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ABSTRACT

To gain insight into the disease progression of
transmissible spongiform encephalopathies (TSE),
we searched for disease-specific patterns in cir-
culating nucleic acids (CNA) in elk and cattle. In a
25-month time-course experiment, CNAs were iso-
lated from blood samples of 24 elk (Cervus elaphus)
orally challenged with chronic wasting disease
(CWD) infectious material. In a separate experiment,
blood-sample CNAs from 29 experimental cattle
(Bos taurus) 40 months post-inoculation with clini-
cal bovine spongiform encephalopathy (BSE) were
analyzed according to the same protocol. Next-
generation sequencing provided broad elucidation
of sample CNAs: we detected infection-specific
sequences as early as 11 months in elk (i.e. at
least 3 months before the appearance of the first
clinical signs) and we established CNA patterns
related to BSE in cattle at least 4 months prior to
clinical signs. In elk, a progression of CNA sequence
patterns was found to precede and correlate with
macro-observable disease progression, including
delayed CWD progression in elk with PrP genotype
LM. Some of the patterns identified contain tran-
scription-factor-binding sites linked to endogenous

retroviral integration. These patterns suggest that
retroviruses may be connected to the manifestation
of TSEs. Our results may become useful for the early
diagnosis of TSE in live elk and cattle.

INTRODUCTION

Chronic wasting disease (CWD) was recognized as a natu-
rally occurring transmissible spongiform encephalopathy
(TSE) in elk and closely related species nearly 30 years ago
(1). Although the causative agent of CWD is still the sub-
ject of debate (similar to other TSEs), neuro-invasion
of orally challenged elk is thought to primarily occur
via the vagosympathetic trunk (2), thus by-passing the
blood-brain barrier. The definitive diagnosis of CWD
currently involves immunohistochemistry to detect the
occurrence of PrPWP protein in the brain, tonsils and
Ilymph nodes, and histopathology to confirm the presence
of spongiform lesions in the brain (3).

Recently, several publications indicate that CNAs
might be used to obtain patterns related to diseases such
as cancer and stroke (4). It is believed that serum CNAs
are related to the lysis of cells in damaged tissues, necrosis
and apoptosis (5). In humans, fetal CNAs have been
shown to cross the maternal blood—brain barrier (6). It
seems likely that CNAs from blood serum are linked to
stress-related activities throughout the body, including
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neuronal death associated with TSEs. In the case of TSE,
an additional source of CNAs may be exosome-like struc-
tures that are expelled by infected cells, as reported for
scrapie (7,8). Given the potential benefits of a live blood
test, an elk CNA study was undertaken to determine if a
correlation exists between CWD and specific CNA pattern
distributions in healthy versus disecased animals. In addi-
tion, blood CNAs from cattle, which were perorally chal-
lenged with BSE and had progressed to approximately 4
months before clinical signs, were investigated by compar-
ison to sham-inoculated animals.

MATERIALS AND METHODS
Elk study

Twenty-four weaned Cervus elaphus females were obtained
from two commercial farms in Alberta (Canada). Both
farms had no previous cases of CWD, no history of
importing animals from herds with CWD, and had been
actively participating in CWD surveillance programs.
The animals were genotyped and separated into groups,
such that both MM and LM animals were distributed
over the study period. The rare LL genotype (9) was
not present in this study, most likely due to the relatively
small number of animals used. The LM genotype is known
to be linked with a slower CWD disease progression as
compared to the MM genotype (10). The elk were perorally
challenged with 10 ml of a 10% brain homogenate (tested
for CWD by western blot) and 90% saline (w/v). CWD-
positive brain homogenate was obtained from pooled
elk tissue, kindly provided by Dr A. Balachandran
(Canadian Food Inspection Agency, Fallowfield) and
fed to 19 animals. The CWD-negative homogenate was
obtained from an elk that died of unrelated causes
and tested negative for CWD and fed to five animals.
Blood was sampled in a monthly schedule and stored
at —20°C. The animals were euthanized according to an
experimental schedule and/or for humane reasons
(Table S1).

Cattle study

Serum samples were obtained from 29 Fleckvieh cattle
(Simmental breed) 40 months post inoculation, which
had been fed 100g of either PrP"*-positive brain stem
macerate (16 animals) or non-infected brain material
(13 animals), respectively (11).

The CNA extraction, DNA sequencing and bioinfor-
matics analysis followed the same protocol in the elk
and bovine studies.

Preparation of sera

Serum was obtained and prepared as described elsewhere
(12). Frozen serum was thawed at 4°C and cell debris was
removed by brief centrifugation at 4000 x g for 20 min.
The supernatant was subjected to 35min centrifugation
at 20000 x g and the pellet was used for further analyses.
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Nucleic acid extraction, general and CNA-specific
amplifications

The WGA4 GenomePlex® Single Cell Whole Genome
Amplification Kit (Sigma) was used for the nucleic-acid
extraction and amplification of total nucleic acids accord-
ing to the manufacturer’s protocol. The amplified DNA
was purified and 5ng DNA of each sample was used for
the circulating nucleic-acid-specific amplification using
quasi-random primers with a universal 5 adapter using
a proof-reading PCR system.

Disease-specific CNA subtraction

PCR products for each animal after oral infection were
hybridized with a 10-fold overshoot of biotinylated pre-
infection PCR amplicons for 70h. The latter amplicons
contained dUTP for subsequent digestion of unbound
products. After binding to strepavidin-coated magnetic
beads, followed by magnetic separation, the unbound frac-
tion was collected and subjected to digestion with uracil
DNA N-glycosylase to avoid a carry-over of unbound
pre-infection amplicons. The remaining undigested PCR-
products were used for further processing and sequencing.
All pre-infection samples (controls) were used directly for
sequencing without any selection.

DNA sequencing

The PCR products were sequenced directly using a
Roche/454 genome sequencer (GS-FLx) according to
the manufacturer’s instructions (conducted at Eurofins-
Medigenomix, Martiensried, Germany). The raw
sequences were trimmed to eliminate adapter/primer
sequences and identification tags.

Bioinformatics

Figure 1 provides an overview of the bioinformatics ana-
lysis performed. An all-versus-all search of the elk dataset
using four TimeLogic DeCypher boards (http://www.
timelogic.com) all patterns occurring for a minimum of
20 x (based on the number of infected animals), with
none of the top 100 BLAST (13) matches occurring in
non-target samples, yielded 10634 motifs specific to con-
trol and infected animals up to 5 months after infection;
and 4933 motifs for animals at least 8 months after infec-
tion (motifs of 35 bases or less, using a sliding window
for longer matches). Each of these motifs was searched
against the entire elk CNA dataset using a simulated ther-
modynamic annealing approach (14). The motifs were
further filtered to include only those readily and unam-
biguously detectable using PCR: i.e. those matching with-
out any critical off-target binding within 4°C under PCR
conditions of 107°*M DNA and 0.15M Na™. In the two-
timepoint bovine dataset, 3261 control-only motifs and
2896 motifs present in infected-only cows were found
with the same approach. In addition, each CNA sequence
for elk and cattle was searched against the NCBI
expressed sequence tag (EST) and non-redundant protein
databanks using BLAST to identify potential functions
based on sequence similarity.



552  Nucleic Acids Research, 2009, Vol. 37, No. 2

l Serum CNA extract (DNA)

GS FLX pyrosequencing
Circulating Nucleic Acid Sequences
All-vs.-all BLAST

l Recurring sequences
Frequency criteria filter

Frequently occurring
multi-sample sequences

Primer size criteria filter

Candidate subsequences
Primer identification
Candidate primers

Simulated annealing

Animal/timepoint primer coverage

Thermodynamic criteria filter
l l Uninfected-only & infected-only primers

Combinatorial analysis
Co-occurence timeframe criteria filter

S

Infection specific
sequence primer sets

Primer sets for
uninfected animals

Figure 1. Bioinformatics workflow to design disease-indicator primers
for circulating nucleic acids. The list of candidate indicator sequence
segments is consecutively filtered based on desired criteria. An initial
BLAST search’s results are refined for practicality using frequency,
sample and length criteria, then a simulated annealing of the candidate
primers to the entire dataset is performed to avoid off-target matches.
Finally, the candidate primers are placed into infected and uninfected
target groups, and co-occurrence criteria (e.g. found in same month’s
sample from all infected animals) are gradually relaxed (e.g. within a
3-month span in all infected animals) until 100% specificity and 100%
selectivity are achieved for a set of primers.

RESULTS

A total of 657431 quality elk sequences were elucidated,
including 401733 from animals post-infection, with an
average read length of 163 bases. Only 2% of the CNAs
showed strong sequence similarities (BLAST expected-
value <107%), when searched against the public protein
and EST datasets, while 10% showed intermediate
(BLAST expected-value <10~"°) similarities. Most of the
matches were against ESTs from the public databanks
with unknown function, with no recurring matches to pro-
tein functions other than reverse transcriptase (approxi-
mately 1.3% of the CNAs).

In elk, three types of motifs which are representative
of different CWD stages could be deduced (see Table 1
for all CNA motifs described here and Supplementary
Table S1 for more detail). While we were not able to
identify any universal control-only motif(s), that were

characteristic exclusively to non-infected elk, we were
able to identify a ‘first stage’ motif set, covering animals
before clinical signs, up to 5 months post infection. A
combination of four individual motifs is needed to capture
all of the 24 prebleed (before inoculation) and 28-day/
55-day/5-month (post-inoculation) samples. No significant
function could be attributed to any of these motifs. Two
motifs, which occur only in the near-clinical elk samples,
were discovered, hereafter called motifs A and B. The first
appearances of motifs A and B in the animals with the MM
genotype were at 11 and 13 months; and animals with the
LM genotype at 19 and 24 months after inoculation,
respectively. Sera sampling and motif occurrence details
can be found in Supplementary Table S2. Motif A was
found to contain a match to an ecotropic viral integration
1 (EVI1) protein binding site, with 100% core similarity
and 95% overall matrix similarity, when searched using the
Matlnspector database (15). Based on a random sample
of 6000 CNAs, we estimate an e-value of 0.01 for any of
Matlnspector’s EVI1 patterns in our CNA dataset. Motif
B contains a promyelotic leukemia zinc finger (PLZF)-
binding site, with 100% core similarity, a 92% overall
matrix similarity, and an e-value of ~0.005. In general,
the timing of the appearance motifs A and B is dependent
on the animals’ genotype and overall health, preceding
clinical signs by at least 3 months. A third motif type,
motif C, occurs at the terminal stage in all infected animals.
This motif does not contain any Matlnspector hits as
strong as the EVIl and PLZF indicators. The ‘terminal
stage’ motif was also to present at month 8 in a sample
of one infected animal, which was sacrificed due to an
extensive area of inflammation in the cheek (most likely
caused by a skin wound). Oral wounds may greatly accel-
erate prion neuroinvasion (16), therefore in this case
further experimentation is required to determine if this
motif is specific to CWD infected-only animals or terminal
cases in general.

A total of 595037 quality bovine sequences were
elucidated, including 311 786 from animals post-infection,
with an average read length of 188 bases. In this dataset,
four motifs are sufficient to cover all control animals
(Table 2). Similar to the elk sample, no significant function
could be attributed to any of these motifs (Supplementary
Table S2). A search for shared BSE-only motifs demon-
strated a high bias towards only one quarter of the 16
animals, making a universal pattern set for BSE harder
to obtain. A selection of five motifs is sufficient to detect
any of the 16 BSE animals at 40 month, but none of the
controls. None of these five BSE-only motifs had statisti-
cally significant matches to any known transcription
factors. Based on our time series data from elk, the lack
of universal sequences in our cattle dataset is not surpris-
ing, as indicator motifs tend to appear in the sequence
data in low frequency and in a progressive series that is
dependent on the health of the individual animals.

In general, reverse transcriptases (pol) genes were
well represented in the cattle CNA sequences (Table 3).
Several infected animals possessed matches to an uninter-
rupted pol coding region (Table 3, panel a), while sev-
eral non-infected animal sequences matched another
uninterrupted po/ coding region (Table 3, panel b).
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Table 1. Progressive appearance of CNA motifs exclusive to CWD-infected elk, at least 3 months before clinical signs, and delayed in the

CWD-resistant genotype (LM)

22m 23m 24m 25m

15m

16m 17m 18m 19m 20m 21m

Geno- Pre-
Elk No. type inoc. 28d 55d 5m 8m 11m 13m 14m
35w MM
24 MM
44 MM
38 MM
99 MM
70 MM
2 MM
93 MM
14 MM
29 LM
26 MM
45 MM
39 MM
19 MM
69 LM
33 MM
27 MM
35y LM
37 MM
18 MM
28 LM
8 MM
31 LM
6 MM

[ inute, s, nn-cw |
Motif A (EVI1)

CCTGCCACAAGATATGTAAGGAGGTGGCCAGTTAT

*Low sequence coverage
(96-well Sanger sequencing)

TCAACACAAAGGTGTATCAGCTACCTTCCCTGTCA

Motif A contains an EVI1 protein binding site. Motif B contains a PLZF binding site. EVII is a known promoter for PLZF. Motif C, which appears

at the terminal stage in infected animals, has no known function.

Table 2. Recurring sequence motifs in BSE-infected and non-infected
cattle

Sequence Motif

Non-infected animals

GGTGGGTTGCCTGACACCCTGG
CTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTC
GGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGC
TGGGTATGGATAGGACTGCTAGGAATACGTGTTGG

Infected animals
AATCCTAGCTTTCTCCATTGAGGACCG
AAATTCTCGAGCATCTCCCCCCAAGAAAAACCAG
CTGCCAATGCAGGAGACGTGGG
AAGAGACCTGGGTTCGATCCCTAGG
TGCAACATGCCAGGCTCCCCT

The motifs were discovered using the same technique as used for the elk
in Table 1. Serum samples were obtained from 29 Fleckvieh cattle
(Simmental breed) 40 months post-inoculation (i.e. at least 4 months
before clinical signs).

Additional retroviral-like sequences with in-frame stop
codons are found regardless of infection state (Table 3
panel c¢). Sequences (a) and (b) from Table 3 may point
towards the detectability of BSE-discriminating retroviral
patterns, but this will need to be confirmed with a time
series study. Using the Smith—-Waterman algorithm (17),
the reverse transcriptase sequences identified in our sam-
ples were found to be more closely related at the protein
level to various murine leukemia viruses (e-value 10~>* for
the most frequently occurring fol) than to known bovine
leukemia viruses (e-value 10™'%).

DISCUSSION

EVI1 is a common site for retroviral integration in mam-
malian genomes, where viral integration can promote
protein expression of EVI1 (18). The EVI1 protein has
been shown to act as a transcriptional promoter for a
small number of genes, protecting the binding sites
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Table 3. Recurring endogenous retrovirus-like sequences in bovine CNAs

No. of non-infected  No. of infected Best homology

Best murine homology CNA contains Present in

animals (no. of total animals (no. of total stop codon bovine genome
sequence occurrences) sequence occurrences) in-frame (>95% DNA ID)

(a) 0 (0) 5(12) 10~*7 gag/pol protein 10~ putative gag-pro-pol No No
(Populus trichocarpa) polyprotein (xenotropic

murine leukemia virus)

(b) 55 0 (0) 10~"* predicted pol 107" pol protein (Recombinant No Truncated

olyprotein from -Mu a retrovirus matc

polyprotein f M-MuLV/RaLV jrus) h

transposon 297, partial

(Canis familiaris)
5(5 3(3) 10~% predicted protein 1072 polymerase No Truncated
o) s @ 0 [ gomo sapiens) " [ murine /ebiké’fﬂl(l virus ) N N match

gag protein gag polyprotein o es
(Bos taurus) (xenotropic murine
leukemia virus)

() 2(4) 4 (5 10-2 pol protein 107" gag-pol polyprotein Yes Truncated
(human endogenous (murine leukemia virus) match
retrovirus HCML-ARV)

5(7) 8 (10) 10~ polyprotein 107** pol polypeptide Yes Yes
(multiple sclerosis (murine leukemia virus)
associated retrovirus)

2(2) 3(3) 10~ pol protein 107 pol polypeptide Yes Yes

(human endogenous

(murine leukemia virus)

retrovirus HCML-ARV')

(a) One pol-like sequence was found exclusively in (5 of 16) infected animals, but may not be endogenous to cattle as it is not found in the current
version of the draft bovine genome (13 September 2007). (b) One pol-like sequence was found exclusively in non-infected animals (5 of 13). (c) One
gag-like and four pol-like sequences are recurrent in both PrP™-infected and non-infected populations, indicating that some endogenous retrovirus

sequences are consistently detectable regardless of prion exposure.

from DNAse I digestion (19). The transcription factor’s
protective effect (20) may explain the occurrence of motif
A in the blood CNAs, especially if EVII is being expressed
beyond what is normally required for its limited func-
tions in adults (21). One of the genes promoted by EVI1
is the transcription factor PLZF, whose target is found in
motif B, thus the function of motifs A and B can be
directly linked.

EVII expression has thus far not been linked to TSE
processes in the literature, but single-stranded RNA retro-
viruses that preferentially integrate into EVI1 have been.
Endogenous murine leukemia virus, which is known to
re-integrate into EVI1, has been shown in vivo to replicate
upon introduction of scrapie (22). Conversely, Moloney
murine leukemia virus infection has been shown in vitro
to strongly enhance scrapie infectivity (23). Instances of
Moloney-like DNA sequences are also found through-
out the latest version of the bovine genome assembly
(13 September 2007), with 26 genome regions having a
BLAST e-value <107'%. Retroviruses may therefore act
as cofactors for TSE pathogenesis (24,25). Retrovirus-
induced activation of EVI1 during the course of CWD
infection could provide a biological basis for the pair of
motifs that we detected in elk. These results are also well
aligned with our previous findings of human endoge-
nous retroviral associations with progressive neurologic
diseases (26).

Growing evidence [e.g. (27,28)] shows that PrP™ alone
has dramatically lower infectivity than TSE agent parti-
cles. A link between general retroviral activity and TSEs
was first proposed almost twenty years ago (29). While
such a link is speculative, two types of data specifically

support an endogenous retroviral cofactor theory. First,
the prion agent is released into cell culture in associa-
tion with exosome-like structures and viral particles of
endogenous origin (8). Second, a growing body of liter-
ature suggests an antiretroviral role for the PrP protein
(30-32). More specifically, recent results (32) show that
PrP is highly up-regulated in response to increased activity
of murine endogenous retroviruses. The mRNA level of
PrP also increases after scrapie agent inoculation in lym-
phoid tissue (33). If PrP**“-prompted lymphoid retroviral
activity is responsible for EVI1 detection in CNAs, this
could explain its early detectability: lymphoid tissues accu-
mulate PrP*™? before the central nervous system (34).

The nucleic-acid-binding properties of PrP (35), and
the presence of PrP™® in cervid blood (36) mean that
alternative explanations for the presence of the motifs
are possible. Retroviral RNA may play a role in the trans-
formation of PrP° to PrP! (37), or may conversely reduce
PrP° availability (38). While an aptamer role is possible, a
Smith—Waterman search of both the motifs and common
C-type retroviruses against 87 prion-targeting nucleic-
acid aptamers found in the literature and patents does
not yield any matches. The possibility remains that the
motif sequences may bind PrP in a non-sequence-specific
manner (39). A simple present/absent criteria was used
for unbiased motif discovery in a randomly sequenced
CNA dataset: these motifs will inform our targeted char-
acterization and quantification of disease-specific CNAs
and any associated complexes going forward.

The biological mechanism by which the CNAs originate
still remains uncertain, but our data support the idea that
it is possible to detect host reaction to the CWD and BSE



infectious agents via CNAs in live animals, and impor-
tantly, before clinical signs appear. Further studies will
help to validate the specificity of patterns for TSEs
versus brain trauma and other neurological diseases, as
well as the consistency of the patterns in naturally occur-
ring CWD and BSE cases. The information from the elk
study demonstrates that a time course analysis of the
blood CNAs can greatly improve our ability to determine
the diagnostic signals present in slowly developing, poorly
understood diseases such as TSEs. We consider that the
patterns described here provide a starting point for the
development of a relatively simple, cost-effective live
animal test. For instance, in the future PCR-based tests,
pooled samples could be used on a large scale to eliminate
infected animals from the human food chain, even before
the onset of clinical signs. In this context, it is also inter-
esting that we were able to identify a combination of pat-
terns in elk, which was only found in control animals and
animals up to 5 months after infection, and patterns in
cattle that were only present in the controls (when com-
pared to animals 40 months after infection). Adding these
patterns to the eventual screening strategy could certainly
enhance the accuracy of a live animal testing system.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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