity is impaired by 
extracellular acidosis, and neutralizing tumor acidity may 
boost the anti-tumor effect of immunotherapy (17). The 
correlation between lactylation and HCC remains largely 

unexplored.
In this study, 20 LRGs were used to divide TCGA-

HCC patients into two groups of G2 and G1 patients. The 
G1 subgroup had a higher abundance of B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, macrophages, and myeloid 
dendritic cells than the G2 HCC subgroup. Recent evidence 
suggests that lactate can regulate immune cell metabolism 
and suppress the activation and proliferation of immune 
cells (7). Lactate has been recognized as a biomarker in 
various diseases, including neoplastic, inflammatory, and 
autoimmune diseases (7). The 20 LRGs might be closely 
related to the functions of immune cells obtained by 
functional enrichment analyses. The G1 TCGA-HCC 
patients had higher TIDE scores than the G2 TCGA-HCC 
patients. A classification of HCC tumors by LRGs could 
be established based on these results. LRG expression was 
positively correlated with the prognosis of HCC patients, 
and a prognostic model comprising six molecules (i.e., 
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HDAC1, HDAC2, SRRM1, SF3B1, THOC2, and PPP1CB) 
was developed.

I n h i b i t i n g  H D A C 1  i m p r o v e d  t h e  e f f i c a c y  o f 
chemotherapy in ovarian cancer (18). HDAC2 has been 
recognized as a target for anti-cancer therapeutics (19). 
SRRM1 enhances the growth, movement, and spread of 
HCC cells through modulation of the JAK/STAT signaling 
pathway (20). SF3B1 is upregulated and plays a role in 
the aggressiveness and prognosis of HCC (21). A genetic 
variant in the PPP1CB gene is associated with the risk of 
hepatitis B virus-related HCC (22).

It should be noted that this study had some limitations. 
In vitro and in vivo examinations of these seven LRGs need 
to be conducted to confirm these findings. The related 
molecular mechanisms should also be examined in future 
research.

Conclusions

In conclusion, a close relationship exists between LRGs and 
tumor classification and immunity in patients with HCC. 
LRG signatures are good prognostic indicators for HCC. 
The findings of our study extend understandings of the 
diagnosis and treatment of HCC.
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