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ABSTRACT

Objectives: To produce a systematic review (SR), reviewers typically screen thousands of titles and abstracts of

articles manually to find a small number which are read in full text to find relevant articles included in the final

SR. Here, we evaluate a proposed automated probabilistic publication type screening strategy applied to the

randomized controlled trial (RCT) articles (i.e., those which present clinical outcome results of RCT studies) in-

cluded in a corpus of previously published Cochrane reviews.

Materials and Methods: We selected a random subset of 558 published Cochrane reviews that specified RCT

study only inclusion criteria, containing 7113 included articles which could be matched to PubMed identifiers.

These were processed by our automated RCT Tagger tool to estimate the probability that each article reports

clinical outcomes of a RCT.

Results: Removing articles with low predictive scores P<0.01 eliminated 288 included articles, of which only 22

were actually typical RCT articles, and only 18 were actually typical RCT articles that MEDLINE indexed as such.

Based on our sample set, this screening strategy led to fewer than 0.05 relevant RCT articles being missed on

average per Cochrane SR.

Discussion: This scenario, based on real SRs, demonstrates that automated tagging can identify RCT articles ac-

curately while maintaining very high recall. However, we also found that even SRs whose inclusion criteria are

restricted to RCT studies include not only clinical outcome articles per se, but a variety of ancillary article types

as well.

Conclusions: This encourages further studies learning how best to incorporate automated tagging of additional

publication types into SR triage workflows.
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Lay Summary

In medical research, treatments are compared using randomized controlled trials (RCTs). To identify safe and effective treat-

ments, systematic reviews are carried out which identify and analyze articles that present the results from multiple trials on

the same question. We have previously created a tool called RCT Tagger, which identifies RCT articles automatically. The

present paper verifies that the RCT Tagger would have identified nearly all relevant articles when applied to previously pub-

lished systematic reviews. This suggests that people writing systematic reviews should consider automated publication type

tagging as part of their screening for relevant articles.

INTRODUCTION

Systematic reviews (SRs) are a type of literature review designed to

provide the best evidence on a given question.1 The current best

practices for writing SRs require a great amount of manual time and

effort2 to identify comprehensively all relevant publications for evi-

dence synthesis. A worldwide effort has begun to create automated

tools to assist in both the retrieval of relevant articles and the extrac-

tion of information from these articles.3,4 Most of the retrieval tools

have focused on identifying articles that are relevant based on topi-

cal, textual, or patient inclusion criteria.5–13 However, an article’s

publication type and study design characteristics are also important

aspects of its relevance for inclusion. Randomized controlled trials

(RCTs) are considered the gold standard for knowledge about the

effects of medical treatments,14 and finding reports of RCTs in a list

of search results is critical for selecting the papers to be summarized

in SRs.15–17 Recently, we and others have developed automated and

semiautomated publication type taggers to identify articles that pre-

sent clinical outcomes of RCTs.9,18,19 Publication type tagging has

been proposed to potentially contribute to the initial screening of

articles during triage,9,18,20 but has not yet been widely imple-

mented.

“RCT Tagger,” a machine learning-based model, which esti-

mates the probability that a given biomedical article reports the clin-

ical outcome of a RCT,18 achieves high accuracy (AUC � 0.984)

when evaluated with MEDLINE’s “Randomized Controlled Trial”

Publication Type21 and EMBASE citations as gold standards.19

However, further considerations and evaluations are needed in order

to implement RCT Tagger as part of the workflow of writing a SR.

RCT Tagger might be implemented in several different modes, for

example, a filter-in strategy in which only high-scoring articles are

retained, or a filter-out strategy in which low-scoring articles are

thrown out. Here, we decided to test a filter-out strategy in which

any article having a predicted probability score <0.01 is discarded.

Theoretically this threshold should discard fewer than 1% of rele-

vant articles (achieving >99% recall); however, it is important to as-

sess this screening strategy in a more stringent and pertinent manner

using a realistic scenario using published Cochrane SRs. These SRs

give an explicit list of the articles that were manually reviewed,

deemed relevant, and finally included for evidence synthesis. Since a

typical SR may only contain 5–50 included articles, mistakenly fil-

tering out even one included article may be considered unaccept-

able.

OBJECTIVES

We ask whether filtering out articles having RCT Tagger predictive

probability scores < 0.01 retains at least 99% of the relevant RCT

articles included in a corpus of previously published Cochrane

reviews.

In terms of consistent terminology, we must distinguish 3 con-

cepts related to RCTs: the trials/studies themselves, the RCT articles

describing trial outcomes, and ancillary articles linked to trials such

as reviews, protocols, reanalyses of data, and embedded studies. As

Cochrane notes, “Systematic reviews have studies, rather than

reports, as the unit of interest, and so multiple reports of the same

study need to be identified and linked together before or after data

extraction. . .a study can be reported in multiple journal articles,

each focusing on some aspect of the study (e.g. design, main results,

and other results).”22 Cochrane describes a RCT as “An experiment

in which 2 or more interventions, possibly including a control inter-

vention or no intervention, are compared by being randomly allo-

cated to participants. In most trials one intervention is assigned to

each individual but sometimes assignment is to defined groups of

individuals (for example, in a household) or interventions are

assigned within individuals (for example, in different orders or to

different parts of the body).”23 We defined RCT articles in our pre-

vious research18; here, we simplify the definition to “An RCT article

reports the primary or secondary outcomes of an RCT study.” In

the rest of the paper, we will distinguish trials (RCT studies), reports

describing the trial outcomes (RCT articles), and ancillary articles;

we will also refer to our model (RCT Tagger).

MATERIALS AND METHODS

We constructed a corpus consisting of a large random sample of

Cochrane reviews. For convenience, we only considered articles that

are indexed in PubMed, since all articles in PubMed have been

indexed with RCT Tagger prediction scores and are incremented

weekly.24 (Articles not indexed in PubMed can also be given predic-

tion scores but we have not comprehensively tagged other biblio-

graphic databases as yet.) Also, we only analyzed Cochrane reviews

whose inclusion criteria focused solely on RCT studies, because in

these cases, the great majority of included articles were RCT articles.

Note that a given RCT study may generate many diverse types of

published articles (e.g., secondary analysis of data, genome-wide as-

sociation studies of human subjects, embedded case-control analy-

ses, etc.), which are not themselves RCT articles (i.e., reports of the

primary clinical outcomes of the trial).

Our process was comprised of 4 steps, as shown in Figure 1: (1)

Select a random sample of Cochrane reviews; (2) Extract article

metadata for each article included in the sampled reviews; (3) Col-

lect PubMed identifiers (PMIDs) for each article; and (4) Obtain the

RCT Tagger prediction scores. Each step is described in further de-

tail below.

Select a sample of Cochrane reviews
We selected Cochrane reviews from within a XML-formatted data-

set, received directly from Cochrane, consisting of 7158 reviews

published from 2008 through January 3, 2018 by 52 different
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Cochrane groups in 8 Cochrane group networks.25 These were strat-

ified by publication year and Cochrane group network, and we se-

lected 15% randomly from each bin. Of these, we included only

reviews whose inclusion criteria was restricted to RCT studies based

on our manual annotation, and filtered out empty reviews (i.e.,

those that contained zero included studies).

Extract article metadata
We extracted metadata about each article in an included study from

a sampled review. To do this, we ran a program to process the XML

files for each review, which extracted 3 levels of metadata: Review,

Study, and Article as shown in Table 1.

Collect PMIDs for articles
To collect PMIDs for the articles, the PubMed API26 was queried

for PMIDs matching each article’s metadata. First, we used the ECit-

Match API27 because it determines exact matches between article

metadata and a PMID. For each article, we input to ECitMatch its

publication year, journal, volume, and page numbers.

As a second pass, for articles not matched by the ECitMatch

API, we used the ESearch API27 because it returns a list of PMIDs as

results of a single text query. Input was the title, the first author,

and the publication year. Since the API could return multiple poten-

tial matched PMIDs or no matched PMIDs, the second-round API

results were manually validated by comparing to the original meta-

data from the source Cochrane review. This resulted in 2 lists: a list

of unmatched articles and a list of PMIDs for articles included in

studies in our sample of reviews and available in PubMed. For each

matched PMID, we also retrieved the article’s title, abstract, and

MEDLINE Publication Types.

As a third pass, for each article with a matched PMID, we com-

pared its title and abstract from the original Cochrane Review

against the match retrieved from the PubMed API. This resulted in 2

lists: a list of articles that had a PMID mapping error (which we ex-

cluded); and a list of articles with confirmed PMID matches.

Get RCT Tagger prediction scores
We queried the RCT Tagger on the PMIDs retrieved using the public

query interface (http://arrowsmith.psych.uic.edu/cgi-bin/arrow-

smith_uic/RCT_Tagger.cgi).

RESULTS

Figure 2 shows our evaluation strategy. Briefly, starting with a 15%

stratified sample, we ultimately analyzed 6693 Tagger processed

articles from 471 Cochrane reviews. Each article considered in the

analysis ended in 1 of 5 outcomes: retained for manual screening

(6405 articles); Tagger error (44 articles); possible Tagger error (49

articles); explicit nonRCT judgment from Cochrane Characteristics

of Studies Table (39 articles from 6 reviews); or explicit nonRCT

judgment from Cochrane Characteristics of Studies Table (156

articles). We now describe our process and error analysis in further

detail.

From the full set of 7158 Cochrane reviews, our 15% stratified

sample yielded 1112 reviews, and we retained the 558 reviews that

we annotated as having RCT-only inclusion criteria. Our final set of

1. Select a 
sample of 
Cochrane 
reviews

•Output: some 
Cochrane 
reviews that 
only include 
RCT studies

2. Extract ar�cle 
metadata

•Output: 
metadata for 
each ar�cle in 
included 
studies

3. Collect 
PubMed 
iden�fiers 

•Output: list of 
ar�cles with 
PMIDs; list of 
ar�cles with no 
PMIDs found

4. Get the RCT 
Tagger's predic�ons

•Output: 
predic�on 
scores for 
each ar�cle 
with a PMID

5. Error 
analysis:

•Output: error 
analysis of 
low scores 
ar�cles

Figure 1. Main steps and outputs of our evaluation process.

Table 1. List of metadata extracted from XML files for each review

# Field name Level of metadata Example metadata

1 Review name Review CD007474 v. 6.0 Risperidone dose for schizophrenia.rm5

2 Study name Study Marder 1994

3 Study ID Study STD-Marder-1994

4 Title Article Successful therapy with risperidone in schizophrenic nega-

tive syndrome

5 Alternative title Article Schizophrenes Negativsyndrom. Risperidon Erfolgreich

6 Authors Article Blaeser-Kiel G

7 Type of article Article JOURNAL_ARTICLE

8 Published journal Article TW Neurologie Psychiatrie

9 Year Article 1994

10 Volume Article 8

11 Page Article 614-5

12 Reference ID Article 1994342404

13 Reference ID type Article EMBASE

14 Reference ID other type Article CRSREF
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(44 ar�cles) 
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(244 ar�cles) 
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(39 ar�cles from 6 reviews that 
were not RCT-only in prac�ce) 

Inclusion criteria not restricted 
to RCT studies, analyzed in 

Supplemental Table 3 
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These are possible Tagger 
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Supplemental Table 2 
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Figure 2. Our evaluation strategy started with a 15% stratified sample and ultimately analyzed 6693 Tagger processed articles from 471 Cochrane reviews. Each

article considered in the analysis ended in one of 5 outcomes: retained for manual screening (6405 articles); Tagger error (44 articles); possible Tagger error (49

articles); explicit nonRCT judgment from Cochrane Characteristics of Studies Table (39 articles from 6 reviews); or explicit nonRCT judgment from Cochrane Char-

acteristics of Studies Table (156 articles).
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reviews consisted of the 471 reviews that had at least 1 included

study. After deduplicating articles included in multiple reviews, we

attempted to match 9941 articles to PMIDs. Of the 7226 articles

matched to PMIDs, we removed 113 (1.5%) articles that had PMID

mapping errors. Of the remaining 7113 articles with confirmed

PMIDs matches, 6693 articles received estimated probability scores

from RCT Tagger. The other 420 articles either had no abstract in

PubMed, or the full-text was not in English and the article was not

indexed as having an English abstract in the Publication Type meta-

data field. Parenthetically, although it is rare for an RCT article rep-

resenting a primary report of a clinical trial outcome to be published

without an abstract, this enumeration suggests that articles lacking

abstracts should not be automatically discarded during literature

screening.

Among the 6693 articles scored by RCT Tagger, 288 articles had

predictive probability scores below 0.01. We conducted an error

analysis of these low-scoring articles. According to MEDLINE Pub-

lication Type, only 44 of these low-scoring articles were indexed as

RCT articles, and the remaining 244 of these low-scoring articles

were not indexed as RCT articles.

For the 44 low-scoring articles that were indexed as RCT articles

according to MEDLINE Publication Type, we manually examined

the full text of and found that actually only 18 of the 44 articles

were typical RCT articles (see Supplementary Table S1). The others

were borderline cases (e.g., cluster randomization, blinding not men-

tioned) or appeared to be frankly not RCT articles at all (e.g., post-

hoc analysis, nested case control study, or data reanalysis).

For the 244 low-scoring articles not MEDLINE-indexed as

RCTs, only 49 primary articles had been explicitly judged to be

RCT articles by Cochrane. We found 8 main reasons that Tagger

missed them: Abstract field empty in XML, Abstract lacks detail,

Comparative study with randomization not made explicit in ab-

stract, Design, Diagnostic test accuracy, Technical language, Topic

atypical, Typical RCT (Supplementary Table S2). An additional 39

primary articles from 6 Cochrane’s SR’s had been explicitly judged

by Cochrane to be nonRCT articles (e.g., quasi-randomized trials,

comparative studies, community-based trials, surveys) according to

Cochrane’s Characteristics of Studies table; rereading those SR’s in-

clusion criteria, we determined that we had misclassified 3 SRs as

“RCT only” and that the Cochrane authors had expanded inclusion

criteria in the other 3 SRs (see Supplementary Table S3). The

remaining 156 low-scoring articles were ancillary articles which did

not have explicit study-design judgments recorded in the Cochrane

SR’s Characteristics of Studies table; Cochrane includes ancillary

articles as companions to some primary RCT article.

Thus, using RCT Tagger for filtering out articles with scores <

0.01 retained (6693 – (44þ49))/6693¼98.6% of the RCT articles

included in the corpus of 471 Cochrane SRs. Filtering by using RCT

Tagger along with MEDLINE would have retained (6693 – 49)/

6693¼99.27% of the RCT articles.

If one only considers articles that our expert review confirmed

were typical RCT articles (see Supplementary Material), the propor-

tion is (6693 – 22)/6693¼99.67% of the included articles. Stated

otherwise, our proposed screening strategy would on average lead to

only 22 articles/471 Cochrane reviews¼0.047 RCT articles being

mistakenly discarded per Cochrane SR.

DISCUSSION

In the present paper, we have demonstrated that an automated prob-

abilistic publication type screening strategy, specifically, filtering out

articles having RCT Tagger predictive probability scores < 0.01,

retains well over 98% of the relevant RCT articles included in a cor-

pus of previously published Cochrane reviews. Stated another way,

fewer than 0.05 RCT articles per Cochrane SR would be mistakenly

discarded using this strategy.

What might this mean for a real-world application of RCT Tag-

ger? Applying the tool to the initial set of articles retrieved from

database queries, one would filter out articles with very low predic-

tive scores (<0.01) prior to giving to SR teams for manual triage. In

our earlier study, we estimated that �85% of articles would be re-

moved by RCT Tagger using a threshold of 0.1.18 It was not possible

for us to calculate work savings precisely in the present study, since

unfortunately, few if any published Cochrane reviews provide an ex-

plicit list of the initially retrieved articles used for manual screening.

The queries that were provided in our corpus are impossible to rerun

exactly because they vary in terms of the databases and search

engines involved, which themselves change over time. However, for

4 randomly selected Cochrane reviews within our dataset, we

attempted to reconstruct their initial PubMed queries as closely as

possible. Applying RCT Tagger to remove articles with scores below

0.01, we found that an average of 64% of the initially retrieved

articles were removed. This is admittedly a rough estimate but sug-

gests that publication type screening does offer the promise of saving

substantial effort in manual triage, and encourages prospective stud-

ies of SRs (where the initial set of retrieved articles is known exactly)

to calculate work savings more robustly.

Ultimately, the contribution of automated publication type tag-

ging needs to be evaluated in the context of, and in combination

with, other machine learning approaches to relevance ranking such

as RobotReviewer, RobotSearch, Abstrackr, SWIFT-Active

Screener, and SWIFT-Review, SRA-Helper, and DistillerSR6–11 as

well as other manual strategies that systematic reviewers routinely

use to find relevant literature (e.g. following citation trails, articles

written by specific authors, or publications linked to registered tri-

als). The optimal threshold for RCT Tagger, and the overall work

savings obtained, will be a function not only of the tagger itself, but

of the entire workflow involving all automated tools.

Our study has certain limitations: The evaluation was restricted

to articles that we could match to PMIDs, i.e. indexed in PubMed.

In addition, a small number (�410 of 7113) of articles included in

the SRs had also been included in the training data used in modeling

RCT Tagger18; however, this is unlikely to impact the results.

CONCLUSIONS

The present study is proof-of-principle involving a single (albeit

dominant) publication type, the RCT. However, as we found, even

SRs that are restricted to RCT studies include not only RCT

articles but a variety of ancillary articles as well. And, many SRs in-

clude a variety of study designs in their inclusion criteria. There-

fore, it will be necessary to carry out automated screening for

multiple publication types and study designs, such as cohort stud-

ies, case control studies, and cross-sectional studies, which are also

relevant for inclusion in many SRs. We have created such a series

of taggers28 and plan to evaluate their utility for SR triage in the

near future.
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