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Editorial introduction

It is an amazing time to be a microbiologist. We have progressed 
from the study of microbes in monoculture to the study of microbes 
in mixed culture to the study of complex microbial communities 
in natural environments. Colony purification was an extremely 
powerful reductionist tool, but after decades of genetic analyses, 
many genes of model microbes still have no defined function. It 
is clear that many of these genes may be expressed, or may have 
phenotypes, only in the presence of other organisms. The early 
discovery of antibiotics was a step in this direction. The parallel 
discoveries of quorum sensing and biofilms led to the realization 
that individual cells of a species can cooperate with one another, 
in a coordinated multi-cellular fashion, to achieve common goals 
and to provide three dimensional structures to communities.1-3 
These findings were followed by numerous discoveries of 
chemical signaling between microbial species and even between 
kingdoms. Often neglected, the metabolic interactions between 
organisms are essential to microbial community structure and 
function.4 Even the totality of these chemical signaling and 
metabolic interactions are probably just scratching the surface of 
the complexity with which microbes interact. The state of the 
“microbial interactions” field today seems similar to the state of 
“microbial pathogenesis” in the 1980s. At the time it was thought 
that pathogens, such as Salmonella, were simply “tougher” than 
organisms such as commensal E. coli. Salmonella could survive 
in hostile environments such as host immune cells because it was 
more resistant to digestive enzymes, acid, and oxidative stress 
than E. coli. It was later found that the mechanisms by which 
Salmonella evades host defenses are vastly more sophisticated, 
with secretion systems injecting more than 40 different proteins 
into host cells to manipulate cellular physiology in specific and 
elegant ways that are still far from understood. Although much 
less is known regarding microbial interactions, it is likely that 
they will turn out to be highly sophisticated as well. A striking 
example is the recent discovery that P. aeruginosa uses its Type 
6 Secretion System (T6SS) to inhibit other bacteria only in 
response to attacks from other bacteria that also yield a T6SS, or 
even in response to mating attempts.5,6

In this issue of Gut Microbes, we focus on “microbial 
interactions” specifically within the gut. While this field is in 
its infancy, its importance is staggering. The development of a 
healthy microbial community is critical to the development of a 
healthy person. It seems like every day, more and more human 
diseases including inflammatory bowel disease (IBD), diabetes, 
obesity, cardiovascular disease, and allergies are suspected of 
originating with microbiota imbalances or dysbiosis.7-12 There is 

even increasing evidence for a link between the gut microbiota 
and brain function, including autism spectrum disorder 
(ASD).13 The microbiota is required for the nutrition of the host, 
the development of intestinal tissues, and the development of 
the host immune system.9,11,14,15 The microbiota is also critically 
important for protecting the host from pathogens (often called 
colonization resistance [CR]). For instance, disruption of the 
mouse intestinal microbiota decreases the LD
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from 106 cfu to less than 10 cfu.16-20 Partial restoration 
of resistance to Salmonella is achieved by inoculating the 
disrupted mice with a fecal suspension from untreated mice.21 
Clearly the host’s normal microbiota plays a very important 
role in preventing pathogen colonization. Not surprisingly, 
gut communities are specifically adapted to the species, even 
the genotype, of the host.22,23 For instance, mouse microbial 
communities are better than human communities at preventing 
Salmonella from inflaming the intestine.15 A germ-free mouse 
can be inoculated with conventional mouse feces and become 
resistant to Salmonella-mediated inflammation within days. But 
germ-free mice inoculated with human feces do not become 
resistant.15 Elucidating the mechanisms underlying phenomena 
such as these might one day lead to the rational design of novel 
probiotics and antibiotics, provide new insights into pathogen 
host ranges, and contribute to our understanding of the ecology 
of diseases and epidemics. This isn’t just hype. Antibiotic-
induced dysbiosis is the most clinically prevalent dysbiosis in the 
US healthcare system.24-28 Broad-spectrum antibiotics can induce 
long-lasting effects on gut bacterial communities that ultimately 
result in gastrointestinal pathology.29,30 Approximately 25% of 
cases of antibiotic-associated diarrhea are due to Clostridium 
difficile.26,31 The spectrum of resulting disease can range from a 
state of asymptomatic carrier to pseudomembranous colitis and 
death.27,28 In fact, what one might consider the ultimate probiotic, 
fecal transplantation, is remarkably successful at curing recurrent 
C. difficile infection.32 A new industry will spring up if fecal 
transplantation proves successful in the treatment of obesity or 
ASD. The FDA held a public workshop in May 2013 to discuss 
the issues surrounding fecal transplantation, two of which are 
quality control and patient aversion. Both of these can be solved 
if combinations of isolated microbial species could be developed 
into effective probiotics.33,34 One combination has already 
shown effectiveness in treating recurrent C. difficile infection 
and comes with the catchy name of “RePOOPulate”.35 This type 
of treatment will put more focus on researchers to determine 
the mechanism of action of probiotics and the mechanisms that 
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allow these organisms to persist, or not, among disparate gut 
communities.36,37

Continuing on these themes, in this issue Vincent Young’s 
group provides a review on the metabolic environment of the 
intestine and how disruptions of this environment facilitate 
infection by Clostridium difficile.38 Bruce McClane’s group 
provides a review on Clostridium perfringens and how it detects 
compounds produced by epithelial cells.39 Zhongtang Yu’s lab 
provides a comprehensive review on the microbiome of poultry, 

what factors are known to affect this microbiome and what 
affects the microbiome has on the host.40 Jun Zhu’s group 
provides a review on quorum sensing by Vibrio cholerae within 
the intestine,41 and Dennis Kasper’s lab provides a review on 
the host response to commensals, more specifically, on innate 
lymphocytes.42
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