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Abstract
Depression is a leading cause of burden of disease among young people. Current treatments are not uniformly
effective, in part due to the heterogeneous nature of major depressive disorder (MDD). Refining MDD into more
homogeneous subtypes is an important step towards identifying underlying pathophysiological mechanisms and
improving treatment of young people. In adults, symptom-based subtypes of depression identified using data-driven
methods mainly differed in patterns of neurovegetative symptoms (sleep and appetite/weight). These subtypes have
been associated with differential biological mechanisms, including immuno-metabolic markers, genetics and brain
alterations (mainly in the ventral striatum, medial orbitofrontal cortex, insular cortex, anterior cingulate cortex
amygdala and hippocampus). K-means clustering was applied to individual depressive symptoms from the Quick
Inventory of Depressive Symptoms (QIDS) in 275 young people (15–25 years old) with MDD to identify symptom-
based subtypes, and in 244 young people from an independent dataset (a subsample of the STAR*D dataset). Cortical
surface area and thickness and subcortical volume were compared between the subtypes and 100 healthy controls
using structural MRI. Three subtypes were identified in the discovery dataset and replicated in the independent
dataset; severe depression with increased appetite, severe depression with decreased appetite and severe insomnia,
and moderate depression. The severe increased appetite subtype showed lower surface area in the anterior insula
compared to both healthy controls. Our findings in young people replicate the previously identified symptom-based
depression subtypes in adults. The structural alterations of the anterior insular cortex add to the existing evidence of
different pathophysiological mechanisms involved in this subtype.

Introduction
Approximately 322 million people worldwide (5% of the

world’s population) suffer from Major Depressive Dis-
order (MDD); a disease characterized by a depressed
mood and associated symptoms1. In young people,
depressive disorders are the main cause of global burden
of disease2. The onset of MDD peaks during adolescence

and young adulthood, and earlier onset of MDD is asso-
ciated with decreased quality of life and increased
impairment in social and occupational functioning later in
life3,4. Currently available treatments are not uniformly
effective for adolescent depression, with response rates
around 61% for antidepressants and 55% for psychother-
apy5,6. The unpredictable nature of treatment response
might be explained, at least in part, by the heterogeneity
of MDD.
The most commonly used systems for classifying mental

disorders, the ICD 10 (International Classification of
Diseases 10th revision) and Diagnostic and Statistical
Manual of Mental Disorders (DSM-5), categorize a broad
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spectrum of depressive symptom patterns within a single
MDD diagnosis. To receive an MDD diagnosis, a mini-
mum of 5 of the 9 DSM criteria for MDD have to be met.
Considering that some of the criteria include symptoms of
opposite polarity (e.g. increased versus decreased appetite,
weight gain versus loss, insomnia versus hypersomnia,
and psychomotor agitation versus retardation), almost
1500 different combinations of MDD symptoms lead to
the same DSM diagnosis of MDD7. Thus, patients with
the same diagnosis show heterogeneous depressive
symptom profiles, which may reflect different underlying
neurobiological mechanisms that could require different
treatments. Identifying more homogeneous subtypes of
depression could inform clinical judgement and guide
treatment selection.
Several attempts to identify subtypes of depression

have been made to overcome these issues associated
with the traditional diagnostic classification and the
heterogeneity of MDD. Traditionally, subtypes of
depression have been defined based on subjective expert
consensus. An example of describing different subtypes
are the DSM atypical and melancholic depression spe-
cifiers1. The atypical specifier is characterized by mood
reactivity in combination with increases in weight or
appetite, hypersomnia and/or leaden paralysis. The
melancholic specifier is distinguished by opposite neu-
rovegetative symptoms: decreases in weight or appetite
and early morning awakening, in addition to psycho-
motor agitation or retardation, worse mood in the
morning and excessive feelings of guilt. Existence of the
melancholic specifier has been confirmed by prior
research; however, the atypical specifier has been ques-
tioned. For example, mood reactivity, the only obligatory
atypical symptom in the DSM, does not show associa-
tions with the other atypical features8,9. More recently,
data-driven approaches have been employed to identify
symptom-based depression subtypes. Replicated across a
number of studies in adults, latent class analysis has
derived data-driven typical versus atypical neurovegeta-
tive symptom subtypes10–17. The typical and atypical
subtypes are usually characterized as having similar
affective and cognitive symptoms, differing only on sleep
and appetite profiles. Of note, the atypical neurovege-
tative symptom subtype differs from the atypical speci-
fier in the DSM as it mainly shows only reversed
neurovegetative symptoms (i.e., increased appetite and
weight, and in some studies also hypersomnia). How-
ever, not much is known about whether similar subtypes
exist in young people with depression, although one
study suggests they are similar to adults18.
Importantly, there are biological differences between the

previously found data-driven neurovegetative symptom
subtypes in adults. Higher levels of leptin, inflammatory
markers (C-reactive protein (CRP), interleukin-6 (IL-6),

interleukin 1 receptor antagonist (IL-1RA) and tumor
necrosis factor-α (TNF-α)), insulin and higher BMI are
associated with the atypical or increased appetite sub-
type15,19–21. Conversely, higher cortisol and ghrelin levels
are associated with the more typical subtype characterized
by decreased appetite19,21–23. In addition, genetic studies
have shown that the atypical subtype with increased
appetite is associated with a higher polygenic risk score for
BMI, leptin and CRP, whereas the typical subtype showed
a stronger association with polygenic risk scores for psy-
chiatric disorders such as schizophrenia24,25. Moreover,
brain activation responses to pictures of food have been
shown to differentiate depressed patients selected on
having either increased or decreased appetite21,26. Higher
cortisol levels in the MDD group with decreased appetite
were negatively correlated with ventral striatal activity
during a food task; while the MDD group with increased
appetite showed a positive correlation between insulin
resistance and posterior and dorsal mid-insula cortex
activity21. This increased appetite group showed higher
anterior insula cortex activity in response to these appe-
titive food pictures26. In addition, high levels of the
inflammatory marker CRP were associated with higher
coupling between anterior insula and orbitofrontal cortex
(OFC) and ratings of food pleasantness in the MDD group
with increased appetite27. Other brain regions implicated
in neurovegetative appetitive symptoms are part of the
salience network, such as the rostral anterior cingulate
cortex (ACC) and amygdala28–30. In addition, the hippo-
campus is thought to be affected by appetitive hormones
and thereby have a role in appetite inhibition31.
There is now consistent evidence in adults for different

biological correlates across neurovegetative symptom
subtypes, however, it remains unknown whether similar
subtypes exist in young people and if they are char-
acterized by similar biological mechanisms. The current
study aims to replicate the data-driven symptom profiles
based on neurovegetative symptoms, previously identi-
fied in adults, in young people with MDD. Furthermore,
we included an additional independent sample as a
replication cohort. In addition, the study aims to
examine structural brain alterations associated with the
identified subtypes. We hypothesize that similar sub-
types exist in young people, mainly distinguished by
opposite neurovegetative symptoms. We also hypothe-
size that structural alterations in subregions of the
insula, ventral striatum, medial OFC, ACC, amygdala
and hippocampus may differentiate between the symp-
tom subtypes, since these regions have been implicated
in subtype differences in previous adult studies21,26 or
more generally associated with neurovegetative appetite
symptoms (representing the most discriminating symp-
toms between the previously identified data-driven
subtypes).
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Methods and materials
Participants
Discovery sample
Participants were recruited from youth mental health

centers in Australia as part of the YoDA-A and YoDA-C
(Youth Depression Alleviation) studies32,33. In total, 275
young people with MDD and 100 age and sex-matched
healthy controls (HC) were included. All participants
were aged between 15 and 25 years old and the partici-
pants in the MDD group were diagnosed with a primary
diagnosis of MDD. For the MDD participants, a score of
20 or higher on the Montgomery–Åsberg Depression
Rating Scale (MADRS), indicating at least moderate
severity of symptoms, was required. The HC participants
were recruited through advertisements and did not have a
present or past diagnosis of MDD or anxiety disorders.
Participants were excluded if they suffered from an acute
medical disorder, had experienced any psychotic episodes,
or were diagnosed with bipolar disorder. Further, preg-
nancy, breastfeeding and any contraindications to MRI
were exclusion criteria. The participants gave written
informed consent and the Melbourne Health Human
Research Ethics Committee approved the study protocol.

Replication sample
The data for the independent replication sample came

from the STAR*D study, a large multicenter study exam-
ining antidepressant effectiveness34. To match the YoDA
sample, the sample was restricted to young people
between 18 and 25 years old with an MDD diagnosis,
resulting in a sample size of 244. We used the baseline data
for participants in the STAR*D study. All participants
scored 14 or higher on the Hamilton Depression Rating
Scale (HDRS)35, indicating moderate to severe depression.
Exclusion criteria were a primary diagnosis of schizo-
phrenia, bipolar disorder, anorexia nervosa, bulimia or
obsessive-compulsive disorder. In addition, the partici-
pants were free of antidepressants when they entered the
study. The STAR*D sample is comparable to the YoDA
sample in age, gender and depression severity. In both
studies, only participants with moderate to severe
depression based on either the Montgomery–Åsberg
Depression Rating Scale or the Hamilton Depression
Rating Scale were included. The total QIDS score (at study
inclusion) was highly similar between both samples across
the subtypes (Tables 1, 2). The participants in STAR*D
were not using antidepressants at time of inclusion and
similarly only a small proportion (7%) of the YoDA par-
ticipants were using antidepressants at time of inclusion.

Procedure
Discovery sample
The YoDA participants were screened using the Struc-

tured Clinical Interview for the DSM-IV (SCID) during

the baseline assessment34. In addition, depressive symp-
toms were measured using the MADRS as well as the
Quick Inventory of Depressive Symptomatology Self
Report (QIDS-SR)36,37. Further, participants completed
the Generalized Anxiety Disorder 7 questionnaire (GAD-7),
Social and Occupational Functioning Assessment Scale
(SOFAS), Alcohol Use Disorder Identification Test
(AUDIT)38–40 and other questionnaires not germane to
this study. Within 2 weeks of the baseline assessment, and
prior to commencing the study treatments, a subset of the
participants who chose to participate in the non-
obligatory MRI assessment and were not excluded based
on MRI eligibility criteria (137 MDD patients and 100
healthy controls) underwent a structural MRI scan.

Replication sample
Baseline scores of the QIDS of STAR*D participants

were included in this study36. The Psychiatric Diagnostic
Screening Questionnaire (PDSQ) was used as a diagnostic
screening tool in the STAR*D study41. Quality of life was
assessed with the Quality of Life Enjoyment and Satis-
faction Questionnaire (Q-LES-Q) and impaired func-
tioning using the Work and Social Adjustment Scale
(WSAS)42,43. No MRI data were available in this sample.

MRI data
Discovery sample
The T1 weighted scan lasted ~4min and was performed

on a 3T General Electric Signa Excite at Sunshine Hos-
pital (Western Health, Melbourne). An 8-channel phased-
array head coil was used (repetition time (TR): 7900 ms,
echo time (TE): 3000 ms, TI: 400, thickness (no gap): 1
mm, flip angle: 13°, field of view: 25.6 cm, pixel matrix:
256 × 256, voxel size: 1 × 1 × 1 mm).
The cortical parcellation was performed using Free-

Surfer (version 5.3)44. The segmentations and parcella-
tions were visually inspected and outliers were examined
using the ENIGMA protocol (http://enigma.ini.usc.edu/
protocols/imaging-protocols). Mean (of left and right
hemisphere) cortical surface area and cortical thickness of
the anterior and posterior insula (based on the Destrieux
atlas45), rostral and caudal ACC, medial OFC (based on
the Desikan–Killiany atlas46) and mean hippocampus,
amygdala and ventral striatal volume (nucleus accumbens,
based on the Fischl atlas47) were included as regions of
interest (Supplementary Fig. S1).

Data analysis
Symptom subtypes
A k-means clustering in R was applied to the 16

depression items of the QIDS to identify symptom sub-
types in the 275 young people diagnosed with MDD from
the YoDA sample48. With k-means clustering, clusters are
formed based on the cluster mean (centroid) that is
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closest to a data point (the item score of a subject) to keep
the centroids as small as possible. The QIDS item data
(scored between 0 and 3) were scaled by subtracting the
mean and dividing by the standard deviation to make sure
all variables had the same weight.

Selecting the optimal number of clusters
The number of clusters (k) was selected based on the

highest number of partitioning methods in R that selected
the same optimal number of clusters. The R package
NbClust was used to determine the optimal number of

Table 2 Demographics and clinical characteristics of symptom subtypes identified in the STAR*D replication sample.

SIA (N= 54) SDA (N= 82) MOD (N=108) p-value Post hoc

Age 22.3 (2.0) 21.8 (2.0) 21.8 (1.9) 0.29

Sex (F), N (%) 42 (78%) 60 (73%) 75 (69%) 0.53

Comorbid ANX, N (%) 5 (9%) 11 (13%) 16 (14%) 0.61

Eating disorder, N (%) 1 (2%) 1 (1%) 0 (0%) 0.41

QIDS 18.3 (3.2) 18.4 (2.5) 12.4 (2.3) <0.001 SIA, SDA > MOD

Hamilton 21.1 (4.4) 24.4 (5.2) 19.8 (4.0) <0.001 SDA > SIA, MOD

Q-LES-Q 38.8 (10.7) 38.6 (12.6) 50.2 (13.4) <0.001 SIA, SDA < MOD

WSAS 26.0 (7.4) 25.3 (7.1) 17.5 (7.2) <0.001 SIA, SDA > MOD

ANX anxiety disorder, F females, MOD moderate depression subtype, N number of, QIDS quick inventory of depressive symptomatology, Q-LES-Q quality of life
enjoyment and satisfaction questionnaire, SDA severe depression with decreased appetite and insomnia subtype, SIA severe depression with increased appetite
subtype, WSAS work and social adjustment scale.

Table 1 Demographics and clinical characteristics of symptom subtypes identified in the YoDA discovery sample.

SIA (N= 59) SDA (N= 105) MOD (N= 111) p-value Post hoc

Age 19.9 (2.4) 19.6 (2.6) 20.0 (2.9) 0.56

Sex (F), N (%) 43 (73%) 59 (56%) 59 (53%) 0.04 SIA > SDA, MOD

Comorbid ANX, N (%) 30 (51%) 62 (59%) 56 (50%) 0.75

Age of onset MDD 15.5 (3.2) 12.8 (2.4) 13.6 (2.6) 0.20

Recurrent % 37.3 32.4 29.7 0.77

Current AD use, N (%) 2 (3.4) 11 (10.4) 5 (4.5) 0.12

Lifetime AD use, N (%) 7 (11.9) 17 (16.2) 15 (13.5) 0.41

SSRI (N) 5 14 12

SNRI (N) 2 1 1

TCA (N) 0 1 2

FH MDD % 52.5 43.8 45.0 0.36

QIDS 18.4 (2.7) 19.5 (2.4) 14.1 (2.8) <0.001 SDA > SIA > MOD

MADRS 31.0 (5.0) 35.4 (5.7) 30.9 (4.8) <0.001 SDA > SIA, MOD

GAD-7 14.7 (4.6) 15.4 (4.9) 10.0 (4.9) <0.001 MOD < SIA, SDA

SOFAS 56.7 (11.1) 57.0 (11.3) 58.4 (11.0) 0.55

BMI 29.5 (7.7) 24.2 (6.0) 26.2 (8.0) <0.001 SIA > SDA, MOD

Anorexia nervosa, N (%) 1 (2%) 2 (2%) 3 (3%) 0.89

Bulimia nervosa, N (%) 2 (3%) 3 (3%) 2 (2%) 0.80

Binge eating disorder, N (%) 9 (15%) 3 (3%) 1 (1%) <0.001 SIA > SDA, MOD

AD antidepressant, ANX anxiety disorder, BMI body mass index, F females, FH family history, GAD-7 generalized anxiety disorder 7, MADRS Montgomery Äsberg
depression rating scale, MDD major depressive disorder, MOD moderate depression subtype, N number of, QIDS quick inventory of depressive symptomatology, SDA
severe depression with decreased appetite and insomnia subtype, SIA severe depression with increased appetite subtype, SOFAS social and occupational functioning
assessment scale, SNRI serotonin and norepinephrine reuptake inhibitor, SSRI selective serotonin reuptake inhibitor, TCA tricyclic antidepressant.
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clusters by looking at different combinations of distance
measures and clustering methods based on hierarchical
clustering (ward.D2, which minimizes variance within
clusters) (for more details, please see Supplementary
Material)49.

K-means clustering
The optimal number of clusters determined by NbClust

was used as an input parameter to K-means clustering
using the stats package in R48, to identify the centers of
the clusters (centroids). To prevent the clustering settling
on local minima, an initialization method was used to pick
cluster means that covered the full range50,51. In this
initialization method, random centers were selected, after
which the procedure was reran to readjust the centers.
The centroids of the next cluster were selected by max-
imizing the distance to the centroids that were selected
before. These centers were used to run the K-mean
clustering.

Testing validity and stability
Three methods were used to test the validity and

reliability of the clusters. First, to test the stability of
the clusters we repeated our clustering analysis in
10,000 randomly selected subsamples, each containing
100 participants from a pre-selected training sample
(which consisted of 70% of the total sample). In each of
the 10,000 subsamples, participants left out of the
cluster identification process (the remaining 30%) were
assigned to clusters using linear discriminant analysis
classifiers. The left-out sample was combined with the
training sample to form a complete cluster solution.
We then tested whether the individual cluster assign-
ments were stable over the 10,000 subsamples by cal-
culating an adjusted Rand score to test the similarity
between each subsampling clustering solution com-
pared to the original clustering solution. A Rand index
of 1 means that the clustering solutions completely
agree on the labels, while a Rand index of 0 represents a
disagreement in the clustering. We also calculated the
cluster-to-cluster index, which represents the mean
distance between the clusters in the original and the
new clustering obtained through resampling. Second,
the optimal number of clusters was tested against a null
distribution with permutation testing52. The same
analysis procedure, including subsampling and per-
mutation testing was repeated in the independent
replication dataset STAR*D. A latent class analysis was
performed to test the robustness of the k-means clus-
tering method and to compare our findings to findings
in previous adult studies that mainly employed latent
class analysis (Supplementary Materials).

Differences in clinical and structural brain characteristics
between subtypes
The symptom subtypes that were identified were com-

pared on clinical and demographic characteristics in R
using ANOVA or χ2 tests, and if there was a significant
difference at p < 0.05, post hoc tests with Tukey HSD
correction for multiple comparisons (3 tests to compare
the 3 subtypes).
In the YoDA sample, mean cortical surface area and

thickness and subcortical volume of the regions of interest
were compared between subtypes using an ANCOVA
with group (MDD subtypes and healthy controls) as
predictor and age and sex, as well as intercranial volume
(ICV) as covariates. We did not include ICV as a covariate
in analysis with cortical thickness measures, since thick-
ness does not scale with head size53. False discovery rate
(FDR) correction for 13 regions of interest was applied
and Tukey HSD corrected post hoc tests were performed
when a significant main effect of group was found. Ana-
lyses were repeated in an antidepressant naive sample to
control for the possible effect of antidepressant use.

Results
Symptom subtypes
A 3-cluster solution was found to be the optimal fit

according to 9 out of 26 partitioning methods (Supple-
mentary Fig. S2). The stability of the clusters was tested
for 2 as well as 3 clusters. The average Rand Index was
0.40 for 2 clusters, and 0.56 for 3 clusters. In addition, the
average cluster-to-cluster distance was 1.35 for 2 clusters
and 1.44 for 3 clusters, meaning that more labels agreed
when 3 clusters were used and the means of different
clusters were further apart in the 3-cluster solution. In
addition, the Scott and Friedman partitioning measure
showed that the index number for this number of clusters
was higher than the cluster indices of an empirical null
distribution, meaning that 3 clusters described the data
better than data with no underlying clusters (Scott: p <
0.001, Friedman: p= 0.01, Supplementary Fig. S3).
The clusters were labeled as following: moderate

depression (n= 111, MOD), severe depression with
increased appetite (n= 59, SIA) and severe depression
with decreased appetite and insomnia (n= 105, SDA)
(Fig. 1a). The MOD subtype endorsed symptoms such as a
sad mood, lack of general interest, fatigue and typical
neurovegetative symptoms of decreased appetite, weight
loss and insomnia. The SIA and SDA subtypes both
showed a higher severity of symptoms overall than the
MOD subtype. The SIA subtype was uniquely character-
ized by endorsement of reversed (atypical) neurovegeta-
tive symptoms of increased appetite and weight gain,
whereas the SDA subtype showed decreased appetite and
higher levels of insomnia. The SIA subtype consisted of
more females and was associated with higher BMI

Toenders et al. Translational Psychiatry          (2020) 10:108 Page 5 of 11



compared to SDA and MOD (Table 1). Similar clusters were
identified in the STAR*D dataset, including a moderate
depression subtype (MOD, n= 108), a severe depression
with increased appetite and weight gain subtype (SIA, n=
54) and a severe depression with decreased appetite and
highest levels of insomnia subtype (SDA, n= 82) (Fig. 1b,
Table 2). The symptom clusters identified by the latent class
analysis are displayed in Supplementary Fig. 4.

Structural brain alterations in symptom subtypes
The sample sizes of the subtypes with imaging data were

32, 49, 56 and 100 for SIA, SDA, MOD and HC, respec-
tively. Anterior insula surface area showed a main effect of
group (pfdr-corrected < 0.001), which was driven by lower
surface area in these regions in the SIA subtype compared
to healthy controls (post hoc: p= 0.02) (Fig. 2). Weak evi-
dence was found for group differences in the rostral ACC
surface area, anterior insula thickness, hippocampus and
amygdala volume (pfdr-corrected= 0.08, pfdr-corrected= 0.09,
pfdr-corrected= 0.09 and pfdr-corrected= 0.07 respectively,
Table 3). Although not significant, all three depressive
subtypes showed lower surface area in the rostral ACC
surface area and lower hippocampal volume compared to
healthy controls. The SDA subtype had relatively lower
anterior insula thickness, and the SIA subtype showed
higher amygdala volume than HC, whereas SDA showed
lower amygdala volume compared to healthy controls. No
group differences were found for the other regions of
interest (Supplementary Table S1). Among the participants
with neuroimaging data, the subtypes did not show differ-
ences in BMI (Supplementary Table S2). The results were
replicated in a subset of the sample excluding lifetime
antidepressant users. In the subset consisting of only

antidepressant naive patients (n= 119), the main effects for
anterior insula surface area were still significant (pfdr-
corrected < 0.001), driven by differences between the SIA
subtype and healthy controls (p= 0.01) (Supplementary
Table S3 for the demographics).

Discussion
The aims of the current study were to identify data-

driven subtypes of depressive symptoms in young people
(aged 15–25) with MDD and to compare potential

Fig. 1 Symptom subtypes in the YoDA discovery sample (a) and in a subsample of the STAR*D replication sample (b). A severe depression
with increased appetite (SIA) subtype, severe depression with decreased appetite and insomnia (SDA) subtype and a moderate depression (MOD)
subtype were identified in both datasets. The axis shows the percentage of subjects within a subtype that shows the symptoms in the radar plot
(QIDS items).

Fig. 2 Mean anterior insula surface area in the subtypes in the
YoDA discovery sample. Severe increased appetite (SIA) subtype,
severe decreased appetite and insomnia (SDA) subtype, moderate
(MOD) subtype and healthy control (HC). SIA showed significantly
lower surface area in the anterior insula compared to HC.
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structural brain alterations between these subtypes. The
data-driven symptom subtypes found in the YoDA study
cohort were in line with the subtypes characterized by
opposite neurovegetative symptoms previously identified
in adults11–18. One subtype showed atypical or reversed
neurovegetative symptoms, mainly discriminated by
increased appetite and weight gain, and two subtypes
showed typical neurovegetative symptoms, including
insomnia, decreased appetite and weight loss, with the
typical symptom subtypes having different levels of overall
severity (moderate versus severe). We replicated these
data-driven symptom subtypes in a subsample of the
STAR*D study, an independent sample of MDD patients
within a similar age range. Symptom-based subtypes in
young people have only been studied in one previous
study in adolescents using latent class analysis, which
identified similar subtypes18.
The data used in the current study are unique, as 34% of

the MDD patients with imaging data were diagnosed with
their first episode of MDD and 70% were antidepressant
naive. Identifying similar subtypes as found in adults in

these more clinically specific (antidepressant free and at
an early stage of the disorder) young people further vali-
dates the existence of the subtypes. Moreover, identifying
similar subtypes in adolescents and young adults is rele-
vant, as mood, appetite and sleep and their underlying
biological processes go through developmental changes in
adolescence, such as maturation of neural emotion reg-
ulation and reward processing circuitries, increasing levels
of leptin, and a shift in the circadian rhythm54–56.
In line with previous adult studies, the increased appe-

tite subtype had more females and a higher BMI than the
other subtypes11,13,16,18. In addition, unlike some adult
studies, the increased appetite subtype we identified was
not discriminated by hypersomnia. However, hypersom-
nia items in a self-report questionnaire show low corre-
lations with objective sleep measures57,58. In addition,
whereas three items assess insomnia in the QIDS self-
report, only one item targets hypersomnia, and the dis-
turbances might be more complex than assessed in that
single question (for example fractionated or irregular
night-time sleep but increased duration of sleep, including

Table 3 Mean cortical surface area, thickness and subcortical volume in regions of interest per subtype.

Region of interest SIA SDA MOD HC pfdr-corrected Post hoc

Rostral ACC

Surface area 741.80 736.84 746.51 783.49 0.08

Thickness 2.81 2.78 2.85 2.88 0.16

Caudal ACC

Surface area 711.63 698.62 703.62 729.23 0.25

Thickness 2.85 2.87 2.90 2.90 0.71

Medial OFC

Surface area 1856.38 1828.10 1894.59 1905.91 0.09

Thickness 2.43 2.45 2.47 2.46 0.51

Anterior insula

Surface area 383.31 406.91 395.33 424.42 0.001* SIA < HC

Thickness 3.62 3.53 3.53 3.61 0.09

Posterior insula

Surface area 298.11 298.72 298.75 310.86 0.19

Thickness 3.48 3.46 3.44 3.51 0.51

Hippocampus

Volume 4433.28 4347.91 4431.89 4516.07 0.09

Amygdala

Volume 1801.67 1687.59 1773.73 1762.91 0.07

Ventral striatum

Volume 636.81 640.84 628.13 629.31 0.83

HC healthy controls, MOD moderate depression subtype, SDA severe depression with decreased appetite and insomnia subtype, SIA severe depression with increased
appetite subtype, *significant p-value.
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daytime napping). Therefore, sleep disturbances may still
exist in the subtype with atypical neurovegetative symp-
toms. More ecologically valid assessments of sleep dis-
turbances should be employed in future studies to
examine sleep disturbances in these subtypes.
This study is the first to examine differences in struc-

tural brain alterations between data-driven symptom-
based subtypes. We found lower anterior insula surface
area in the increased appetite subtype compared to
healthy controls and the moderate severity subtype. Dif-
ferent parts of the insula are thought to have different
roles, with the anterior insula important for integration of
interoceptive information and reward and motivational
processes59. The anterior portion of the insula is pre-
ferentially interconnected with the orbitofrontal (OFC)
and anterior cingulate cortices (ACC) and ventral stria-
tum60–62. Together with the dorsal ACC, the anterior
insula forms a core hub of the so-called ‘salience network’,
commonly implicated in interoceptive awareness; inte-
grating external and internal stimuli to guide an indivi-
dual’s actions and decisions63–66. The anterior insula
integrates information about the motility of the digestive
system and hunger. Hormones (including leptin and
insulin), body weight status and inflammation have been
shown to influence insula activity and volume67–70. As
alterations in hormones, such as leptin and insulin, and
inflammatory markers have been observed in the
increased appetite subtype in adults and those hormones
and inflammatory markers have been found to affect
surface area71, is possible that alterations in these endo-
crine factors that may be unique to this atypical neuro-
vegetative subtype are related to surface area alterations.
Furthermore, the insula is implicated in reward pro-

cessing and emotion regulation, processes that have been
associated with food intake72–75. In addition, insula
alterations are found to be associated with eating dis-
orders76. Previous research reported increased brain
activity in the anterior insula and other reward regions
including the ventral striatum in response to pictures of
food in adult MDD patients with increased appetite26. In
addition, emotion regulation disturbances have shown to
increase emotional eating77, which may underlie the
increased appetite and weight gain observed in the aty-
pical neurovegetative subtype, potentially mediated by
structural alterations in the anterior insula78.
Only two prior studies in adults examined differences in

brain measures between MDD patients selected on the
presence of depression-related symptoms of increased
appetite versus decreased appetite21,26. These studies
examined neural responses during an fMRI food picture
task, and found that lower ventral striatum activity was
associated with higher cortisol in the decreased appetite
subtype. In contrast, in the increased appetite subtype
higher anterior insula activity was observed. In line with

these studies by Simmons et al., we found anterior insula
surface area alterations in the increased appetite subtype.
However, no differences in ventral striatum volume
between the subtypes were found in the present study,
suggesting that alterations in the ventral striatum might
be restricted to a functional level.
Interestingly, only surface area differences were

observed for the anterior insula and no differences were
found in insular cortical thickness. Cortical surface area
and cortical thickness are two distinct characteristics of
the brain’s cortex and have different developmental
pathways. Cortical thickness increases until approxi-
mately age 2, whereas cortical surface area increases,
depending on the region, until adolescence, making it
more vulnerable to early life stressors79–82. In addition,
cortical surface area alterations have been found to be
associated with early onset depression83,84, and prior
research shows that the increased appetite, or atypical
neurovegetative, subtype is associated with earlier onset of
depression13,19,24. However, as this study consisted of
adolescents and young adults, the age of onset was low
overall and did not differ between subtypes.
A few limitations of the study should be noted. The

exclusion criteria of the YoDA studies might have influ-
enced clustering results, and compromise generalizability.
Only young people with MDD who showed moderate to
severe depressive symptoms were included, therefore not
representing the whole depressive spectrum. In addition,
the k-means clustering might have been affected by the
high negative correlations between the increased appetite/
weight and decreased appetite/weight symptoms, and
between insomnia and hypersomnia. There has been
some critique regarding the subtyping based on symp-
toms including these opposite neurovegetative symptoms
using a latent class analysis or other data-driven techni-
ques, since they are complete opposites and one symptom
automatically rules out the possibility of endorsing the
other symptom (e.g., a person can not endorse both
weight gain and weight loss at the same time, although
they can endorse no changes in weight). The negative
correlations between increased and decreased appetite
(−0.49) and weight (−0.31), and between insomnia and
hypersomnia (−0.14 to −0.21), known as a violation of
conditional independence, have likely dominated the
clustering and may have masked subtypes based on other
patterns of symptom endorsement85. However, differ-
ences in genetics, blood markers of inflammation, leptin
insensitivity and insulin resistance, and neuroimaging
markers have been repeatedly found between these sub-
types derived using a data-driven analysis19,20,24,25,78 and
the current study, and when selected on the presence of
increased versus decreased appetite21,26,86. Therefore, the
subtypes seem biologically relevant. Another limitation of
using k-means clustering is that k (number of clusters) has
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to be chosen manually, however, this process is made as
transparent as possible by showing all the steps taken to
decide the optimal value for k. On the other hand,
advantages of k-means clustering are that it identifies
clusters that do not have to have the same size and shape.
Finally, unfortunately STAR*D did not have imaging data
available, and we were therefore not able to validate the
imaging findings in an independent sample.
This clinical relevance of these neurovegetative symp-

tom subtypes is underlined by the persistence of sleep and
appetite disturbances after treatment for depression87,88.
In addition, these neurovegetative symptoms do not affect
clinical management decisions as much as mood symp-
toms, even though they are associated with high risks of
suicide89, obesity and metabolic syndrome90, and
depression recurrence91–93. Subtyping depression based
on neurovegetative symptoms could lead to more targeted
intervention. Even though we had treatment outcome
data for a subset of the YoDA sample and the STAR*D
subsample, the sample sizes for each subtype per treat-
ment type were too small to evaluate differences in
response to treatment between subtypes in these samples.
Future studies with larger sample sizes that are properly
powered for detecting differences in treatment response
between subtypes of depression are needed to elucidate
whether young people with an atypical neurovegetative
subtype depression show a different response to tradi-
tional treatments (such as antidepressants or psy-
chotherapy) or novel treatments compared to those with a
more typical profile of neurovegetative symptoms. Our
findings of structural alterations in the anterior insula
together with previous findings of functional alterations in
the insula uniquely associated with the atypical neurove-
getative subtype suggest that core functions of the insula
including interoceptive function, emotion regulation and
reward processing may be promising treatment targets for
this specific subtype of depression.
To conclude, we were able to replicate the existence of

reversed neurovegetative and typical neurovegetative
symptom subtypes of depression in two adolescent/young
adult MDD samples. This was the first study to show that
these symptom subtypes were associated with cortical
surface alterations in the anterior insula, with the
increased appetite showing lower surface area compared
to the moderate subtype and healthy controls. Together
with previous findings in adults, our current findings
suggest that the subtype with atypical neurovegetative
symptoms may have a unique biological signature.
Moreover, neurovegetative symptoms are associated with
poorer clinical outcomes and antidepressant treatment
has shown to work more effectively for mood and cog-
nitive symptoms than for atypical and sleep symp-
toms94,95. Therefore, these neurovegetative symptoms
subtypes, characterized by changes in sleep and appetite,

should be noted when treating young people with
depression.
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